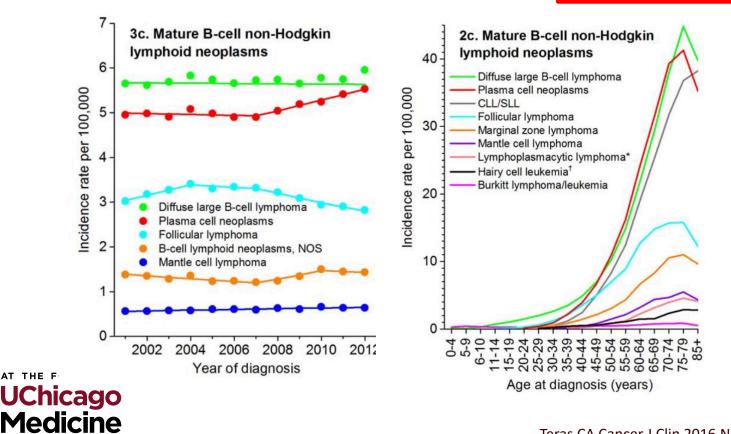


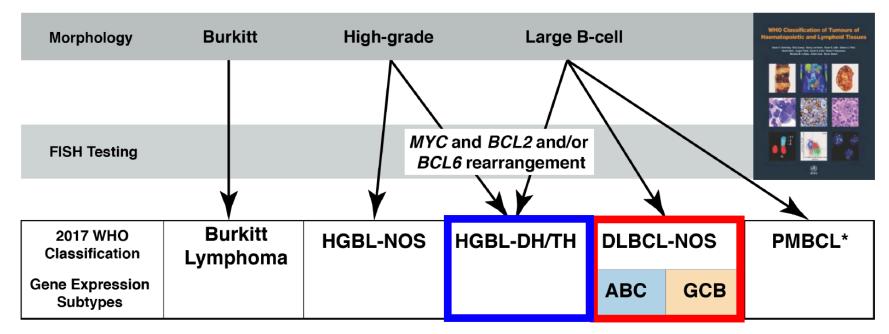
## INDY HEME REVIEW 2024: ADVANCES IN AGGRESSIVE B- AND T-CELL LYMPHOMAS

Sonali M. Smith, MD FASCO Elwood V. Jensen Professor of Medicine Chief, Section of Hematology/Oncology Co-Leader, Cancer Service Line The University of Chicago

## **Disclosures**


- Consulting in past 24 months: Ono Pharmaceuticals Gilead BMS Genmab
- Spouse is employed by Caris Life Sciences
- I may discuss approved agents in unapproved settings and unapproved agents in development. I will disclose when this is the case.




## **DLBCL** in context

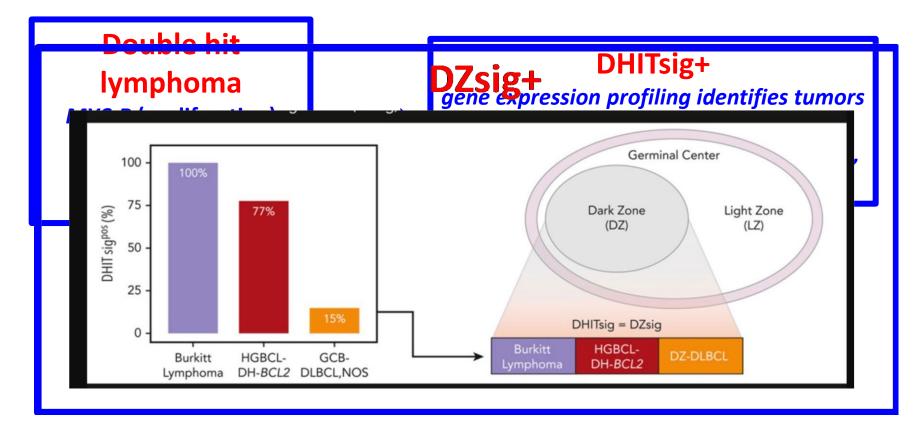
### Goal of treatment is CURE

- DLBCL is the most common lymphoid cancer
- ~27K new/year in US
- Increases with age
- Occurs in all age groups



## Heterogeneity of aggressive B-cell lymphomas

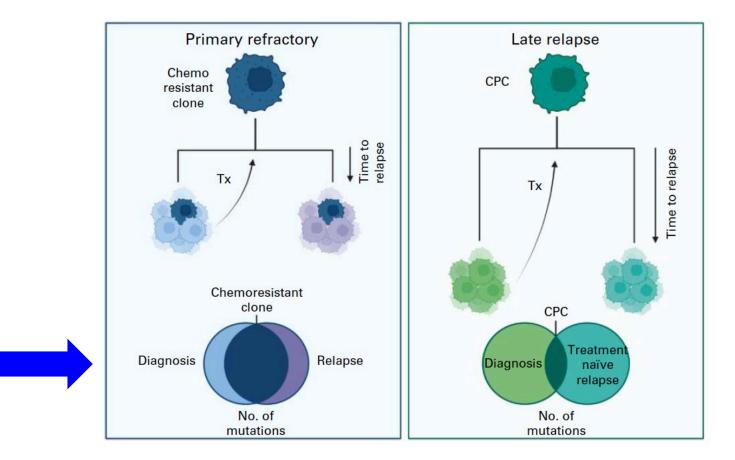



HGBL-NOS: high-grade B-cell lymphoma NOS HGBL-DH/TH: high-grade B-cell lymphoma with *MYC* and *BCL2* and/or *BCL6* rearrangements PMBCL: Primary mediastinal B-cell lymphoma

Swerdlow et al WHO revised 4<sup>th</sup> Edition 2017



Slide adapted from Laurie Sehn


# "Double hit lymphoma": a diagnosis in evolution





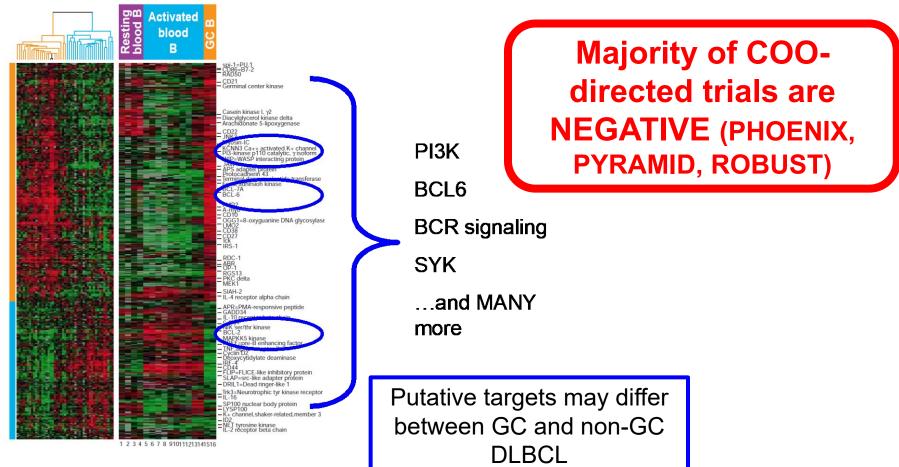
Hilton Blood 2019 Oct 31;134(18):1528-1532 Alduaij Blood Volume 141, Issue 20, 18 May 2023, Pages 2493-2507


## **Biology of rel/ref DLBCL may differ based on time to relapse**





Hilton J Clin Oncol 2023; 41:4164-4177

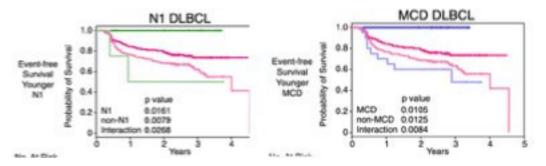

# Rethinking biologic heterogeneity in DLBCL





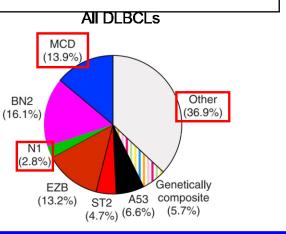
Wright Cancer Cell 2020 Apr 13;37(4):551-568.e14

# Cell-of-origin (COO) has not succeeded as a *predictive* tool in DLBCL




AT THE FOREFRONT UChicago Medicine

Monti Blood. 2005 Mar 1;105(5):1851-61; Alizadeh Nature. 2000 Feb 3;403(6769):503-11


