Updates on Myelofibrosis and Systemic Mastocytosis

Raajit Rampal M.D. Ph.D.

- **Associate Member**
- Director, MPN and Rare Hematologic Malignancies Program
- Director, Center for Hematologic Malignancies

Memorial Sloan Kettering Cancer Center

<u>Consulting Fees:</u> Incyte Corporation, Celgene/BMS, Blueprint, Abbvie, CTI, Stemline, Galecto, Pharmaessentia, Constellation/Morphosys, Sierra Oncology/GSK, Cogent, Sumitomo Dainippon, Kartos, Servier, Zentalis, Karyopharm.

<u>Research Funding</u>: Constellation pharmaceuticals, Ryvu, Zentalis and Stemline Therapeutics.

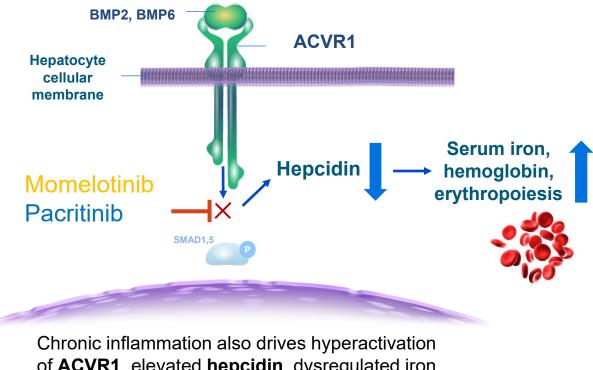
Acknowledgement

-Jason Gotlib, M.D.

Learning Objectives

- To Recognize the heterogeneity of disease phenotype and treatment in Myelofibrosis
- To Discuss the use of newer JAK inhibitors in Myelofibrosis
- To Explain the disease manifestations and diagnosis of Systemic Mastocytosis
- To Appraise the current treatment landscape for Systemic Mastocytosis

Case 1: Cytopenic Myelofibrosis


76 yo M presents with fatigue, weight loss, and abdominal fullness

- Exam: Splenomegaly (12 cm below costal margin)
- CBC: WBC 2.3k (3% blasts), Hb 6.5 g/dL, platelets 41k
- Bone marrow biopsy: 90% cellular marrow with myeloid expansion, dysplastic megakaryocytes in clusters, and MF-3 fibrosis with 5% myeloid blasts
- Cytogenetics: Normal Karyotype
- Myeloid NGS panel: JAK2 V617F+, ASXL1+

Diagnosis: Primary Myelofibrosis, Cytopenic subtype Risk Stratification: DIPSS+ High Risk, MIPSS70+v2.0 Very High Risk

How can we manage cytopenic MF?

Momelotinib and Pacritinib Inhibit ACVR1

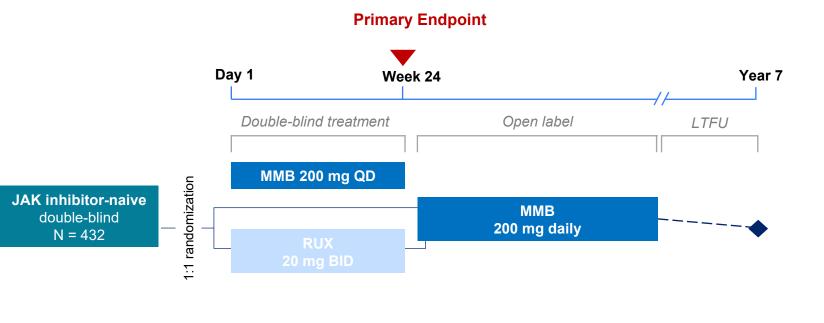
of **ACVR1**, elevated **hepcidin**, dysregulated iron metabolism, and **anemia** of MF^{3,4}

ACVR1, activin A receptor type 1; BMP, bone morphogenetic protein; EPOR, erythropoietin receptor; JAK, Janus kinase; MF, myelofibrosis; MPL, myeloproliferative leukemia protein; SMAD1/5, mothers against decapentaplegic homolog 1/5; STAT, signal transducer and activator of transcription.

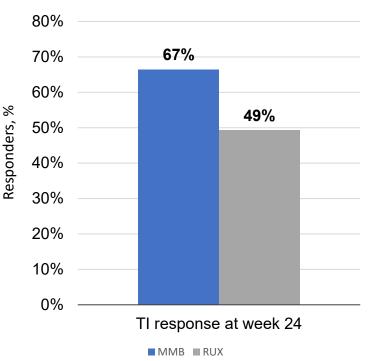
Chifotides HT, et al. J Hematol Oncol. 2022;15(1):7. 2. Verstovsek S, et al. Future Oncol. 2021;17(12):1449-1458. 3. Asshoff M, et al. Blood. 2017;129(13):1823-1830. 4. Oh ST, et al. Blood Adv. 2020;4(18):4282-4291.

