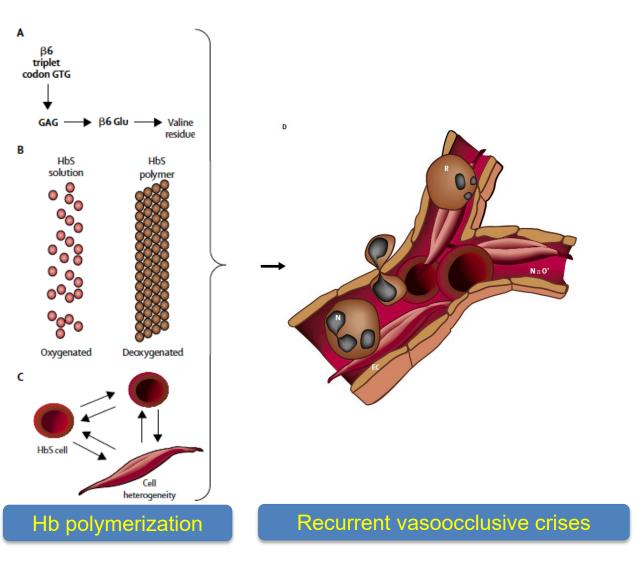
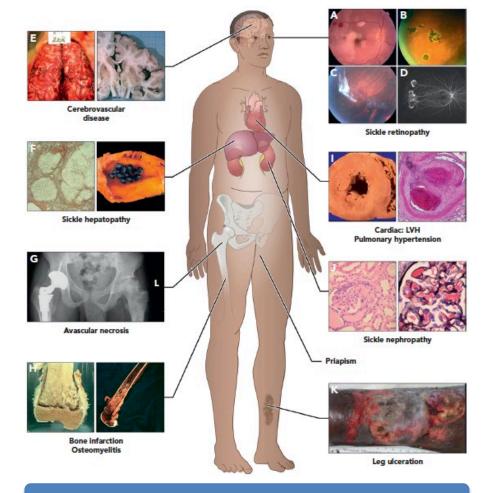
BEYOND PAIN: Improving the Outcomes of Sickle Cell Disease with Therapeutics and Cellular Therapy in 2024

Arun Shet MD PhD

Bethesda, Maryland

Indy Hematology Review Feb 24, 2024

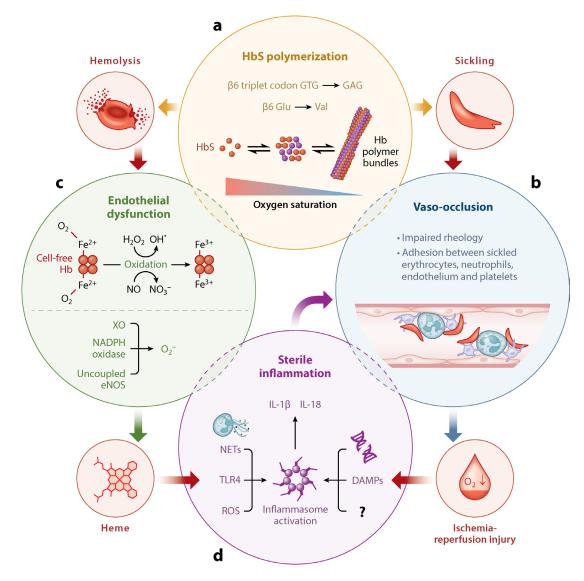



No financial disclosures

Sickle cell disease therapy that is not approved by the FDA or widely utilized will not be covered in this session

- Define the pathophysiology and clinical manifestations of sickle cell disease and describe its global impact
- Evaluate current management strategies for sickle cell disease, with a focus on managing painful vasoocclusive crisis
- Appraise where cellular and gene directed therapy fits into the spectrum of therapeutics for patients with sickle cell disease