## Revisiting the "negative" PHOENIX Trial: R-CHOP +/- ibrutinib

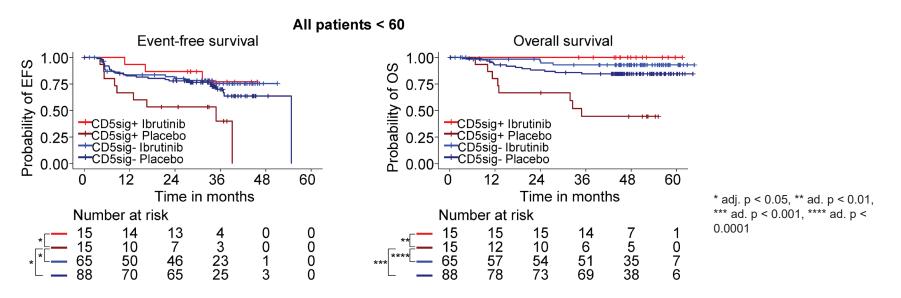
- R-CHOP + ibrutinib failed to improve survival for non-GCB DLBCLs in the phase III PHOENIX trial
  - Toxicity
  - Gap between Dx and Tx
  - Underlying heterogeneity
- Retrospective analysis MCD and N1 DLBCLs benefit from R-CHOP + ibrutinib
  - MCD : MYD88<sup>L265P</sup> and CD79B mutations
  - N1 : NOTCH1 mutations



## Can we identify a more easily translatable biomarker for BTKi in DLBCL?

- 1. Complex methodology
  - Uses WES + CNA + FISH (+ GEP)
- 2. MCDs and N1s make up < 20-30% of non-GCB DLBCL
- 3. 40-70% of non-GCB DLBCLs are genetically unclassified
  - These patients also benefit from R-CHOP + ibrutinib

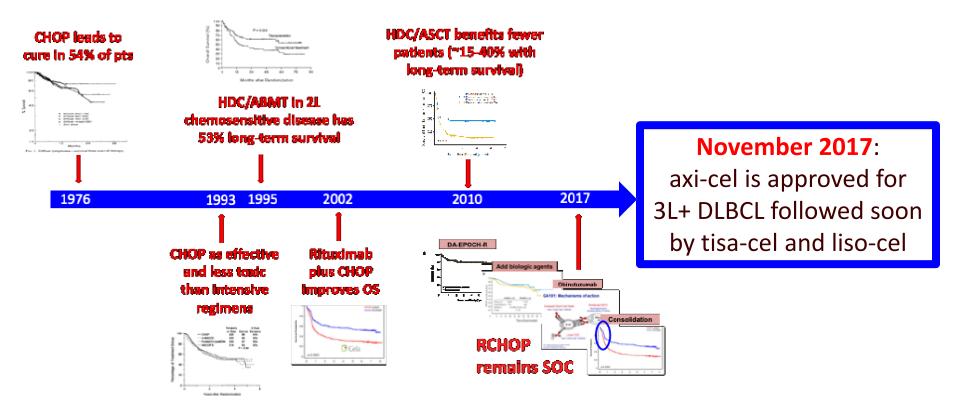





# CD5sig+ DLBCLs exhibit a selective survival advantage with ibrutinib + R-CHOP

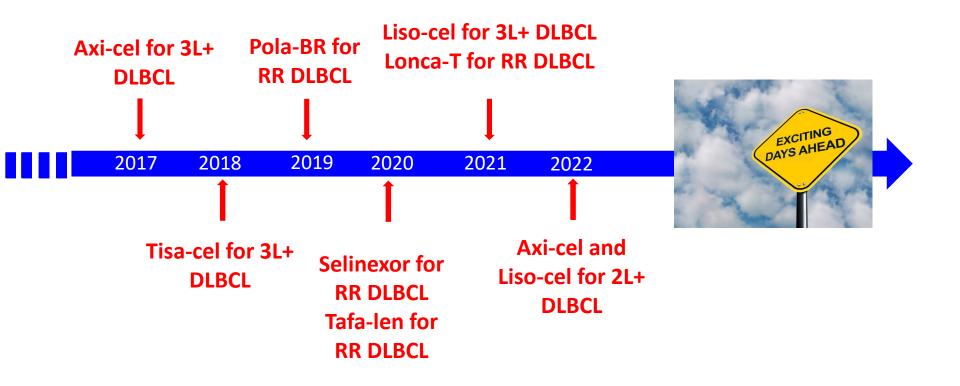
- CD5 is a marker of B cell activation
- Enriched for non-GCB cell of origin

THE UNIVERSITY OF


- Enriched for *MYD88* and *CD79B* mutations
- Clear positive and negative IHC staining
- Ubiquitously expressed on BTKi-responsive cancers like CLL and MCL

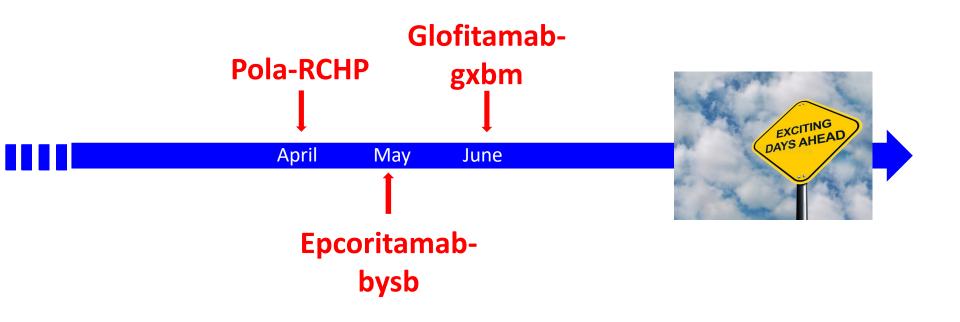





### LBCL Treatment

## **Major milestones in DLBCL Treatment**

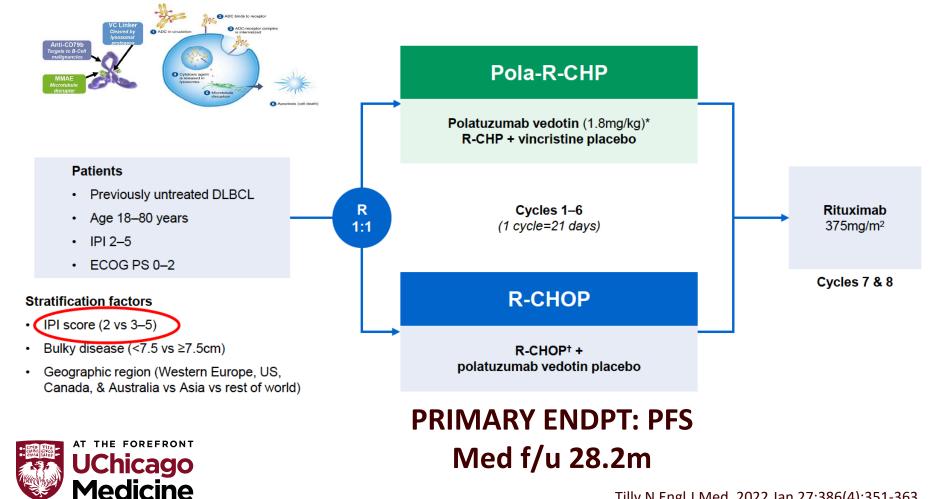




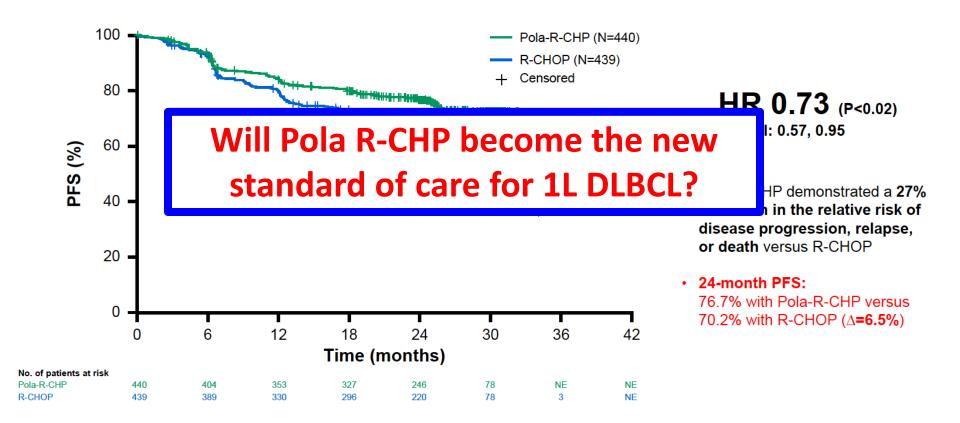

## **Major milestones in DLBCL Treatment**






## Major milestones in DLBCL Treatment: 2023 Updates






## **POLARIX: a randomized double blind** phase 3 trial

 Microtubule inhibitor MMAE conjugated to CD79b monoclonal antibody via a protease-cleavable peptide linker