ACVR1 Inhibition

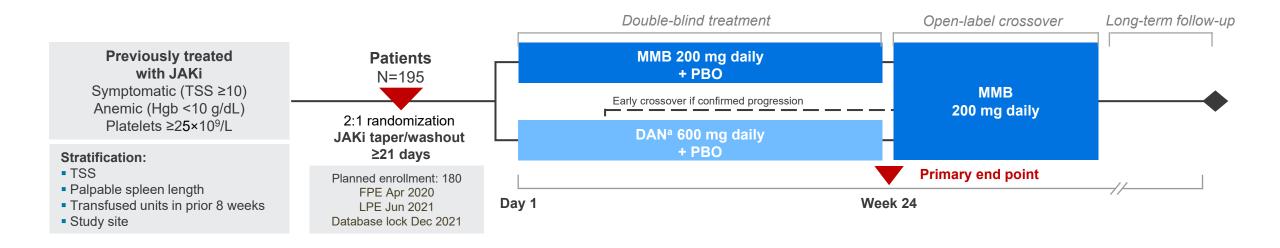
	+ Control LDN 193189ª	PAC C _{max} 213 nM	MMB C _{max} 168 nM	FED C _{max} 275 nM	RUX C _{max} 47 nM	Legend
Replicate 1 ACVR1 IC ₅₀ (nM)	20.4	22.6	70.2	312.0	>1000	Higher potency
Replicate 2 ACVR1 IC ₅₀ (nM)	32.4	10.8	34.9	235.0	>1000	
Mean ACVR1 IC ₅₀ (nM)	26.4	16.7	52.6	273.5	>1000	
Potency ^b (C _{max} :IC ₅₀)	N/A	12.7	3.2	1.0	<0.01	Lower potency


^aLDN 193189 is an ACVR1 inhibitor.

^bC_{max} is the maximum unbound plasma concentration at the clinical recommended dose in humans.


ACVR1= Activin A receptor type 1; FED=fedratinib; IC₅₀=half maximal inhibitory concentration; MOM=momelotinib; PAC=pacritinib; RUX=ruxolitinib.

SIMPLIFY-1: A Phase 3 Study of Momelotinib Versus Ruxolitinib in Untreated Myelofibrosis Patients.


Secondary Endpoint: TI

Landmark week 24 TI rate

MOMENTUM: A Phase 3 Study of Momelotinib Versus DAN in Symptomatic, Anemic, JAKi-Experienced Patients

MOMENTUM Topline Results at Week 24: All Primary and Key Secondary End Points Met^{1,2}

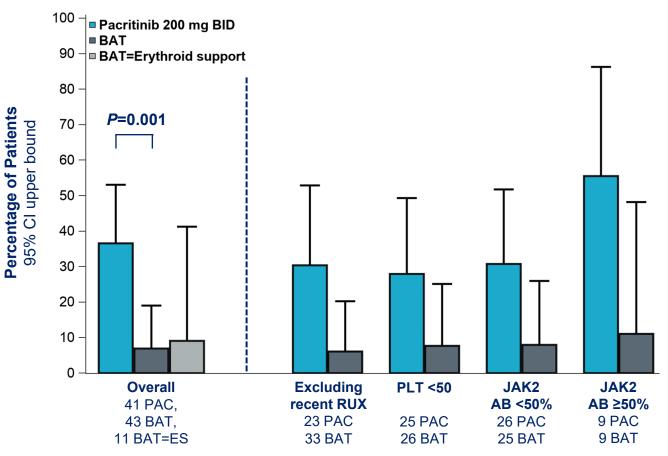
	MFSAF TSS ^b response rate (primary end point)	TI response ^c rate	SRR ^d (35% reduction)
MMB (N=130)	32 (24.6%)	40 (30.8%)	30 (23.1%)
DAN (N=65)	6 (9.2%)	13 (20.0%)	2 (3.1%)
	<i>P</i> =.0095 (superior)	1-sided <i>P</i> =.0064 (noninferior)	<i>P</i> =.0006 (superior)

TEAEs in ≥10% of Patients During OL MMB Treatment with No New Safety Signals Detected

	MMB→MMB (n=93)		DAN→MMB (n=41)		
	% of patients				
Grade ≥3 adverse events	49.5		46.3		
Serious adverse events	31.2		29.3		
	Any grade	Grade ≥3	Any grade	Grade ≥3	
Nonhematologic (preferred term)					
Weight decreased	7.5	0	14.6	0	
Diarrhea	14.0	1.1	12.2	0	
Pyrexia	14.0	0	7.3	0	
Hypertension	3.2	0	12.2	2.4	
Asthenia	11.8	3.2	0	0	
Hematologic (preferred term)					
Thrombocytopenia	14.0	8.6	17.1	14.6	
Anemia	10.8	8.6	7.3	2.4	
Neutropenia	5.4	5.4	4.9	0	
Other					
COVID-19 (pneumonia)	10.8	5.4	0	0	
Peripheral sensory neuropathy	2.2	0	2.4	0	