Single gene hemoglobin disorder with multiorgan dysfunction

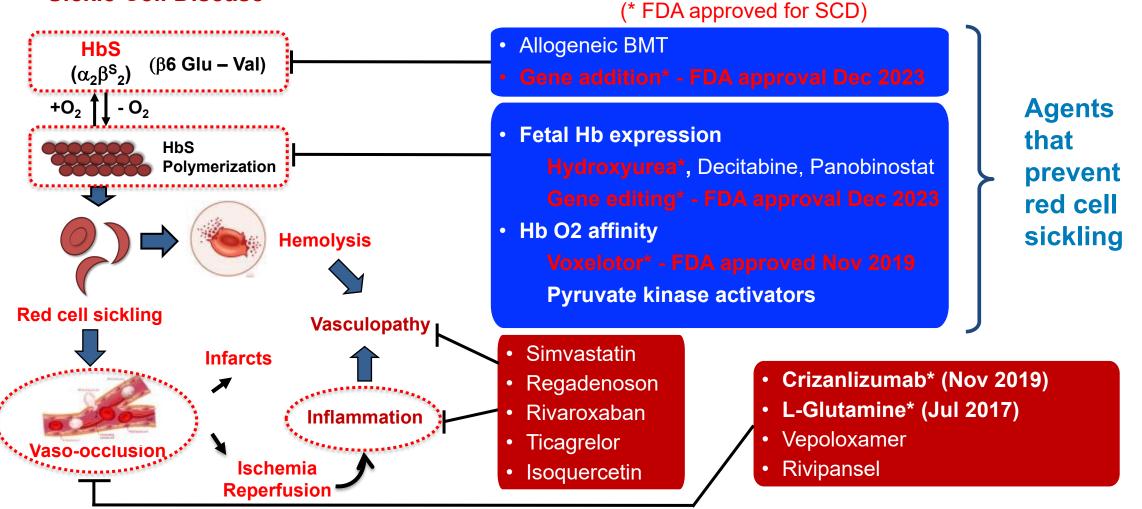

Multiorgan vasculopathy

Stuart and Nagel Lancet 2004; Thein & Howard Blood 2019

Beyond borders: Geographic inequity

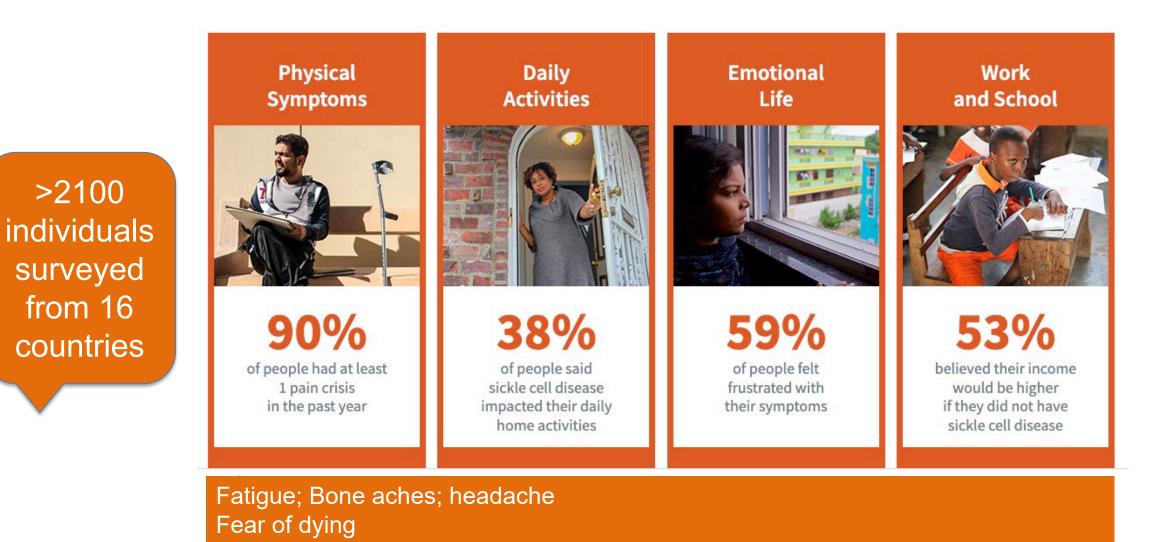
Sickle pathophysiology involves multiple parallel pathways