## **POLARIX: primary endpoint was met**



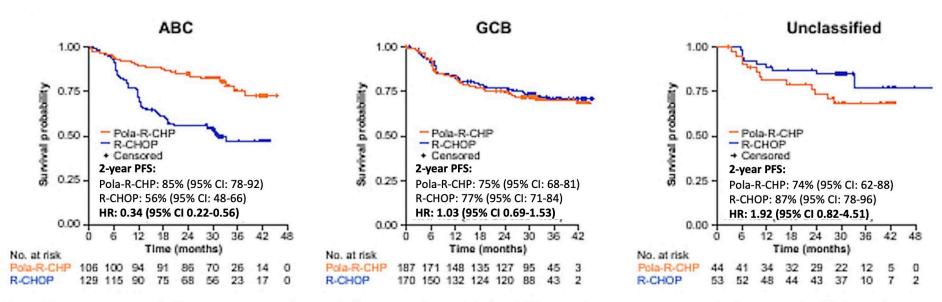


#### No difference in overall survival

Tilly N Engl J Med. 2022 Jan 27;386(4):351-363

## **POLARIX Subgroup Analysis**

#### **Pola-RCHP better for**


- Older pts
- PS 0-1
- Non-bulky disease
- ABC subtype
- No DHL/THL



|                                                                              |                         | Pola-R-CHP<br>(N=440)   |                              | R-CHOP<br>(N=439)       |                              |                          |                                                              |                      |                  |
|------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------------|-------------------------|------------------------------|--------------------------|--------------------------------------------------------------|----------------------|------------------|
| Baseline Risk Factors                                                        | Total<br>N              | n                       | 2-year<br>Rate               | n                       | 2-year<br>Rate               | Hazard<br>Ratio          | 95% Wald<br>Cl                                               | Pola-R-CHP<br>Better | R-CHOP<br>Better |
| Age group<br>≤60<br>>60                                                      | 271<br>608              | 140<br>300              | 74·1<br>77·9                 | 131<br>308              | 71·9<br>69·5                 | 0·9<br>0·7               | (0·6 to 1·5)<br>(0·5 to 0·9)                                 |                      |                  |
| Sex<br>Male<br>Female                                                        | 473<br>406              | 239<br>201              | 75·9<br>77·7                 | 234<br>205              | 65·9<br>75·2                 | 0·7<br>0·9               | (0·5 to 0·9)<br>(0·6 to 1·4)                                 | -                    |                  |
| ECOG PS<br>0–1<br>2                                                          | 737<br>141              | 374<br>66               | 78·4<br>67·2                 | 363<br>75               | 71·2<br>65·0                 | 0·8<br>0·8               | (0·6 to 1·0)<br>(0·5 to 1·4)                                 | , <b></b>            | -                |
| IPI score<br>IPI 2<br>IPI 3–5                                                | 334<br>545              | 167<br>273              | 79·3<br>75·2                 | 167<br>272              | 78·5<br>65·1                 | 1·0<br>0·7               | (0.6 to 1.6)<br>(0.5 to 0.9)                                 |                      |                  |
| Bulky disease<br>Absent<br>Present                                           | 494<br>385              | 247<br>193              | 82·7<br>69·0                 | 247<br>192              | 70·7<br>69·7                 | 0·6<br>1·0               | (0·4 to 0·8)<br>(0·7 to 1·5)                                 |                      |                  |
| Geographic region<br>Western Europe, United States,<br>Canada, and Australia | 603                     | 302                     | 78.6                         | 301                     | 72.0                         | 0.8                      | (0.6 to 1.1)                                                 | <b></b>              | н                |
| Asia<br>Rest of world                                                        | 160<br>116              | 81<br>57                | 74.3<br>70.8                 | 79<br>59                | 65.6<br>67.3                 | 0.6                      | (0.4 to 1.5)<br>(0.6 to 1.5)                                 |                      |                  |
| Ann Arbor stage<br>I–II<br>III<br>IV                                         | 99<br>232<br>548        | 47<br>124<br>269        | 89·1<br>80·7<br>72·6         | 52<br>108<br>279        | 85·5<br>73·6<br>66·1         | 0.6<br>0.8<br>0.8        | (0·2 to 1·8)<br>(0·5 to 1·3)<br>(0·6 to 1·1)                 | <u>الم</u>           | 4                |
| Baseline LDH<br>≤ULN<br>>ULN                                                 | 300<br>575              | 146<br>291              | 78·9<br>75·4                 | 154<br>284              | 75·6<br>67·2                 | 0·8<br>0·7               | (0.5 to 1.3)<br>(0.5 to 1.0)                                 |                      | -                |
| No. of extranodal sites<br>0–1<br>≥2                                         | 453<br>426              | 227<br>213              | 80·2<br>73·0                 | 226<br>213              | 74·5<br>65·8                 | 0·8<br>0·7               | (0.5 to 1.1)<br>(0.5 to 1.0)                                 |                      | 4                |
| Cell-of-origin<br>GCB<br>ABC<br>Unclassified<br>Unknown                      | 352<br>221<br>95<br>211 | 184<br>102<br>44<br>110 | 75·1<br>83·9<br>73·0<br>73·8 | 168<br>119<br>51<br>101 | 76·9<br>58·8<br>86·2<br>64·3 | 1·0<br>0·4<br>1·9<br>0·7 | (0.7 to 1.5)<br>(0.2 to 0.6)<br>(0.8 to 4.5)<br>(0.4 to 1.2) |                      |                  |
| Double expressor by IHC<br>DEL<br>Non DEL<br>Unknown                         | 290<br>438<br>151       | 139<br>223<br>78        | 75·5<br>77·7<br>76·0         | 151<br>215<br>73        | 63·1<br>75·7<br>69·8         | 0·6<br>0·9<br>0·8        | (0·4 to 1·0)<br>(0·6 to 1·3)<br>(0·4 to 1·5)                 |                      |                  |
| Double- or triple-hit lymphoma<br>Yes<br>No<br>Unknown                       | 45<br>620<br>214        | 26<br>305<br>109        | 69·0<br>76·8<br>78·5         | 19<br>315<br>105        | 88·9<br>70·3<br>66·4         | 3·8<br>0·7<br>0·6        | (0.8 to 17.6)<br>(0.5 to 1.0)<br>(0.4 to 1.1)                |                      | • • •            |
|                                                                              |                         |                         |                              |                         |                              |                          | (                                                            | )·25                 | 1 5              |

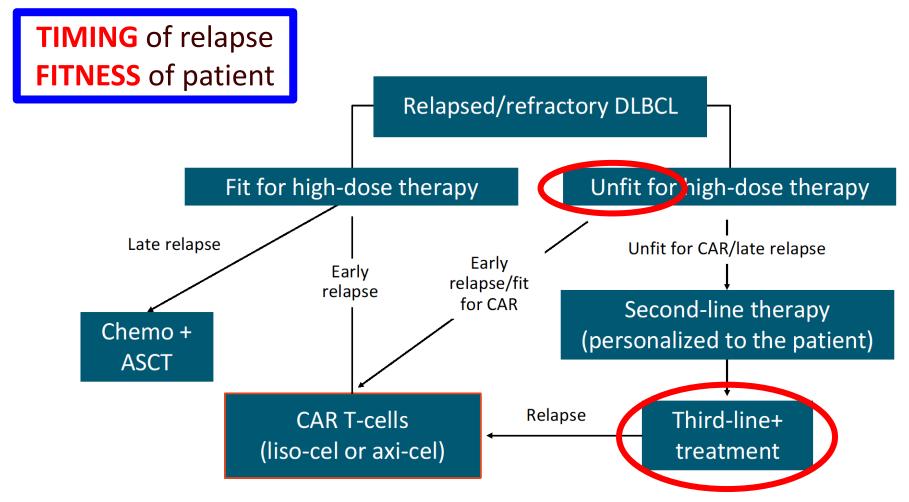
Tilly N Engl J Med. 2022 Jan 27;386(4):351-363

## Pola-RCHP vs RCHOP by cell of origin



\*Investigator-assessed disease progression and disease relapse or death from any cause were counted as events. Tick marks indicate censored data.

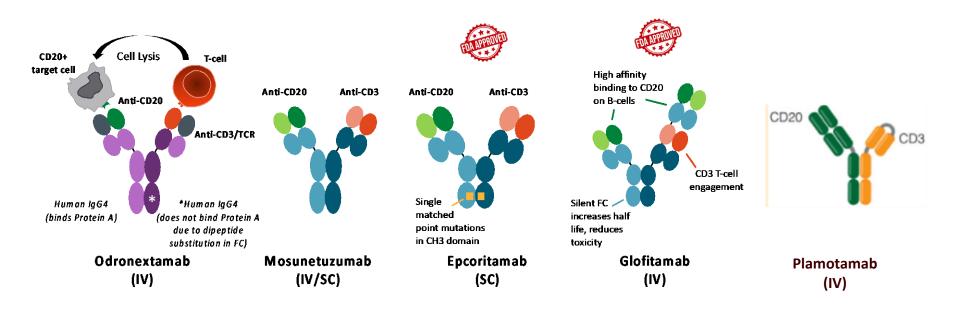
ABC, activated B cell; CI confidence interval; COO, cell of origin; GCB, germinal center B cell; HR, hazard ratio;


PFS, progression-free survival.