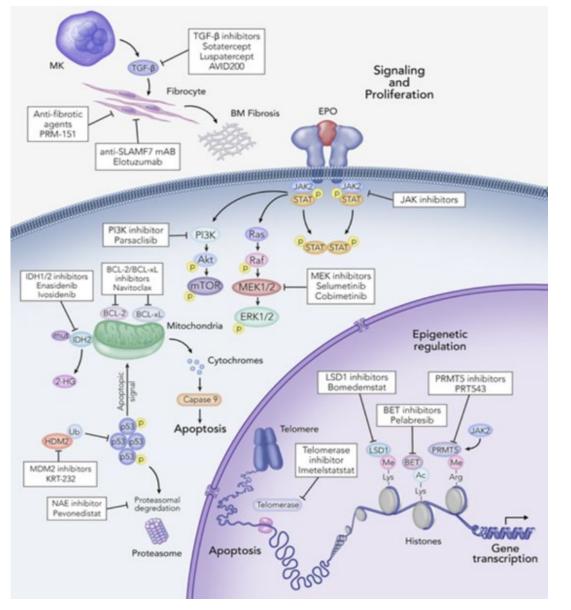
DAN, danazol; MMB, momelotinib; OL, open-label; TEAE, treatment-emergent adverse event.

Transfusion Independence (TI): Analysis of PERSIST-2


TI Conversion Rate

Pacritinib N=41	BAT N=43	<i>P-</i> value	
37%	7%	0.001	

TI conversion better on pacritinib than BAT, including patients receiving erythroid support agents as BAT


 Erythroid support agents were prohibited on the pacritinib arm

Rate of TI (Gale criteria) through Week 24

AB=allele burden; BAT=best available therapy; ES=erythroid support; JAK=Janus associated kinase; PAC=pacritinib; PLT=platelets; recent RUX=no ruxolitinib in prior 30 days; TI=transfusion independence.

Add-on to Ruxolitinib/Post-Ruxolitinib Therapeutic Approaches in Clinical Development

Drug	Mechanism	Phase
Pelabresib	BET inhibitor	Ш
Navitoclax	BCL-XL-BCL-2 inhibitor	111
Imetelstat	Telomerase inhibitor	Ш
Bomedemstat	LSD1 inhibitor	П
Navtemadlin	MDM2 inhibitor	Ш

- Single Agent
- Add-on to ruxolitinib
- Both single agent or add-on to ruxolitinib

Case 2: Systemic Mastocytosis

67 y/o male presents with chief complaint of diarrhea, as well as fatigue, abdominal bloating and weight loss of 20lbs over 3 months

Work-up tryptase of 234. CBC notable for WBC 18.3 K/mcL, Hgb 9.6 g/dL PLT 289K/mcL, 20% monocytes, Albumin 2.8 g/dL (nml 3.8-5.0); LFTs otherwise unremarkable

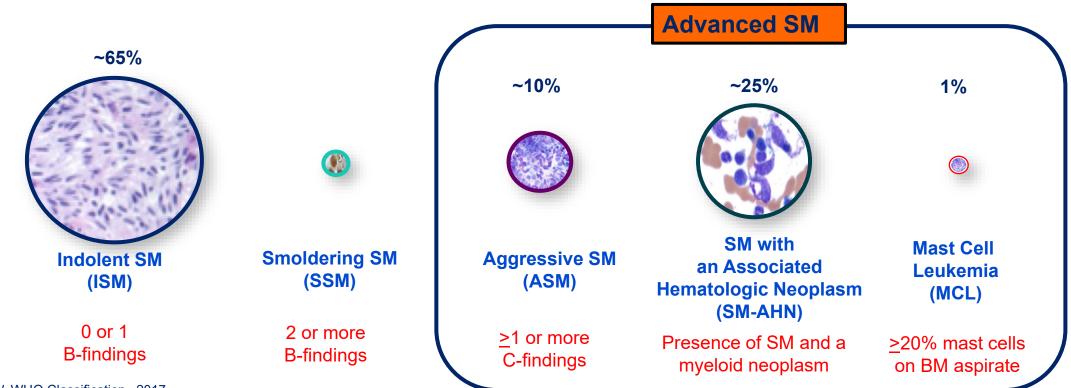
A bone marrow examination is performed which reveals: systemic mastocytosis (50-60% of marrow cellularity by CD117 staining), as well as a hypercellular marrow with maturing trilineage hematopoiesis with myeloid dyspoiesis and dysmegakaryopoiesis.

