Myeloproliferative Neoplasms *Evaluation, Diagnosis, Prognostication, and Emerging Therapies*

Ayalew Tefferi, MD Barbara Woodward Lips Professor of Medicine Mayo Clinic, Division of Hematology Rochester, MN

I have nothing to declare

International Consensus Classification

Arber et al. Blood 2022;140:1200

Tefferi, A. AJH 2023;98:801

3. Other myeloid malignancies are excluded

Triple-A (AAA) survival model for essential thrombocythemia

Overall survival data among 598 Mayo Clinic patients with essential thrombocythemia Stratified by <u>Age</u>, <u>Absolute neutrophil and Absolute lymphocyte count</u> (AAA) risk model *Median follow-up 8.4 years*

Age >70 years = 4 points Age 50-70 years = 2 points Absolute lymphocyte count <1.7 x 10(9)/L = 1 point Absolute neutrophil count $\ge 8 \times 10 (9)/L = 1$ point

Abnormal karyotype and high-risk mutations (*TP53, SF3B1, SRSF2, U2AF1*) carried additional prognostic relevance

Leukemic transformation risk model in essential thrombocythemia

"N" scorable based on availability of information on risk variables = 910

Abnormal karyotype: HR 3.1 (1.1-9.3) - 1 point Platelet count ≥1,000x10⁹/l: HR 2.3 (1.0-5.2) - 1 point

Fibrotic progression risk model in essential thrombocythemia

"N" scorable based on availability of information on risk variables =659

MPL mutation: HR 3.9 (1.8-8.4)- 2 points Absolute neutrophil count ≥8x10⁹/I: HR 2.3 (1.2-4.3) - 1 point

Traditionally low risk

Traditionally high risk

- Age ≤60 years <u>and</u>
- No thrombosis history

- Age >60 years <u>or</u>
- Presence of thrombosis history

Barbui et al. Blood Cancer J. 2015 Nov; 5(11): e369

New information: One thousand patients with essential thrombocythemia Triple-negative had the lowest risk of arterial or venous thrombosis CALR-1 vs CALR-2 carries higher risk of arterial thrombosis

Gangat, N., et al. Blood Cancer J. 14, 11 (2024). https://doi.org/10.1038/s41408-023-00972

Arterial Thrombosis-free survival in 985 patients with essential thrombocythemia stratified by driver mutation

Venous Thrombosis-free survival in 985 patients with essential thrombocythemia stratified by driver mutation

JAK2 vs CALR type 1= 0.12 JAK2 vs CALR type 2 =0.32 JAK2 vs triple negative= 0.02 JAK2 vs MPL= 1.0CALR type 1 or type 2 vs MPL= 0..46/0.61 CALR type 1 vs triple negative =0.18 CALR type 2 vs triple negative= 0.12

P-value

JAK2 vs CALR type 1= 0.14 JAK2 vs CALR type 2 =0.50 JAK2 vs triple negative= 0.03 JAK2 vs MPL= 1.0CALR type 1 or type 2 vs MPL= 0..99 CALR type 1 vs triple negative =0.17 CALR type 2 vs triple negative= 0.08

Current Treatment Algorithm in Essential Thrombocythemia

Tefferi. et al. AJH 2024 in press

*Second-line treatment in hydroxyurea intolerant or refractory patients is pegylated IFN- a or busulfan

Additional practice points in essential thrombocythemia

- 1. What if you can't or don't want to use hydroxyurea
 - First choice-pegylated interferon alpha
 - Second choice-busulfan
 - I do not advise use of anagrelide or ruxolitinib in ET
- 2. Management before or during pregnancy
 - Low-risk...low-dose aspirin only
 - High-risk...pegylated IFN + low-dose aspirin
 - LMWH use reserved for patients with venous thrombosis history