Phenotypic heterogeneity of SCD


- Persistence of fetal hemoglobin (HPFH)
- Mutations affecting fetal hemoglobin expression
- Coinheritance of alpha thalassemia
- HbSC and HbSβ^{+thal}
- Iron status
- Undefined factors

Sundd et al Annual Review of Medicine 2019

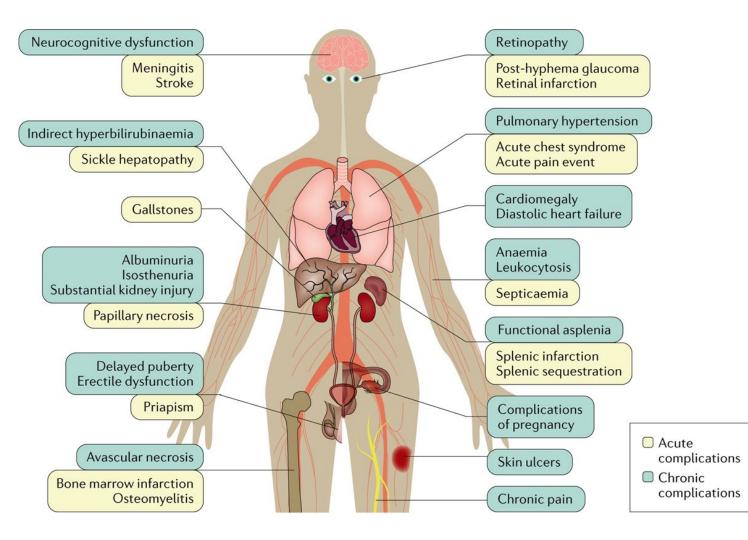
Current treatment targets and approved treatments


Investigational therapies

Sickle Cell Disease

Hb, hemoglobin; HbS, sickle hemoglobin; Glu, glutamine; Val, valine; Slide courtesy Dr. Swee Lay Thein, modified 2024

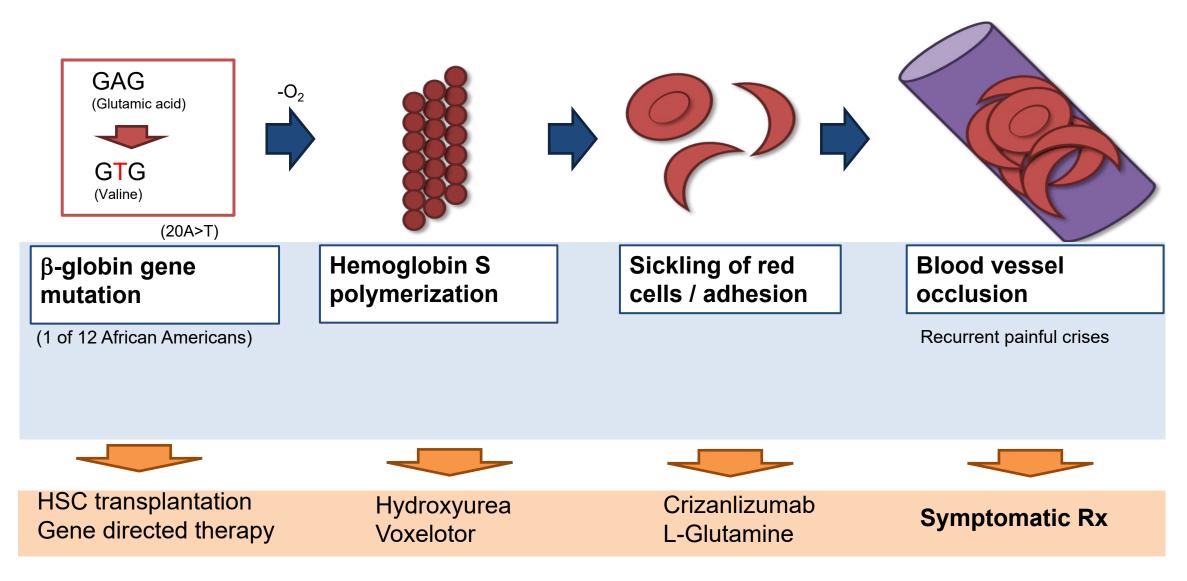
Beyond Pain: Sickle Cell World Assessment Survey