Molecular genetics reveal: *cKIT*, *TET2*, *NRAS* mutations

Diagnosis: Systemic Mastocytosis with Associated Hematologic Neoplasm (SM-AHN)/CMML-0

What are the treatment options for the patient?

WHO Diagnostic Criteria for Systemic Mastocytosis


Major \neg • Mast cell aggregates (\ge 15) in the marrow or other extracutaneous tissue

Spindle-shaped mast cells

Minor

- *KIT* D816V or other activating *KIT* mutation
 CD25 +/- CD2 expression on mast cells
- Serum tryptase > 20 ng/mL

Diagnosis requires: 1 major + 1 minor or > 3 minor criteria)¹

¹Horny H-P, et al, WHO Classification, 2017

B Findings

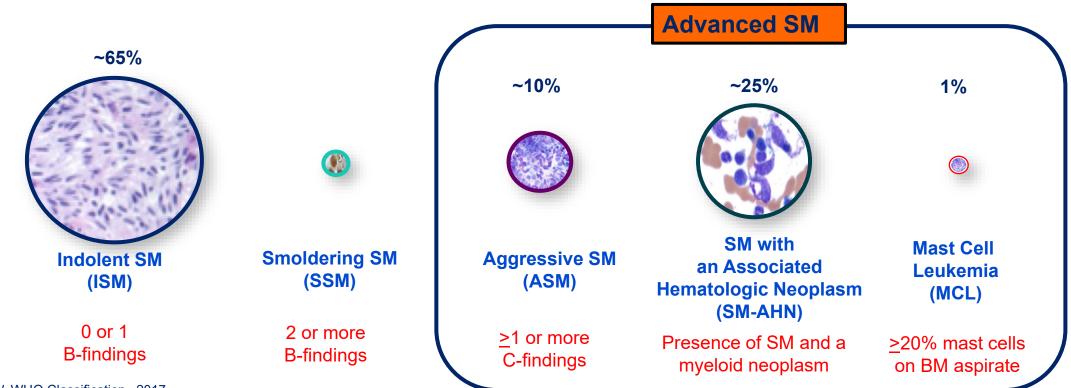
B Findings

1. BM biopsy showing >30% infiltration by mast cells (focal, dense aggregates) and/or serum total tryptase level >200 ng/mL

2. Signs of dysplasia or myeloproliferation, in non-mast cell lineage(s), but insufficient criteria for definitive diagnosis of a hematopoietic neoplasm (AHNMD), with normal or slightly abnormal blood counts.

3. Hepatomegaly without impairment of liver function, and/or palpable splenomegaly without hypersplenism, and/or lymphadenopathy on palpation or imaging.

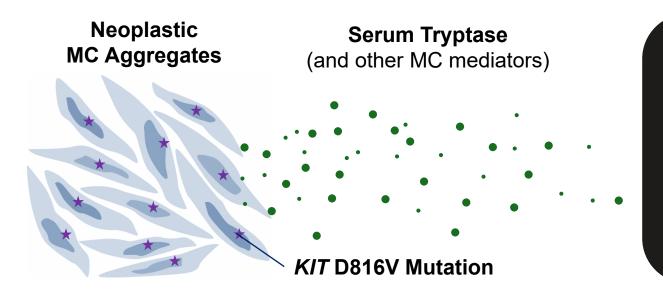
WHO Diagnostic Criteria for Systemic Mastocytosis

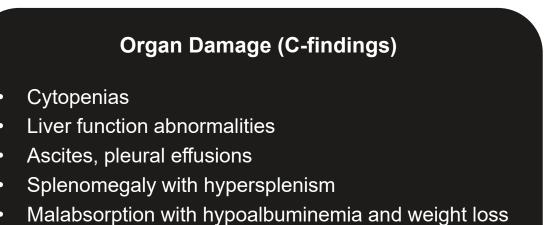

Major \neg • Mast cell aggregates (\ge 15) in the marrow or other extracutaneous tissue

Spindle-shaped mast cells

Minor

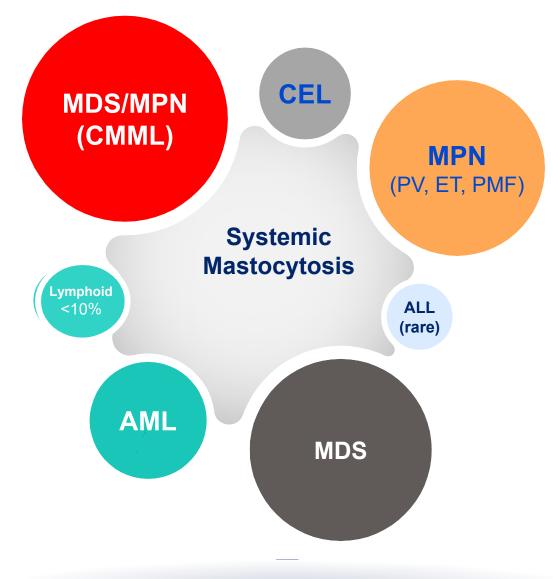
- *KIT* D816V or other activating *KIT* mutation
 CD25 +/- CD2 expression on mast cells
- Serum tryptase > 20 ng/mL