### Should cell-of-origin influence treatment selection in TN DLBCL?



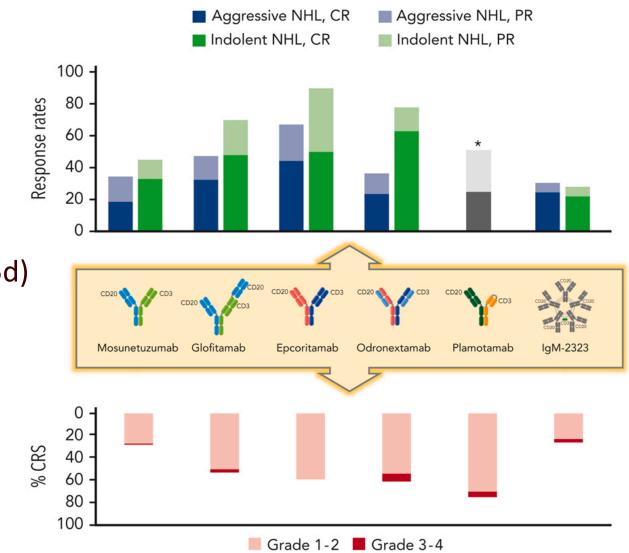
Morchauser ASH 2023, abstract 3000


## A new algorithm for rel/ref LBCL





Slide courtesy of Michael Bishop


## CD20xCD3 bispecific antibodies in DLBCL



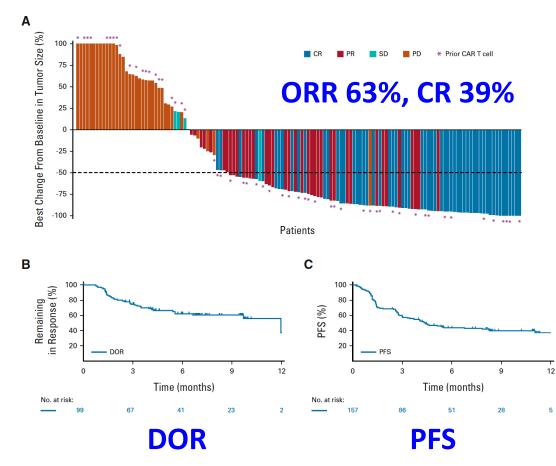
Clinicaloptions.com\*



Castaneda-Puglianni. Drugs Context. 2021;10:2021. Bannerji. ASH 2020. Abstr 42. Budde. ASH 2018. Abstr 399. Hutchings. Lancet. 2021;398:1157. Engelberts. eBioMedicine. 2020;52:102625. Hutchings. JCO. 2021;39:1959.



- Major themes:
- 1. CRS is in first cycle (5h to 5d)
- 2. ICANS is less


common

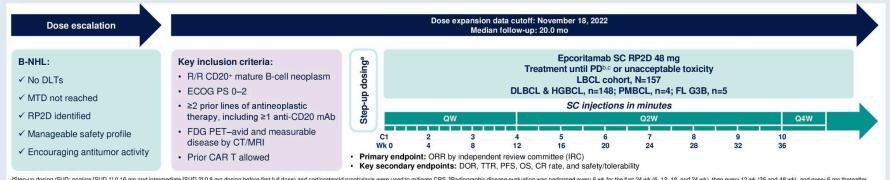
- Other common adverse events (AE): Neutropenia, diarrhea, fatigue, anemia;
- ICANS-like syndrome, TLS, HLH: rare (<5%)
- \* data for aggressive NHL and indolent NHL reported in aggregate



#### Falchi Blood (2023) 141 (5): 467-480

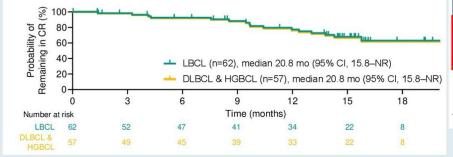
## Subcutaneous epcoritamab in rel/ref DLBCL (phase I/II trial)






- ~76% refractory to at least 2 lines of treatment
- ~40% with prior CAR-T
- 75% of prior CAR-T recipients progressed within 6 months




Thieblemont Journal of Clinical Oncology 41, no. 12 (April 20, 2023) 2238-2247.

# Epcoritamab SC in aggressive B-cell lymphoma (med f/u 20m)



\*Step-up dosing (SUD; priming [SUD 1] 0.16 mg and intermediate [SUD 2] 0.8 mg dosing before first full dose) and corticosteroid prophylaxis were used to mitigate CRS. \*Radiographic disease evaluation was performed every 6 wk for the first 24 wk (6, 12, 18, and 24 wk), then every 12 wk (36 and 48 wk), and every 6 mo thereafter.

#### **Durable Complete Responses**



| Best Overall Response, n (%)                                       | DLBCL & HGBCL, n=148 <sup>a</sup> | LBCL, N=157 <sup>a</sup>   |  |  |  |
|--------------------------------------------------------------------|-----------------------------------|----------------------------|--|--|--|
| Overall response                                                   | 90 (61)<br>[95% CI, 53–69]        | 99 (63)<br>[95% Cl, 55–71] |  |  |  |
| Complete response                                                  | 57 (39)<br>[95% CI, 31–47]        | 62 (39)<br>[95% Cl, 32–48] |  |  |  |
| Partial response                                                   | 33 (22)                           | 37 (24)                    |  |  |  |
| Stable disease                                                     | 5 (3)                             | 5 (3)                      |  |  |  |
| Progressive disease                                                | 37 (25)                           | 37 (24)                    |  |  |  |
| Based on IRC per Lugano criteria. a16 patients were not evaluable. |                                   |                            |  |  |  |

#### • The most common AE was CRS in 51% of patients (mostly grade 1-2), followed by neutropenia in 25% of patients.

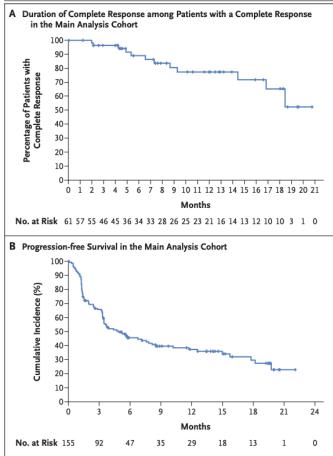


Karimi ASCO 2023 abstr 7525

## **Glofitamab Study Design: phase II**



| Key inclusion criteria                                                                                                                             | Glofitamab IV administration                                                                                                                                           |                                                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| DLBCL NOS, HGBCL,<br>transformed FL, or PMBCL                                                                                                      | Fixed-duration treatment:     Up to 12 cycles (8.3 months)                                                                                                             | D1: 30mg D1: 30mg<br>D15: 10mg                        |  |  |  |
| <ul> <li>ECOG PS 0–1</li> <li>≥2 prior therapies,<br/>including:         <ul> <li>Anti-CD20 antibody</li> <li>Anthracycline</li> </ul> </li> </ul> | <ul> <li>CRS mitigation:</li> <li>Obinutuzumab IV pre-treatment (1000mg)</li> <li>C1 step-up dosing</li> <li>Monitoring after first glofitamab dose (2.5mg)</li> </ul> | D8: 2.5mg<br>D1: Gpt<br>G1 G2 ··· G1<br>21-day cycles |  |  |  |


- Primary: CR (best response) rate by IRC\*
- Key secondary: ORR,<sup>†</sup> DoR,<sup>†</sup> DoCR,<sup>†</sup> PFS, and OS


### Intravenous infusion Fixed duration (12 cycles) Obinutuzumab pre-treatment



Dickinson December 15, 2022 N Engl J Med 2022; 387:2220-2231

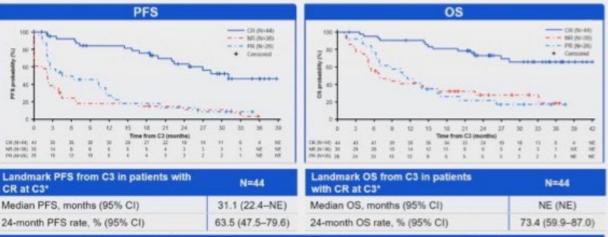
# Glofitamab in rel/ref DLBCL (phase I/II trial)





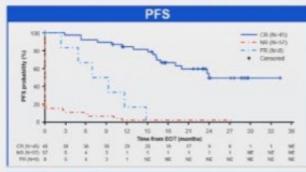
- <u>RESULTS</u>:
  - 39% CR
  - DOR > 18m
  - DOR for CR is not reached

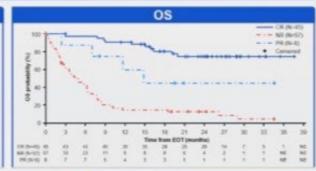
Dickinson December 15, 2022 N Engl J Med 2022; 387:2220-2231




## Glofitamab phase II (32m follow up)

- Med PFS 31m
- CR matters





### Landmark analysis by response at Cycle 3



A high proportion of patients with a CR at C3 remained progression-free and alive after 24 months

#### Landmark analysis by response at EOT





| Landmark PFS from EOT in patients<br>with CR at EOT* |                  | Landmark OS from EOT in patients<br>with CR at EOT* | N=45             |
|------------------------------------------------------|------------------|-----------------------------------------------------|------------------|
| Median PFS, months (95% CI)                          | 24.0 (19.1-NE)   | Median OS, months (95% CI)                          | NE (NE)          |
| 18-month PFS rate, % (95% CI)                        | 66.6 (51.0-82.2) | 18-month OS rate, % (95% CI)                        | 80.7 (68.6-92.8) |

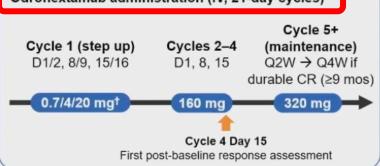
Majority of patients with a CR at EOT remained progression-free and alive at 18 months after EOT

'KM estimates. EOT, and-of-treatment, NR, no response.