https://www.notaloneinsicklecell.com/Impact-of-Pain-Crises/#sway; Osunkwo et al Amer J of Hematol 2021

Complications occur at all life stages

	Infancy and child	hood	Adolescence		Adulthood			
S During specific	Delayed growth Delayed growth		Delayed	puberty			Pulmonary hypertension Reproductive complications	
During multiple life stages	Aplastic crisis Osteomyelitis	Splenic sequestration Splenic infarction	Sepsis	Avascular necrosis Cognitive dysfunction	Chronic pain Gallstones	Priapism Sickle nephropathy	Sickle retinopathy Venous thromboembolism	
During all life stages		Acute pain - A	Acute chest	syndrome - Ischemic	: stroke			
	Disease but	Intrinsic factors		Access and quality	Health care factors	5		

Access and quality Jisease buruen Stigma and bias; limited insurance coverage, sickle cell disease (SCD) specialists, Complication frequency and chronicity and SCD guideline implementation Psychological dynamics Therapeutic options Self-image, coping strategies, stress, fear, depression, and anxiety Genotypic and phenotypic variability, variable efficacy and adverse effects, limited options and availability, and limited clinical trial availability and eligibility Sociocultural factors Structural factors Relationships Family, significant others, friends, and support systems Systemic injustices, institutionalized racism, and historical framework Education and employment Disenfranchised population, generational and neighborhood poverty, Academic support and resources, academic attainment, and vocational disproportionate environmental exposures, and disparate funding support and stability


Acute and chronic complications of SCD

- 29 year old female with HbSS disease
- Presents to the ER with acute pain typical of her usual "crisis"
- She denies any obvious triggering factors
- She is not taking hydroxyurea or any other disease modifying therapy
- You admit her for management of an acute vasoocclusive event

Nature Reviews | Disease Primers

Sickle Cell Disease – VOC treatment is mostly symptomatic

Slide courtesy Naoya Uchida 2018, modified 2019 & 2023; VOC, vasoocclusive crisis

Management of acute vasoocclusive crisis

Symptomatic management

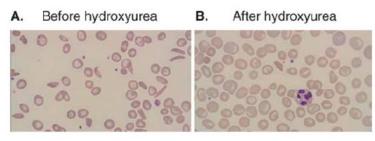
- Rapid initiation of individualized opioid analgesia (<30 min) is desirable
- Adequate initial dosing; Repeated frequent administration until pain improves (?PCA)
- Patient-specific dosing protocols provide better clinical outcomes*
- Use NSAIDs as adjunct, if not contraindicated
- Adjuvants fluid, oxygen, others

*Tanabe Eur J Haematol 2023; Masese et al Blood (2023) 142 (Supplement 1): 3671

Disease modifying therapy

- Medication
 - Hydroxyurea
 - Crizanlizumab
 - L-Glutamine
 - Voxelotor
- Social factors impact treatment success
- Patient education