Diagnosis requires: 1 major + 1 minor or > 3 minor criteria)¹

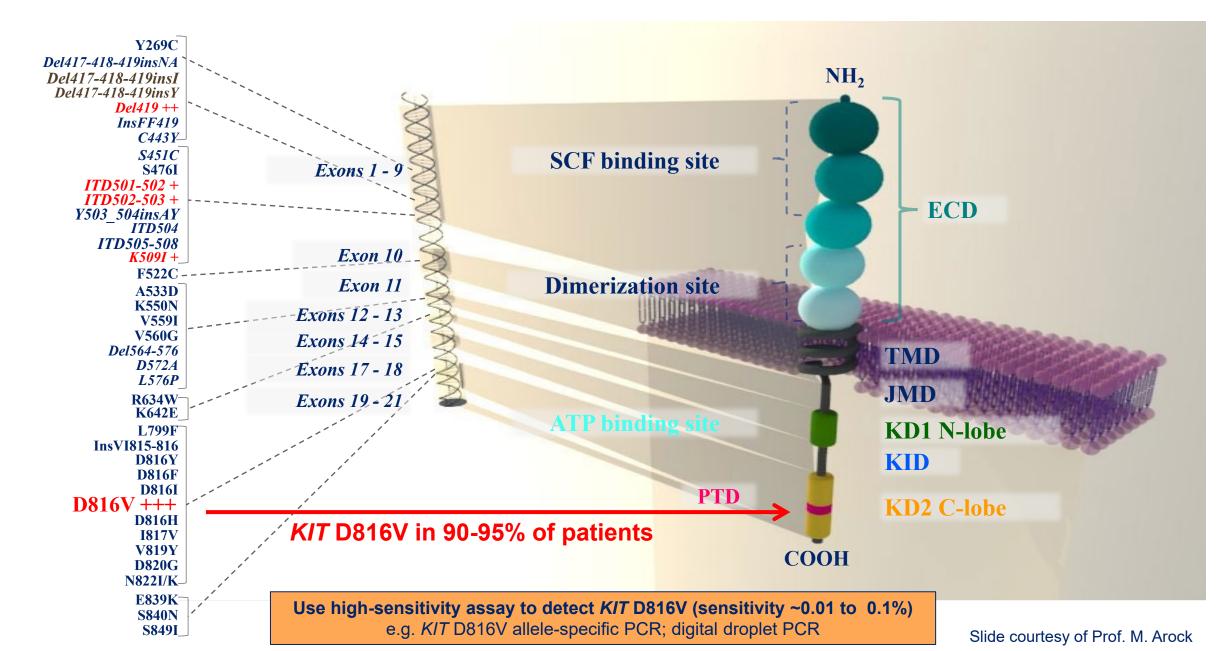


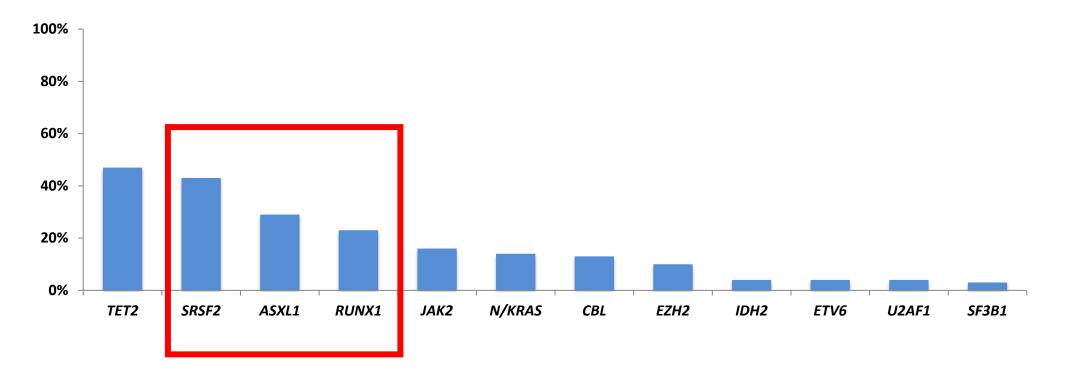
¹Horny H-P, et al, WHO Classification, 2017