## **Odronextamab:** phase II trial in rel/ref **DLBCL (ELM-2)**

#### Key eligibility criteria

- DLBCL per WHO 2016 classification<sup>1</sup> .
- ECOG PS 0 or 1
- Refractory to or relapsed after ≥2 prior lines of therapy, including an anti-CD20 antibody and an alkylator


Primary endpoint: ORR\* by ICR

#### Secondary endpoints:

- ORR\* by local investigator
- CR\*, DOR\*, PFS\*, and OS
- Safety and tolerability
- Patient-reported outcomes

Key exploratory endpoint: MRD

Odronextamab administration (IV, 21-day cycles)



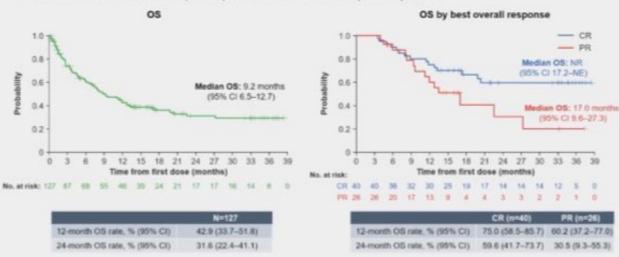
Measures taken to facilitate diverse, inclusive enrollment:

- Diverse trial sites
- Translated consents for under-represented populations
- Extended screening windows for patients with access restraints
- Broad eligibility criteria to include patients with controlled HIV, hepatitis B and C
- Lower thresholds for those with compromised organ function

- Med age 67y (range, 24-88)
- 24% > 75y
- Prior tx 2 (range, 2-8)
- 86% refractory to last line of treatment



Ayyapan ASH oral presentation Abstr #436 2023

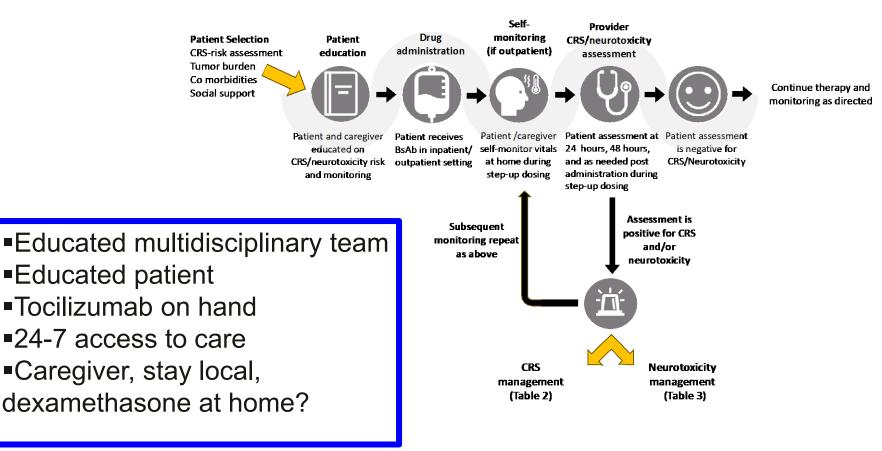

#### ELM-2: Progression-free survival

Median PFS was 20.4 months in complete responders versus 5.8 months in partial responders

#### PFS PFS by best overall response 1.0 1.0 - CR - PR 0.8 0.8 Median PFS: 20.4 months Probability Probability 0.6 0.6 (95% CI 12.7-NE) Median PFS: 4.4 months (95% CI 3.6-5.9) 0.4 0.4 Median PFS: 5.8 months (95% CI 4.4-7.8) 0.2 0.2 12 15 18 21 24 27 30 33 12 15 18 21 24 27 30 33 0 0 Time from first dose (months) Time from first dose (months) No. at risk: No. at risk: 127 72 44 36 31 22 18 15 14 13 10 CR 40 40 25 35 28 18 15 12 11 10 PH 28 25 10. 5 -8 3. N=127 CR (n=40) PR (n=26) 12-month PFS rate, % (95% CI) 29.6 (21.5-38.2) 12-month PFS rate, % (95% CI) 67.2 (50.3-79.5) 25.2 (9.5-44.7) 24-month PFS rate, % (95% CI) 21.1 (13.7-29.7) 24-month PFS rate, % (95% CI) 47.5 (29.9-63.1) 18.9 (5.4-38.6)

#### ELM-2: Overall survival

Median OS was not reached in complete responders versus 17.0 months in partial responders




### Odronextamab PFS and OS

Ayyapan ASH oral presentation Abstr #436 2023

Data cut off data: August 35, 2023. C3, confidence antenue, CR, complete response, ME, introductable, ME, nati mached, CS, ownall survival, FPS, progression-line survival, FPI, partial response.

# Can bispecifics be safely delivered in community settings? YES\*\*\*





Crombie, et al., Consensus Recommendations on the Management of Toxicity Associated with CD3xCD20 Bispecific Antibody Therapy (Blood, in press 2024)

# CAR-T vs. Bispecifics vs. Other regimens in LBCL

### **Bispecifics**

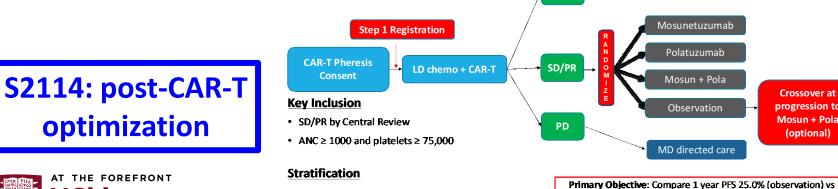
- Off the shelf
  - Lower CRS
- Need for longer treatment



### CAR-T

- Requires manufacturing
- Higher CRS, ICANS
- "one and done"

### **Other regimens:**


- Unknown curative potential, often indefinite treatment
- Easily available
- Examples: Tafa-len, Lonca-T, Pola-BR (or pola-R), Selinexor



## Trials available via NCTN/NCORP in rel/ref LBCL



Day +30 PET CR



SD vs PR on Day +30 PET

• CAR-T receipt as 2<sup>nd</sup> line vs > 3<sup>rd</sup> line

50.0% (consolidation) → 120 patients (30 per arm)

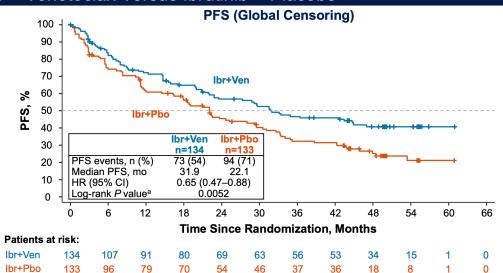
## optimization



Crossover at

progression to

Mosun + Pola


(optional)



## Mantle cell lymphoma

## SYMPATICO: RP3 ibr-ven vs. ibr-pbo x 24m→ibr maintenance

Primary Endpoint: Investigator-Assessed PFS Was Significantly Improved With Ibrutinib + Venetoclax Versus Ibrutinib + Placebo



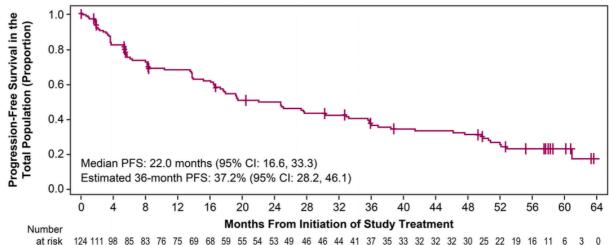
| Median PFS, mo          |                  | Global           | Censoring <sup>b</sup> |                             | US FDA Censoring <sup>c</sup> |                  |                  |                             |
|-------------------------|------------------|------------------|------------------------|-----------------------------|-------------------------------|------------------|------------------|-----------------------------|
|                         | lbr+Ven<br>n=134 | lbr+Pbo<br>n=133 | HR (95% CI)            | Log-rank<br><i>P</i> valueª | lbr+Ven<br>n=134              | lbr+Pbo<br>n=133 | HR (95% CI)      | Log-rank<br><i>P</i> valueª |
| Investigator assessment | 31.9             | 22.1             | 0.65 (0.47–0.88)       | 0.0052                      | 42.6                          | 22.1             | 0.60 (0.44–0.83) | 0.0021                      |
| IRC assessment          | 31.8             | 20.9             | 0.67 (0.49–0.91)       | 0.0108                      | 43.5                          | 22.1             | 0.63 (0.45–0.87) | 0.0057                      |