- 3. Management of splanchnic vein or cerebral vein thrombosis
 - Systemic anticoagulation advised (DOAC vs warfarin)
 - Consider adding aspirin in the presence of risk factors for arterial thrombosis
 - Additional value of cytoreductive therapy uncertain-to be decided case by case
- 4. Management of platelet millionaires with otherwise low-risk disease
 - No evidence of value for cytoreductive therapy
 - Avoid use of aspirin in patients with clinically evident acquired von Willebrand syndrome
 - Treat the patient and not the platelet count

Mutation-enhanced international prognostic score (MIPSS-PV)

Risk factors:

- 1. Age >60 years (2 points),
- 2. Leukocyte count \geq 11 x 10⁹/l (1 point), incidence 50%
- 3. Abnormal karyotype (1 point), incidence 20%
- 4. SRSF2 mutations (2 points), incidence 3%

Current Treatment Approach in Polycythemia Vera

Scheduled phlebotomy to keep hematocrit <45% in all patients

Once-daily low-dose aspirin in all patients

Tefferi, Vannucchi, and Barbui Leukemia. 2021;35:3339

Current Treatment Approach in Polycythemia Vera

Scheduled phlebotomy to keep hematocrit <45% in all patients

Once-daily low-dose aspirin in all patients

Tefferi, Vannucchi, and Barbui Leukemia. 2021;35:3339

Consideration of pegylated interferon for upfront therapy in both low-risk and high-risk PV

Studies	Treatment arm	Comparator	Efficacy	Toxicity	Meaningful endpoints
Phase-3 high-risk PV/ET Mascarenhas et al. <i>Blood.</i> 2022; 139: 2931	Peg-rIFN-α2a	Hydroxyurea	CHR 35 VS 37% ORR 78 vs 70% Hct control 65 vs 43% Peg-IFN better with JAK2 VAF reduction HU better with histologic remission 23 vs 5%	Peg-IFN more Toxic than HU: ≥ grade 3 AEs 46% vs 28%	Disease progression and thrombosis were Infrequent In both arms
Phase-3 high-risk PV Gisslinger et al. <i>Lancet Haematol.</i> 2020; 7: e196	Ropeg.	Hydroxyurea	CHR 21 VS 28% Hematologic response 43% vs 46% Responses to Ropeg Improved over time JAK2 VAF lower with Ropeg	TEAEs were Reported Similar Dose red 40% Drug int 23% Drug dis 8%	F/U too short to comment Impact on survival or thrombosis
Phase-2 randomized Low-risk PV Barbui et al. <i>NEJM Evid. 2023;</i> 2:Doa2200335.	Ropeg. + Phlebotomy + ASA	Phlebotomy + ASA	Hct control at 1-year: 81% vs 59% JAK2 VAF change Baseline to 12-mos 34.0% (18.0-57.0) to 18.0% (8.0-35.0)	Treatment- emergent side effects 55% vs 6%	F/U too short to comment Impact on survival or thrombosis + Cross-over design

HU resistant/intolerant PV

Studies	Rx arm	Other arm	Efficacy	Toxicity
Phase-2 <mark>PV/ET</mark> Yacoub et al. Blood. 2019; 134: 1498	Peg-IFN N=50/65	N/A	ORR 69% ORR PV only 60% CHR PV only 22% Median reduction in JAK2 VAF at CR -6% (-84% to 47%)	Usual Peg-IFN Toxicity
Phase-3 <mark>RESPONSE</mark> Vannucchi et al. NEJM 2015;372	Ruxolitinib N=110	BAT <mark>HU 60%</mark> No Rx 15% N=112	Hct control 60% vs 20% Spleen control 40% vs 1% CHR 24% vs 4% Symptoms 49% vs 5% Week 32 mean VAF -12%; week 112 -35%	Shingles 6.4% vs 0% Number of events too small to comment on progression/SCC
Phase-3 RESPONSE-2 without splenomegaly Passamonti et al. Lancet Oncol. 2017;18:88	Ruxolitinib N=74	BAT HU 49% No Rx 28% N=75	Hct control 62% vs. 19% Spleen control N/A CHR 23% vs 5% Symptoms 45% vs 23% JAK2 VAF change not reported	Number of events too small to comment on progression and Shingles/SCC
Phase-2 randomized MAJIC-PV Harrison et al. JCO 2023 doi:10.1200	Ruxolitinib N=93	BAT HU 66% alone or combo N=87	CR: 43% vs 26% >50% reduction in VAF: 14% vs 18% at 1-yr 56% vs 25% at 4-yrs 3-yr survival 88% vs 87% (p=NS) PFS 84% vs 75% (p=NS) EFS better with ruxolitinib and CR	Shingles 9% vs 3% SCC 6% vs 0% AML 4% vs 0%