Advanced Systemic Mastocytosis (AdvSM) is a Rare Hematologic Neoplasm with Poor Outcomes


Patients with AdvSM often have organ damage (C-findings) due to neoplastic mast cell infiltration Mast cell activation leads to severe mediator symptoms and poor quality of life Clinically and biologically heterogeneous Poor survival, generally ranges from < 6 months to ~3-4 years

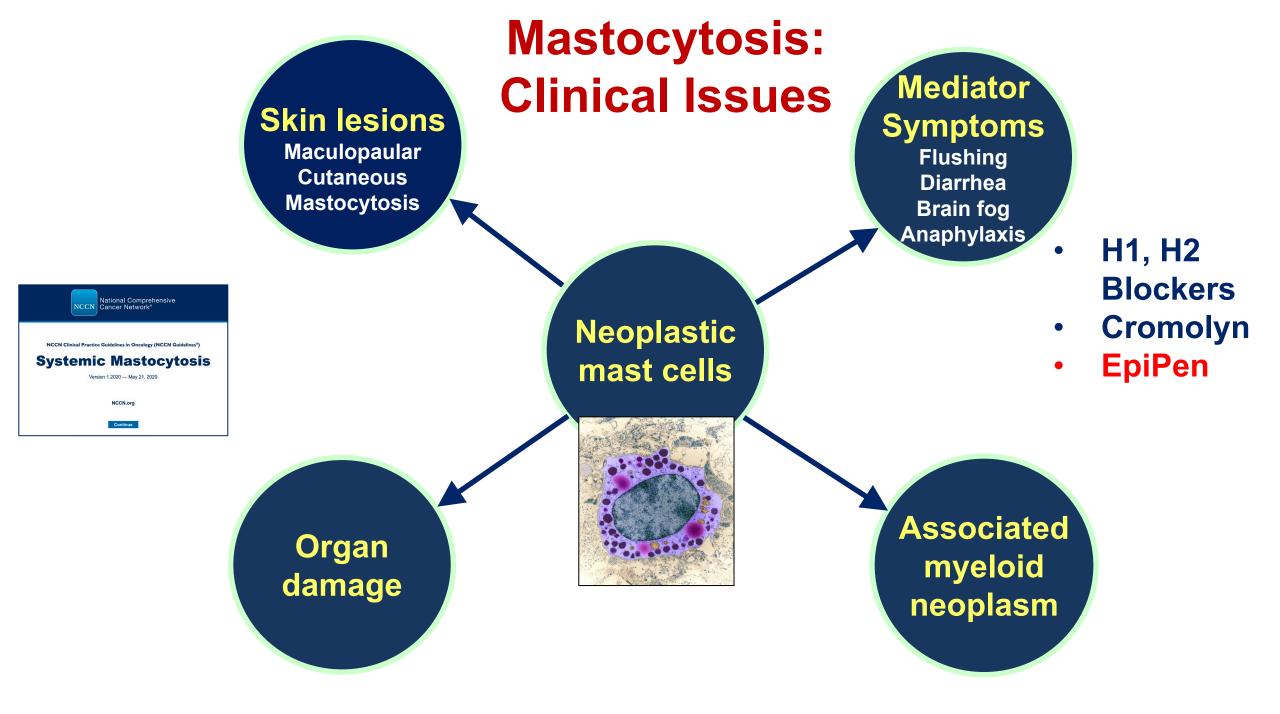
• Large osteolytic bone lesions +/- pathologic fractures


SM with an Associated Hematologic Neoplasm (SM-AHN)