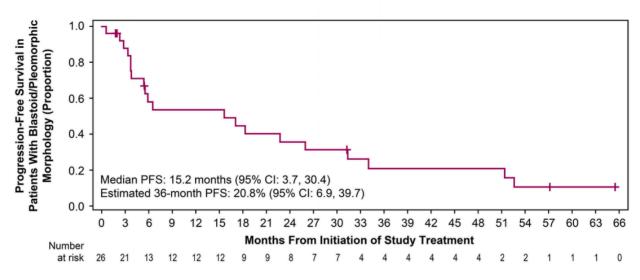


R

No unexpected toxicity No sig diff in OS (?trend)

ASH 2023; Abstract LBA-2

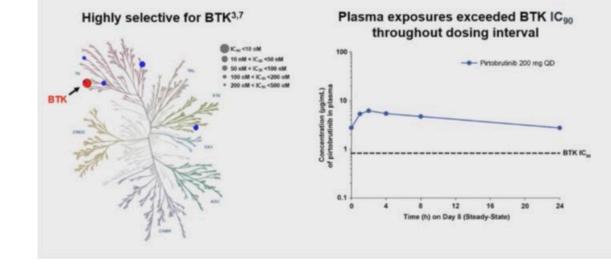

# Acalabrutinib monotherapy in rel/ref

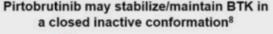

Pt Characteristics:

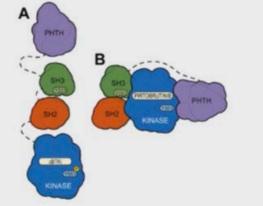
Med age 68y 37.1% bulky 21% blastoid morphology Ki67 > 50% in 25% of pts

Results: ORR 81% CR 47.6% DoR 28m Low risk and CR pts had the best outcomes





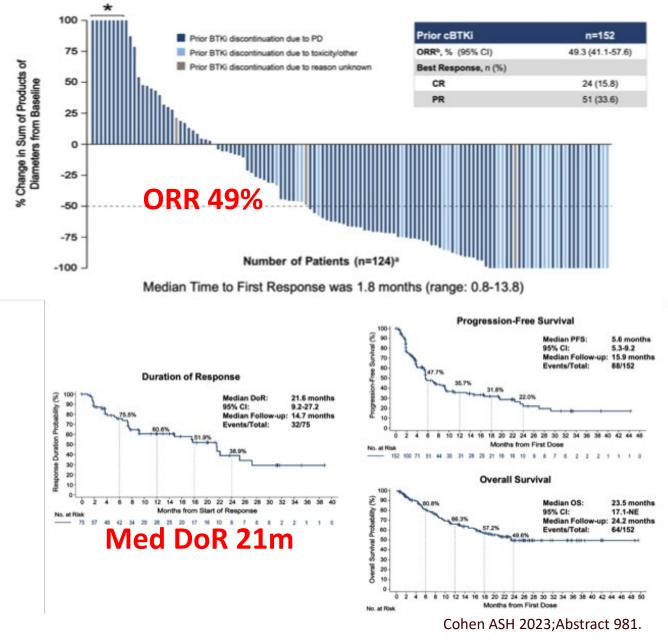





Le Gouill Haematologica 2024;109(1):343-50.

## BRUIN Phase I/II trial of pirtobrutinib monotherapy (MCL cohort=166, with 14 naïve to prior BTKi)

#### Pirtobrutinib is a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor





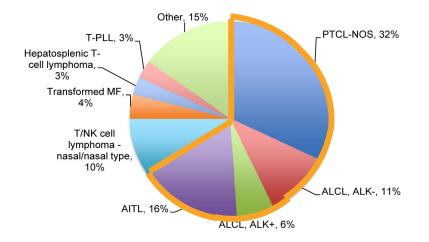





Cohen ASH 2023; Abstract 981.

## Pirtobrutinib in rel/ref MCL



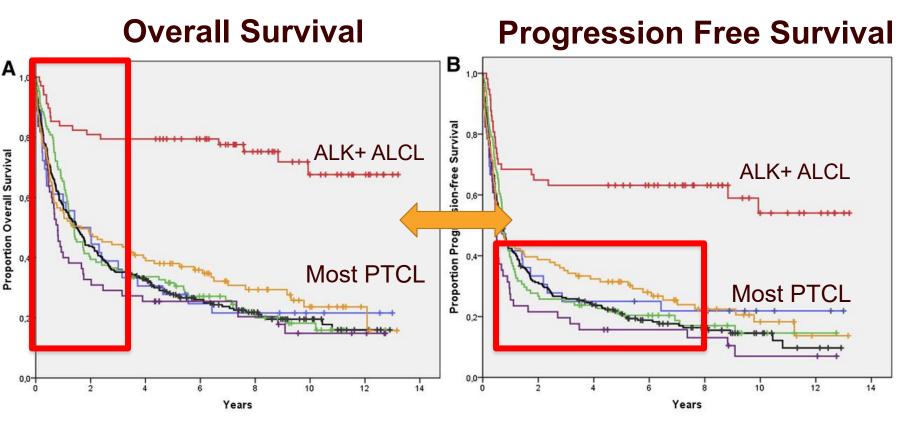





## Advances in T-cell Lymphomas

## **T-NHL:** rare, heterogeneous, chemoresistant

- PTCI ·
  - 7% of all non-Hodgkin lymphomas
  - 19 entities with varied clinical and pathologic presentations
  - Median Age at Diagnosis: 65y •
- Treatment strategies derived from • aggressive B-cell lymphomas
- Different histologies have unique biology

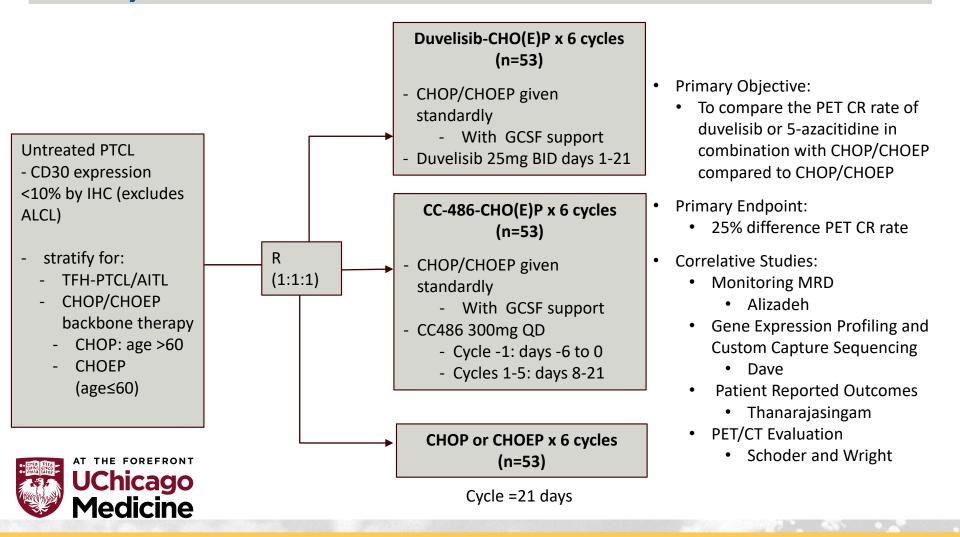



#### ALCL

- CD30 positive
- ALK+ or ALK-
- Large anaplastic cells
- PTCL NOS **AITL/Nodal PTCL with** TFH features/Follicular T- - Grab bag cell lymphoma
- 2 of the following: BCL6, CD10, PD1, CXCL13, ICOS
- term



# Expected outcomes with PTCL: Swedish National Registry





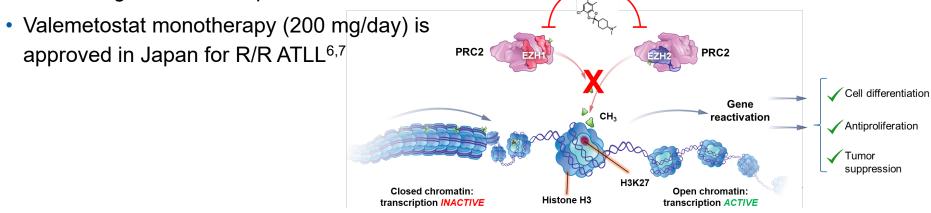

AITL PTCL NOS ALK-ALCL ALK+ALCL

Ellin F et al. Blood 2014;124:1570-1577

## A051902: A randomized phase II study of duvelisib or 5azacitidine in addition to CHOP or CHOEP in comparison to CHOP/CHOEP