Current Treatment Approach in Polycythemia Vera

Scheduled phlebotomy to keep hematocrit <45% in all patients

Once-daily low-dose aspirin in all patients

Busulfan

- Marked reduction in phlebotomy need and reversal of iron deficiency
- Injection site reactions
- Phase-3 study ongoing

Personal perspective

- High-risk disease...dubious role since broader myelosuppression is secured by cytoreductive therapy
- Low-risk disease...patient preference and should be assessed in the context of alternative therapy with pegylated IFN, which, by the way, also controls leukocytosis, thrombocytosis, and splenomegaly

Disease Complications in Myelofibrosis

- Anemia
- Splenomegaly
- Constitutional symptoms
- Cachexia

Therapeutic options in myelofibrosis

Curative or with potential to improve survival

Allogeneic hematopoietic cell transplant (allo-HCT)

Palliative

- Observation alone (watch-and-wait)
- Treatment for anemia
 - Thalidomide ± prednisone
 - Androgens
 - Danazol
 - ESAs
 - Lenalidomide/pomalidomide
- Treatment for symptomatic splenomegaly
 - Hydroxyurea
 - JAK2 inhibitors
 - Splenectomy
- Treatment for constitutional symptoms
 - JAK2 inhibitors
- Involved field radiotherapy for extra-medullary hematopoiesis
- Experimental therapy

Survival following allogeneic transplant in patients with myelofibrosis (CIBMTR and MPN Research Consortium study)

551 patients transplanted vs 1377 not transplanted

Figure 1:

Mutation/karyotype-enhanced international prognostic scoring system for primary myelofibrosis (MIPSSv2)

McLornan et al. BMT 2021;56:2160

Determinants of survival and retrospective comparisons of 183 clinical trial patients with JAKi-naïve myelofibrosis treated with momelotinib, ruxolitinib, fedratinib or BMS- 911543 JAK2 inhibitor

Predictors of inferior survival

Age > 65 years Transfusion-dependent anemia Unfavorable karyotype Absence of Type 1/like CALR mutation Presence of ASXL1/SRSF2 mutation Absence of Spleen response Absence of Anemia response

Bold font represents variables retaining significance on multivariable analysis

Gangat et al. <u>Blood Cancer Journal</u> volume 13, Article number: 3 (2023)

JAK2 inhibitors in myelofibrosis: activity in JAKi-naïve patients

	Ruxolitinib (FDA 2011)	Fedratinib (FDA 2019)	Pacritinib (FDA 2022)	Momelotinib (FDA pending)
Dose & Schedule	20 mg BID (Pits >200 x10 ⁹ /l) 15 mg BID (Pits 150-200 x10 ⁹ /l)	400 mg BID (Pits ≥50 x10 ⁹ /l)	200 mg BID (Plts <50 x10 ⁹ /l)	Approval pending (200 mg QD)
SVR ≥35%	29% (SIMPLIFY-1) Ruxo vs mom	36% (JAKARTA-1) Pardanani et al. JAMA Oncology 2015 fed vs placebo	19% (PERSIST-1) Mesa et al. Lancet Hematology 2017 Pac vs BAT	27% (SIMPLIFY-1) Mesa et al. JCO 2017
Transfusion resolution	More likely to cause anemia	More likely to cause anemia	25% (PERSIST-1)	46% (Mayo study) Gangat et al. AJH 2022
Symptom response	42% (SIMPLIFY-1)	36% (JAKARTA-1)	19% (PERSIST-1)	28% (SIMPLIFY-1)
Adverse effects	Anemia Thrombocytopenia Withdrawal Opportunistic COVID vaccines	Anemia Thrombocytopenia GI symptoms ↑LFTs/amylase/lipase Wernicke's (Rare event)	GI symptoms Edema Pneumonia Cardiac failure	Thrombocytopenia ↑LFTs/amylase/lipase Peripheral neuropathy First-dose effect (Dizziness, Hypotension, Flushing, Nausea)