Sickle cell disease modifying therapy


	Hydroxyurea* (hydroxycarbamide)	L-glutamine** (Endari)®	Crizanlizumab**** (Adakveo)®	Voxelotor*** (Oxbryta)®	
Mechanism of action	Increases fetal Hb Reduce sickle Hb Reduces crisis	Unknown; provide amino acid source to red blood cells Reduces crisis	Reduces red, white, platelets sticking to blood vessel wall Reduces crisis	Hb binds to oxygen irreversibly Reduces sickling of Hb Reduces anemia	
Predominant treatment effect	Patients (HU, n=152; placebo, n=147) had decrease in VOE from 4.5 to 2.5/y	Patients (Endari, n=152; placebo, n=78) had a 25% reduction in VOE 33% Reduction in hospitalization	Patients (Adakveo, n=67; placebo, n=65) had a reduction in VOE from 2.98 to 1.63/y)	Patients (Oxbryta, n=90; placebo, n=92) 51% had an increase in Hb ≥1 g/dL at 24 weeks	
Formulation	Oral, daily	Oral, daily	<u>Intravenous</u> every 4 weeks	Oral, daily	
Rx duration	Lifelong	Lifelong	Try for at least 3-6 months	Lifelong	

*Charache et al. New Engl J Med 1995; **Niihara et al N Engl J Med 2018; *** Vichinsky et al N Engl J Med 2019; **** Ataga et al N Engl J Med 2017

Hydroxyurea: mechanism and efficacy

Hydroxyurea (HU) mechanism of action[#]

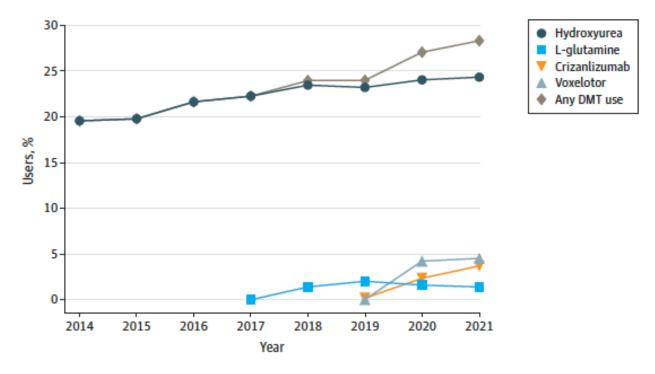
- Ribonuclease reductase inhibitor
- Induces HbF
- Reduced sickling
- Improved rheology
- Myelosuppression
- Nitric oxide donor
- Reduced adhesion

#McGann & Ware Expert Op on Drug Saf 2015

	Wullice		luuy	Daby HOG Study			
	HU	Placebo	P value	HU	Placebo	P value	
Number of patients	152	147		96	97		
Pain (VOC)	2.5/y	4.5/y	<0.001	177	372	0.002	
Acute chest	25	51	<0.001	8	27	0.017	
Dactylitis				24	123	<0.001	
Hospitalization	1/y	2.4/y	<0.001	232	321	0.050	
Transfusions	48	73	<0.001	35	60	0.033	