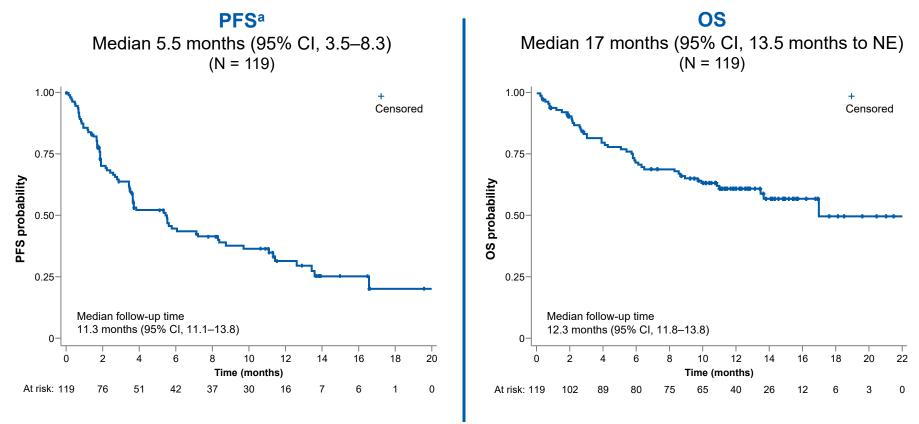
# NCCN Guidelines for rel/ref T-NHL: laundry list of options


| SECOND-LINE AND SUBSEQUENT THERAPY<br>(NO INTENTION TO PROCEED TO TRANSPLANT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SECOND-LINE AND SUBSEQUENT THERAPY<br>(NO INTENTION TO PROCEED TO TRANSPLANT)                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Preferred regimens</u> (regimens in alphabetical order)<br>• Clinical trial<br>• Belinostat<br>• Brentuximab vedotin for CD30+ PTCL <sup>e,h</sup><br>• Duvelisib <sup>j</sup><br>• Pralatrexate<br>• Romidepsin                                                                                                                                                                                                                                                                                                                                   | <u>Preferred regimens</u> (regimens in alphabetical order)<br>• Clinical trial<br>• Belinostat<br>• Brentuximab vedotin for CD30+ AITL <sup>e,h</sup><br>• Duvelisib <sup>j</sup><br>• Romidepsin                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Komidepsin</li> <li>Other recommended regimens (alphabetical order by category)</li> <li>Single agents <ul> <li>Alemtuzumab<sup>k</sup></li> <li>Bendamustine<sup>e</sup></li> <li>Cyclophosphamide and/or etoposide (IV or PO)</li> <li>Gemcitabine</li> <li>Lenalidomide<sup>e</sup></li> <li>RT<sup>I</sup></li> <li>Bortezomib<sup>m</sup> (category 2B)</li> <li>Ruxolitinib (category 2B)</li> <li>Combination regimen</li> <li>Brentuximab vedotin and bendamustine for CD30+ PTCL<sup>e,h</sup> (category 2B)</li> </ul> </li> </ul> | Other recommended regimens (alphabetical order by category)  • Single agents  • Alemtuzumab <sup>k</sup> • Azacitidine (PO/IV/SC) <sup>p</sup> • Bendamustine <sup>e</sup> • Cyclophosphamide and/or etoposide (IV or PO)  • Cyclosporine <sup>n</sup> • Gemcitabine  • Lenalidomide <sup>e</sup> • Pralatrexate <sup>o</sup> • RT <sup>I</sup> • Bortezomib <sup>m</sup> (category 2B)  • Combination regimen  • Brentuximab vedotin and bendamustine for CD30+ PTCL <sup>e,h</sup> (category 2B) |



https://www.nccn.org/professionals/physician\_gls/pdf/t-cell.pdf

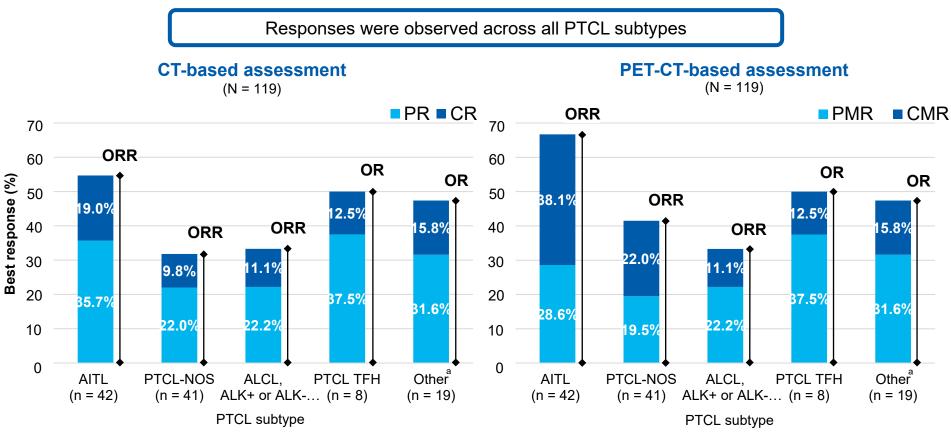
#### Efficacy and Safety of Valemetostat Monotherapy in Patients With Relapsed or Refractory Peripheral T-Cell Lymphomas: Primary Results of the Phase 2 VALENTINE-PTCL01 Study


- EZH2 overexpression drives the development and progression of many types of cancer, including PTCL<sup>4</sup>
  - *EZH2* mutations are rare in PTCL
- Valemetostat tosylate is a novel, potent, and selective dual inhibitor of EZH2 and EZH1
  - Valemetostat prevents H3K27me3, thereby increasing the expression of genes silenced by H3K27me3, including genes associated with the regulation of cell proliferation and differentiation<sup>5</sup>



ATLL, adult T-cell leukemia/lymphoma; EZH, enhancer of zeste homolog; H3K27me3, tri-methylation of lysine 27 on histone H3 protein; NHL, non-Hodgkin lymphoma; OS, overall survival; PFS, progression-free survival; PRC2, polycomb repressive complex 2; PTCL, peripheral T-cell lymphoma; R/R, relapsed/refractory. 1. Vose J, et al. J Clin Oncol 2008;26:4124–4130. 2. Ling L, et al. Br J Haematol 2017;178:772–780. 3. Sibon D, et al. Cancers 2022;14:2332. 4. Herviou L, et al. Oncotarget 2016;7:2284–2296. 5. Yamagishi M, et al. Cell Rep 2019;29:2321–2337.e7. 6. EZHARMIA® (valemetostat tosilate). [package insert]. Tokyo, Japan: Daiichi Sankyo; 2022. 7. Izutsu K, et al. Blood 2023;141:1159–1168.

Horwitz SM, et al. ASH 2023 #302


#### Valemetostat 200mg qd until intolerance or progression

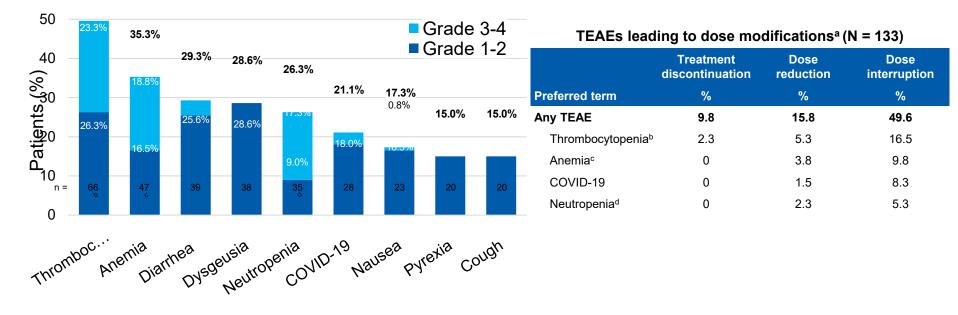


Data cutoff: May 5, 2023. <sup>a</sup> PFS evaluated by BICR CT-based assessment.

Horwitz SM, et al. ASH 2023 #302

## **Clinical Response by PTCL Subtype**




Data cutoff: May 5, 2023.

<sup>a</sup> Other TCLs include 3 patients with FTL, 1 with PCGTL, 1 with CD8<sup>+</sup> PCAECTCL, 1 with MEITL, and 13 with other eligible, but undetermined PTCL subtypes.

#### TTR ~8 weeks

#### VALENTINE PTCL01: valemetostat 200mg/d in rel/ref PTCL

- Cytopenias were common, and were manageable with dose modifications and/or supportive therapies such as transfusions and G-CSF
  - Thrombocytopenia was the most frequent any grade (49.6%) and grade ≥ 3 (23.3%) TEAE
  - The median time to first onset of platelet count < 50×10<sup>9</sup>/L was 18 days from the first dose and the median time to recovery was 12 days
- 2 patients developed secondary AML and discontinued treatment



Data cutoff: May 5, 2023.

<sup>a</sup> TEAEs included that led to treatment interruption in ≥ 5% of patients.<sup>b</sup> Thrombocytopenia includes platelet count decrease.<sup>c</sup> Anemia includes hemoglobin decrease, and red blood cell count decrease.