Tefferi et al. Haematologica Early view Mar 2, 2023 <u>https://doi.org/10.3324/haematol.2022.282612</u>

Risk-adapted treatment algorithm for myelofibrosis: 2024 edition

Based on risk category per the mutation/karyotype-enhanced international prognostic scoring system for primary myelofibrosis (MIPSSv2)*

Ruxolitinib in combination with navitoclax or pelabresib in myelofibrosis: activity in JAKi-naïve patients (ASH 2023)

	Ruxolitinib	Navitoclax	Ruxolitinib	Pelabresib	Ruxolitinib	
		+	+	+	+	
		Ruxolitinib	Placebo	Ruxolitinib	Placebo	
	n=155	n=125	n=127	n=214	n=216	
	COMFORT-1 Median follow-up: 8 months	TRANSFORM-1 Median follow-up: 14.9 months		MANIFEST-2 Median follow-up: 11.3 months		
Patient	IPSS	DIPSS-plus	DIPSS-plus	DIPSS	DIPSS	
Characteristics	High 58% Intermediate 2 41%	High 10% Intermediate-2 83% Intermediate-1 6%	High 9% Intermediate 2 87% Intermediate-1 4%	High 5% Intermediate 2 35% Intermediate-1 60%	High 7% Intermediate 2 34% Intermediate-1 59%	
High molecular risk	Not available	48%	43%	39%	49%	
Transfusion- dependent	22%	4%	3%	16%	12%	
	20 mg BID (Pits >200 x10 ⁹ /l)	Ruxolitinib 15-20 mg BID (90% with dose reduction) +	Ruxolitinib 15-20 mg BID (61% with dose reduction) +	Day 1-21 Ruxolitinib 10-15 mg BID (median dose 29.3 mg daily)	Day 1-21 Ruxolitinib 10-15 mg BID (median dose 31.3 mg daily)	
Dose & Schedule	15 mg BID (Pits 150-200 x10 ⁹ /l)	Navitoclax 100/200 mg QD	Placebo	+ Day 1-14 Pelabresib 125 mg QD	+ Day 1-14 Placebo	
<mark>SVR ≥35%</mark>	<mark>42%</mark>	<mark>63%</mark>	<mark>32%</mark>	<mark>66%</mark>	<mark>35%</mark>	
		P<0.00	01	P<0.001		
<mark>Anemia response</mark>	-	-	÷	<mark>9%</mark>	<mark>6%</mark>	
<mark>Symptom</mark>	<mark>46%</mark>	<mark>39%</mark>	<mark>42%</mark>	<mark>52%</mark>	<mark>46%</mark>	
<mark>Response</mark>		P=0.29		P=0.22		
Adverse effects	Grade ≥3 thrombocytopenia 13% Grade ≥3 neutropenia 7%	Grade ≥3 thrombocytopenia 51% Grade ≥3 neutropenia 38%	Grade ≥3 thrombocytopenia 15% Grade ≥3 neutropenia 4%	Thrombocytopenia 32% Grade ≥3 thrombocytopenia 9% <mark>Dysgeusia 18%</mark>	Thrombocytopenia 23% Grade ≥3 thrombocytopenia 6% <mark>Dysgeusia 4%</mark>	
Discontinuation rate	14%	30%	<mark>35%</mark>	27%	<mark>25%</mark>	