** Rahy HIIG study

*Multicenter HIL study

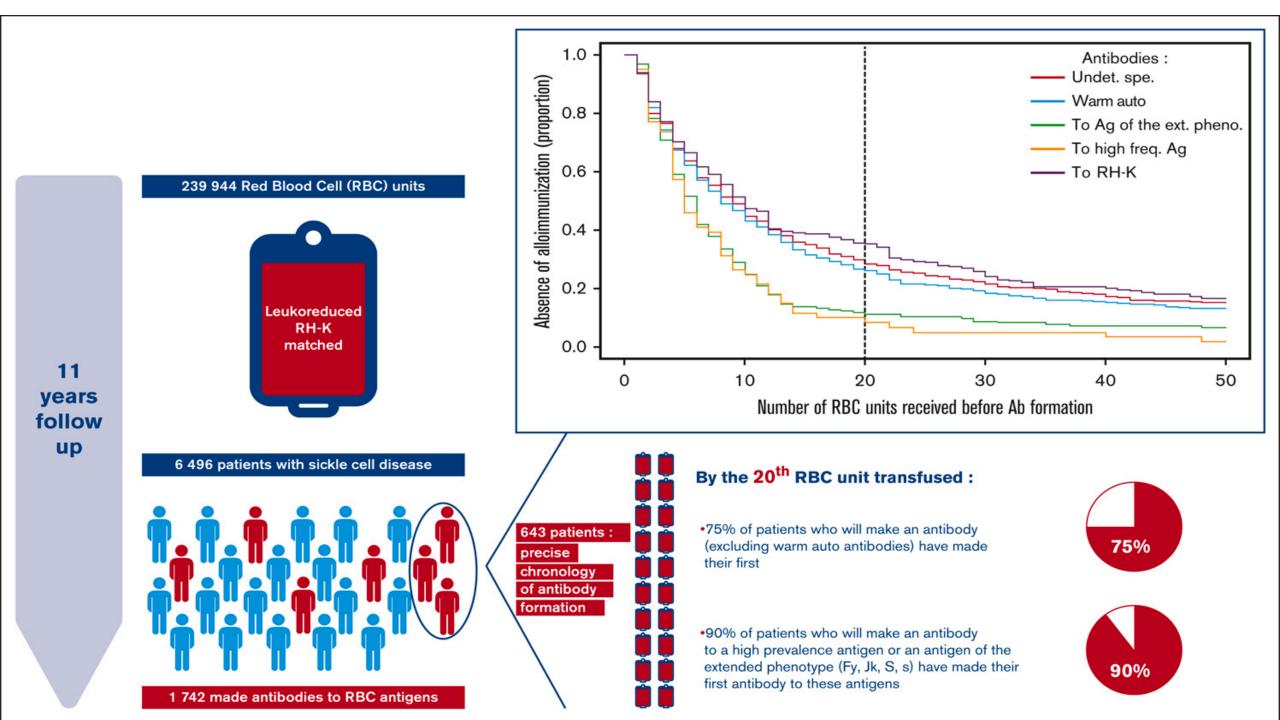

*Charache et al. New Engl J Med 1995 **Wang et al. The Lancet 2011 Tshilolo et al New Engl J Med 2019 (REACH investigators)

Underutilization persists since 2014 SCA treatment guidelines*

Table. Characteristics of 2086 Adults With Probable Sickle Cell Anemia (SCA) Reported in a Large Commercial Insurance Database Between January 1, 2009, and June 30, 2013