<sup>d</sup> Neutropenia includes neutrophil count decrease. AML, acute myeloid leukemia; G-CSF, granulocyte colony stimulating factor.

Horwitz SM, et al. ASH 2023 #302

## JACKPOT8: phase II pivotal trial of selective JAK1 inhibitor golidocitinib (AZD4205) in rel/ref PTCL

- Golidocitinib: oral agent, highly selective for JAK1 (>200X selectivity over JAK2, JAK3, TYK2
- Prior phase I trial with favorable safety profile
- Treatment schema: 150mg/d until progression (n=104; 88 evaluable)

| Tumor Response          | n = 88    |
|-------------------------|-----------|
| ORR, n (%)              | 39 (44.3) |
| Overall response, n (%) |           |
| Complete response       | 21 (23.9) |
| Partial response        | 18 (20.5) |
| Stable disease          | 17 (19.3) |
| Progressive disease     | 20 (22.7) |
| Not evaluable           | 12 (13.6) |

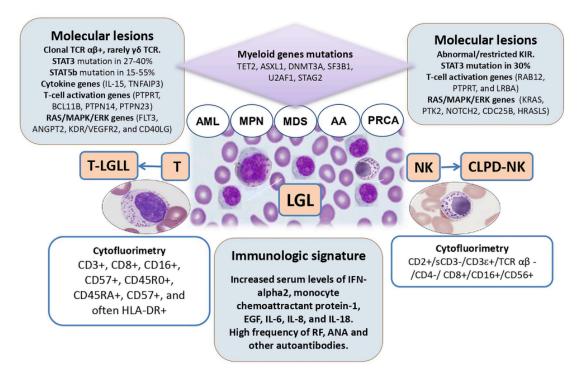




TRAEs included thrombocytopenia, leukopenia,

neutropenia and lymphocytopenia

Song ASH Abstract 2023 #305


# JACKPOT8 Subgroup analysis

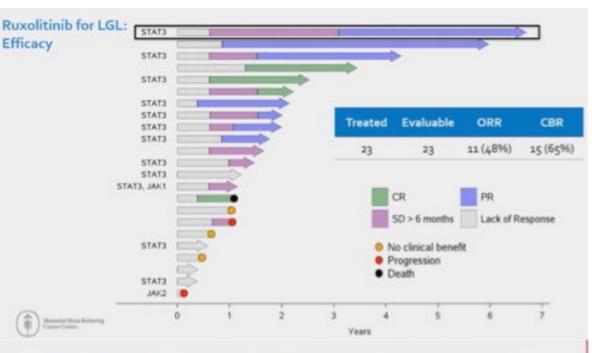
| Subgroup                                                                                                                                                                                                                             | ORR<br>n/N (%)                                                         | 95% CI ª    |                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------|
| Overall                                                                                                                                                                                                                              | 39/88 (44.3)                                                           |             | (33.7, 55.3)                                                               |
| Age Group<br><65<br>≥65                                                                                                                                                                                                              | 27/61 (44.3)<br>12/27 (44.4)                                           | <b>_</b>    | (31.5, 57.6)<br>(25.5, 64.7)                                               |
| Sex<br>Female<br>Male                                                                                                                                                                                                                | 18/31 (58.1)<br>21/57 (36.8)                                           |             | (39.1, 75.5)<br>(24.4, 50.7)                                               |
| Geographical Region<br>Asia: China and S. Korea<br>Non-Asia: United States and Australia                                                                                                                                             | 37/83 (44.6)<br>2/5 (40.0)                                             |             | (33.7, 55.9)<br>(5.3, 85.3)                                                |
| Prior Systemic Therapy<br><2<br>≥2                                                                                                                                                                                                   | 6/24 (25.0)<br>33/64 (51.6)                                            | <br>        | (9.8, 46.7)<br>(38.7, 64.2)                                                |
| Prior HDAC Inhibitor Therapy<br>Yes<br>No                                                                                                                                                                                            | 24/44 (54.5)<br>15/44 (34.1)                                           |             | (38.8, 69.6)<br>(20.5, 49.9)                                               |
| Prior CD30 Targeted Therapy<br>Yes<br>No                                                                                                                                                                                             | 4/9 (44.4)<br>35/79 (44.3)                                             | •           | (13.7, 78.8)<br>(33.1, 55.9)                                               |
| Histology Subtype by Central Pathology Review<br>PTCL-not otherwise specified (PTCL, NOS)<br>Angioimmunoblastic T-cell lymphoma (AITL)<br>Anaplastic large-cell lymphoma (ALCL)<br>Natural killer/T-cell lymphoma (NK/TCL)<br>Others | 23/50 (46.0)<br>9/16 (56.3)<br>1/10 (10.0)<br>2/3 (66.7)<br>4/9 (44.4) |             | (31.8, 60.7)<br>(29.9, 80.2)<br>(0.3, 44.5)<br>(9.4, 99.2)<br>(13.7, 78.8) |
| <b>Bone Marrow Involvement at Baseline by Biopsy</b><br>Yes<br>No                                                                                                                                                                    | 9/19 (47.4)<br>30/69 (43.5)                                            |             | (24.4, 71.1)<br>(31.6, 56.0)                                               |
| ECOG Performance Status at Baseline<br>$0 \ge 1$                                                                                                                                                                                     | 17/40 (42.5)<br>22/48 (45.8)                                           |             | (27.0, 59.1)<br>(31.4, 60.8)                                               |
| LDH Elevation at Baseline<br>Yes<br>No                                                                                                                                                                                               | 14/46 (30.4)<br>25/42 (59.5)                                           |             | (17.7, 45.8)<br>(43.3, 74.4)                                               |
|                                                                                                                                                                                                                                      |                                                                        | 0 15 75 100 |                                                                            |
| -                                                                                                                                                                                                                                    |                                                                        |             |                                                                            |

Tumor responses observed across all PTCL subtypes, all subgroups irrespective of age, sex, ECOG score, BM involvement, LDH levels, and prior anti-lymphoma therapies.



Song ASH Abstract 2023 #305




## T-LGL Background

- Rare disease with ~1000 new cases/year
- T-LGL and NK-LGL characterized by clonal expansion of LGL cells resistant to cell death and associated with
  - Neutropenia, anemia, less commonly thrombocytopenia
  - Autoimmune phenomenon
- Constitutive activation of JAK/STAT pathway
- Frequent gain of function STAT3 mutations
- Treatments: methotrexate, cyclophosphamide, cyclosporine
  - Responses typically 50% with response duration 20-70m

<sup>1</sup>Lamy T, Moignet A, Loughran TP, Jr. LGL leukemia: from pathogenesis to treatment. Blood. 2017;129(9):1082-1094 <sup>2</sup>Magnano L, Rivero A, Matutes E. Large Granular Lymphocytic Leukemia: Current State of Diagnosis, Pathogenesis and Treatment. Current Oncology Reports. 2022/05/01 2022;24(5):633-644.

Fattizzo Front. Oncol., 01 October 2021 Sec. Cancer Immunity and Immunotherapy Volume 11 - 2021

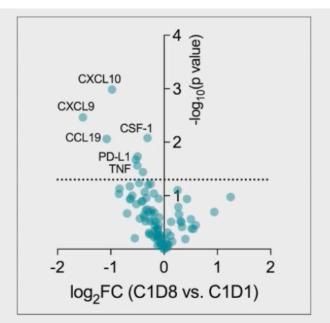

## Phase II trial of ruxolitinib monotherapy in rel/ref T-LGL (n=23)



#### Ruxolitinib for LGL – higher efficacy in STAT3 mutated disease

\*STAT3 mut mediate resistance!! So, why should ruxolitinib work?






Moskowitz Blood (2023) 142 (Supplement 1): 183.

# Ruxolitinib decreases myeloid cell inflammation in T-LGL

- Ruxolitinib treatment was associated with decreased production of several myeloid-derived chemokines (CXCL9, CXCL10, CCL19) in responders:
  - CXCL9 negatively regulates hematopoiesis (Lu et al, *Cell Res* 2008)
  - CXCL10 and CCL19 have known roles in lymphoid cell homing
  - Do myeloid cell-derived chemokines recruit inflammatory cells to the bone marrow?

Ruxolitinib reverses myelosuppression by inhibiting myeloid cells' inflammatory effect?



Decrease in soluble mediators of inflammation in responders

# Decrease in JAK/STAT expressing myeloid cells was associated with response



Moskowitz Blood (2023) 142 (Supplement 1): 183.

# Summary

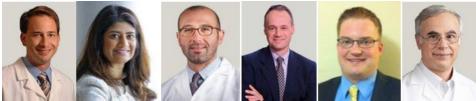
#### DLBCL

Three new approvals in 2023 Integration of bispecific agents is next Advances in biology may direct treatment

#### MCL

Non-covalent BTKi are on the horizon

#### T-NHL


Much work remains to be done Targeted approaches will be key to reversing poor outcomes



## THANK YOU



Opening 2027





LYMPHOMA PROGRAM: The University of Chicago cancer@uchospitals.edu 53