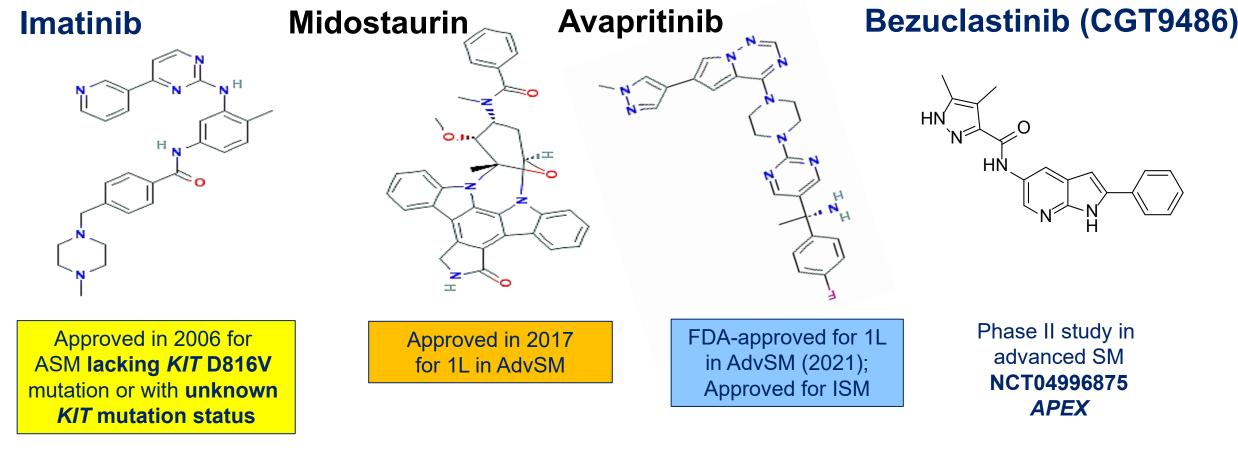

Myeloid AHN: ~90% of cases

¹Sotlar *et al*, *J Pathol*, 2010

KIT D816V is Found in ~95% of SM Patients

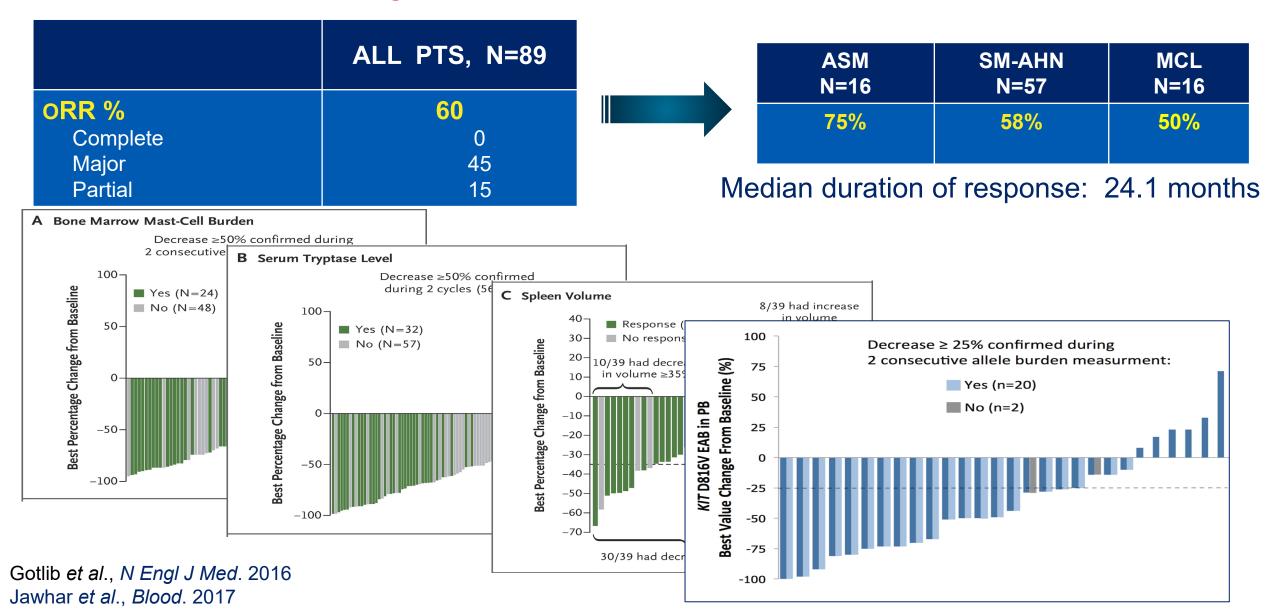


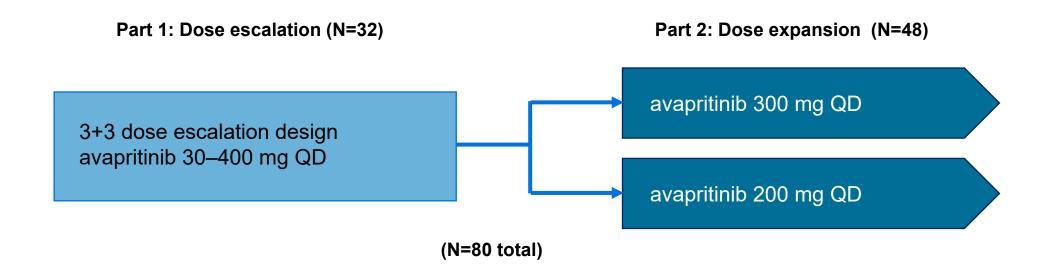
Advanced Systemic Mastocytosis: Mutations Beyond *KIT* D816V



High Risk Mutations: SRSF2 / ASXL1 / RUNX1 (S/A/R)