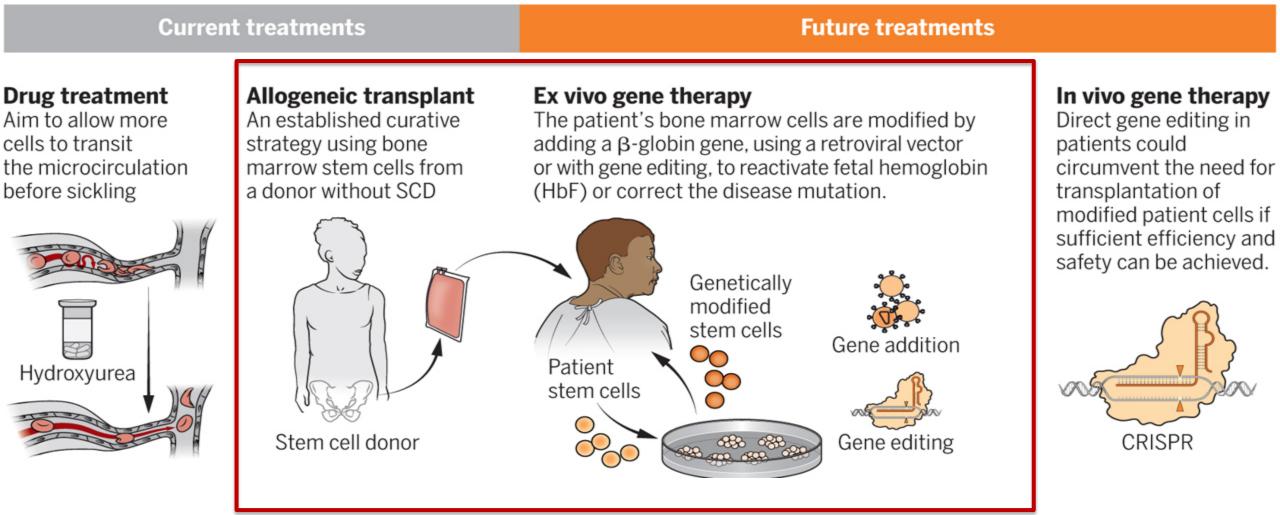
	Adults With Probable SCA ^a
Age, median (25th-75th percentile), y	39 (28-52)
Female sex	1231 (59.0) [56.9-61.1]
Duration of continuous enrollment, median (25th-75th percentile), mo	30.0 (13.9-52.9)
Filled ≥1 prescription for hydroxyurea during enrollment period	369 (17.7) [16.1-19.4]
Average number of emergency visits or hospitalizations for pain per year, median (25th-75th percentile)	0.70 (0-2.10)
Emergency visit or hospitalization for pain during enrollment period	
≥1	1420 (68.1) [66.0-70.1]
≥3 over 12 mo	677 (32.5) [30.5-34.5]

Gap in evidence based practice# ^


^a Data are expressed as No. (%) [95% CI] unless otherwise indicated.

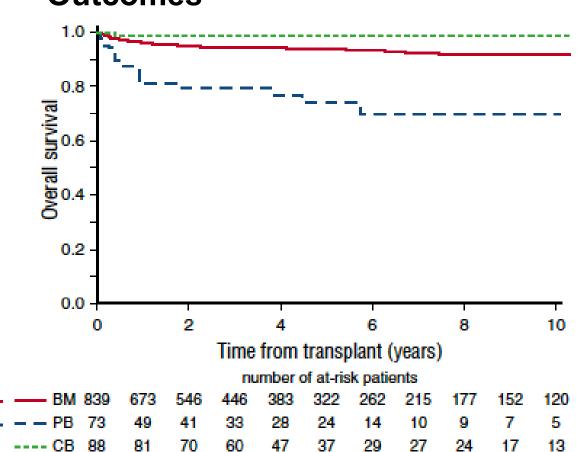
*Yawn et al JAMA 2014 NHLBI guideline summary; # Stetler et al, JAMA 2015; ^ Newman et al JAMA Open 2023

Case scenario 1


- She is not taking hydroxyurea or any other disease modifying therapy.
- She wants to know when she will be transfused. "she feels so much better with a unit of blood".

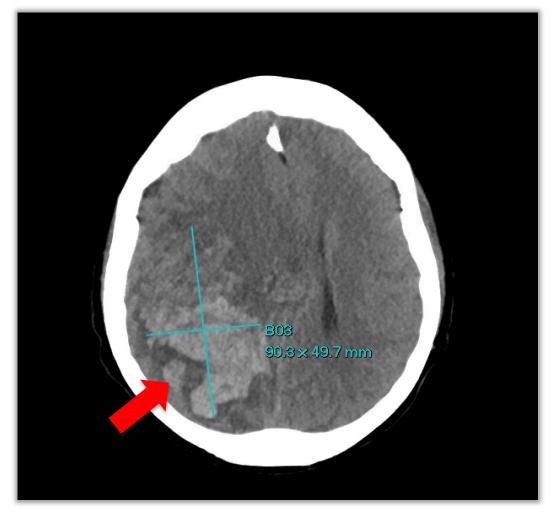
- Recently moved to the United States (US)
- Does not have a primary care provider

Current and future treatments for sickle cell anemia


Numerous advances in the understanding of sickle cell disease (SCD) have allowed the development of curative therapies through allogenic stem cell transplanation, with the promise of gene therapy–based treatments in the future.