Summary of Novel Agents in phase 1/2 clinical trials in myelofibrosis

	Novel agent	Mechanism	SVR/TSS	Anemia response	Reduction in fibrosis	Toxicity
pleen	TP-3654 (N=31) Abstract 626 (JAKi exposed)	PIM1 Kinase inhibitor	<mark>+/++</mark>	-	+	GI ♦ Platelet count Anemia
	BMS-986158 + Ruxolitinib/Fedratinib (N=48) Abstract 623 (JAKi naïve + exposed)	Bromodomain and extra-terminal (BET) inhibitor	<mark>++</mark> /NR	-	+	GI ♦ Platelet count Anemia
	Selinexor + Ruxolitinib (N=14) Abstract 622 (JAKi naïve)	Nuclear export XPO1 inhibitor	<mark>++/++</mark>	NR	NR	GI ♦ Platelet count Anemia
	INCB057643 +/- Ruxolitinib (N=29) Abstract 750 (JAKi exposed)	Bromodomain and extra-terminal (BET) inhibitor	<mark>+/+</mark>	ŧ	NR	✓ Platelet count Anemia Gl
	Bomedemstat (MK3543) + Ruxolitinib (N=35) Abstract 621 (JAKi naïve)	Lysine-specific demethylase-1 (LSD) inhibitor	<mark>+/+</mark>	ŧ	NR	♥ Platelet count Anemia Gl
Anemia –	Luspatercept +/- Ruxolitinib (N=95) Abstract 7016 (JAKi naïve + exposed)	Transforming growth factor-beta (TGF-β) ligand trap	NR/+	<mark>+</mark> (TD on ruxolitinib)	NR	Hypertension
	Zilurgisertib (INCB000928) +/-Ruxolitinib (N=46) Abstract 624 (JAKi naïve + exposed)	Activin Receptor-like Kinase-2 (ALK2/ACVR1) inhibitor	NR	<mark>+</mark> (none in TD)	NR	↓ Platelet count
	DISC-0974 (N=11) Abstract 4564 (JAKi naïve + exposed)	Anti-hemojuvelin (HJV) antibody	NR	++	NR	None to low incidence of diarrhea
Fibrosis -	PXS-5505 (N=23) Abstract 634 (JAKi naïve + exposed)	Lysyl oxidase (LOX) inhibitor	-/+	ł	Collagen + Reticulin -	GI ♥ Platelet count Anemia

SVR, spleen volume reduction; TSS, total symptom score; NR, not reported; GI, gastrointestinal, TD, transfusion-dependent

Spleen -

Discovery of INCA033989, A Mutant Calreticulin

(CALR)-specific monoclonal antibody

- Fully human IgG1
- Selective binding to mutant CALR
- Inhibited CALR induced signaling
- Inhibited pSTAT5 in CD34+ mut CALR cells not wild type
- Inhibited proliferation of mut CALR HSPC/megakaryocytes
- Murine model of ET: reduction in mut CALR platelets
- Restored normal megakaryopoiesis
- Phase 1 study in mut CALR ET and MF currently ongoing
- NCT06034002 LIMBER trial (recruiting)
- Study start December 2023
- Estimated completion date October 2028
- JNJ-88549968 phase-1 bispecific T-cell/mutant CALR
- NCT06150157 (recruiting)
- Study start December 2023
- Estimated completion date November 2026
- Mutant CALR peptide vaccine NCT03566446
- Study start date June 2018
- Recruitment completed April 2021

What can we expect?

Vainchenker and Kralovics. Blood (2017) 129 (6): 667–679.

Concluding remarks on MPN therapy 2024

- Less is always more in the management of ET and PV
- Allogeneic transplant is the only treatment that secures longterm survival in myelofibrosis – <u>bone marrow registries need</u> <u>more diverse donors</u>
- Newer JAK2 inhibitors target the triad of QoL offenders in myelofibrosis: anemia, splenomegaly and constitutional symptoms/cachexia but, have not yet shown to be diseasemodifying – <u>treatment paradigms need to be revisited</u>
- Regarding investigational new drugs for myelofibrosis, I see lots of cloud but no rain, yet[©]