Curative therapy: Stem cell transplantation

Allogeneic stem cell transplantation

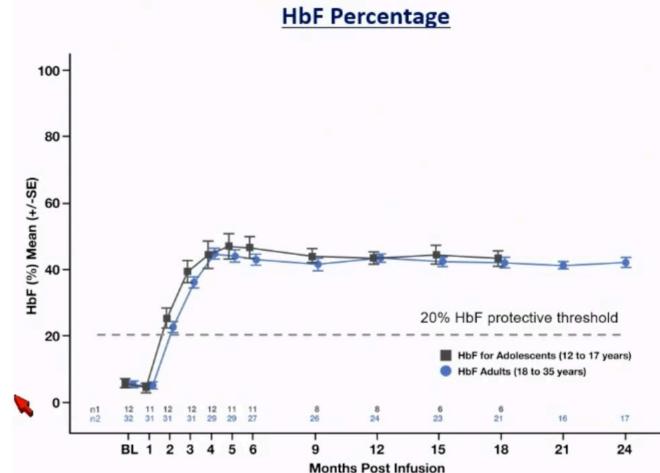

- Eligibility: HbSS or HbSβ^{0thal}
 - Severe sickle cell disease
 - High risk individuals
- Must have a matched sibling donor
- Complications:
 - short term TRM
 - long term GVHD
- Cost: high burden on health system

Outcomes

Case scenario 2

- 36 y.o. F with HbSS and prior history of ACS x 2, VOC 3/year and life-threatening PE on lifelong anticoagulation and Rt heart catheterization documented Pulm Htn
- Underwent haploidentical-HSCT
 - Estimated 2-year EFS = 88% (95% CI: 73.5%, 94.8%)*
 - Durable donor engraftment at 2-years with low mortality.
 - The 2-year EFS and OS are comparable to that reported after MSD myeloablative HSCT
- On d+41 developed sudden loss of consciousness; CT brain shows intracranial hemorrhage

Case from Dr. Courtney Fitzhugh, CMTB, NHLBI


Curative therapy: Gene directed treatment

Gene addition (ex vivo)*

- Phase 2 study of Lovo-cel_® infusion in 47 patients with 60 months follow-up (126 pt yrs)
- Reduction in VOE from 3.5/year to 0/year
- Over 40% of total hemoglobin was HbA^{T87Q}
- Toxicity mild; no malignancy in 37 months f/u.

Gene disruption (ex vivo)**

- CRISPR-Cas9 targeting of gene:
 - **BCL11A erythroid- enhancer
 - ***HBG1 & HBG2 gene promoters
- Phase 3 non viral, Exa-cel® infusion robustly induced HbF (n=44)
- VOE free = 97%; hospitalization free post infusion = 100%
- Toxicity mild; stable durable editing in HSPCs

JAMA Pediatrics | Original Investigation

A Budget Impact Analysis of Gene Therapy for Sickle Cell Disease The Medicaid Perspective

Patrick DeMartino, MD; Meredith B. Haag, MD, MPH; Alyssa R. Hersh, MD, MPH; Aaron B. Caughey, MD, MPH, PhD; Joshua A. Roth, PhD, MHA

Incorporate the future of SCD treatment into current management

Continue identifying newer therapeutic options but <u>widely implement</u> approved therapy

Establish role of curative therapy in <u>representative populations</u>

Measure impact of curative therapy and establish its durability

Clarify how treatment can be more readily available and affordable for <u>all populations</u> living with SCD

- Define the pathophysiology and clinical manifestations of sickle cell disease and describe its global impact
- Evaluate current management strategies for sickle cell disease, with a focus on managing painful vasoocclusive crisis

 Appraise where cellular and gene directed therapy fits into the spectrum of therapeutics for patients with sickle cell disease