Jawhar *et al.*, *Leukemia* 2015 Jawhar *et al.*, *Leukemia* 2016

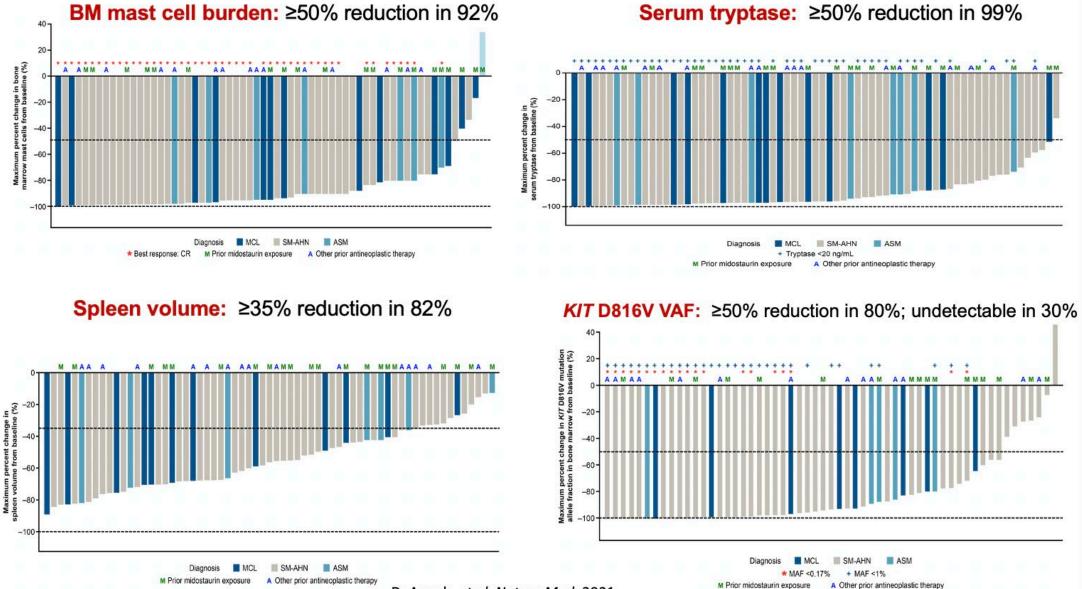

KIT-targeting TKIs: Status 2024


ISM/SSM trial: NCT05186753 SUMMIT

BLU-263 HARBOR (NCT04910685)

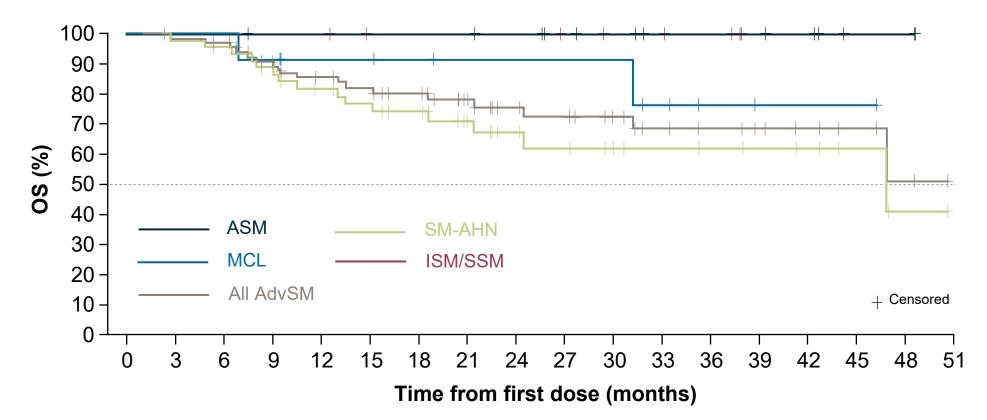
Global Midostaurin Trial: Efficacy & Impact on Mast Cell Burden

Phase I EXPLORER Study Design


Key entry criteria:

- AdvSM (ASM, SM-AHN, or MCL) or relapsed/refractory myeloid malignancy per local assessment
- Age ≥18 years, ECOG performance status 0–3, platelets ≥50 x 10⁹/L

Study objectives:


 RP2D and safety, ORR per mIWG-MRT-ECNM, pharmacokinetics, changes in serum tryptase and blood/bone marrow *KIT* D816V mutant allele fraction, and patient-reported outcomes

Avapritinib: Phase I EXPLORER: Reduction in Measures of Mast Cell Burden

DeAngelo et al, Nature Med, 2021

EXPLORER: Kaplan-Meier estimates of overall survival (safety population)

Median OS was not reached in the overall AdvSM safety population with a median duration of follow-up of 23 months

Estimated 24-month OS rates were: all AdvSM, 76%; ASM, 100%; SM-AHN, 67%; and MCL, 92%

Midostaurin: all AdvSM, 53%; ASM, 86%; SM-AHN, 49%; and MCL, 26%

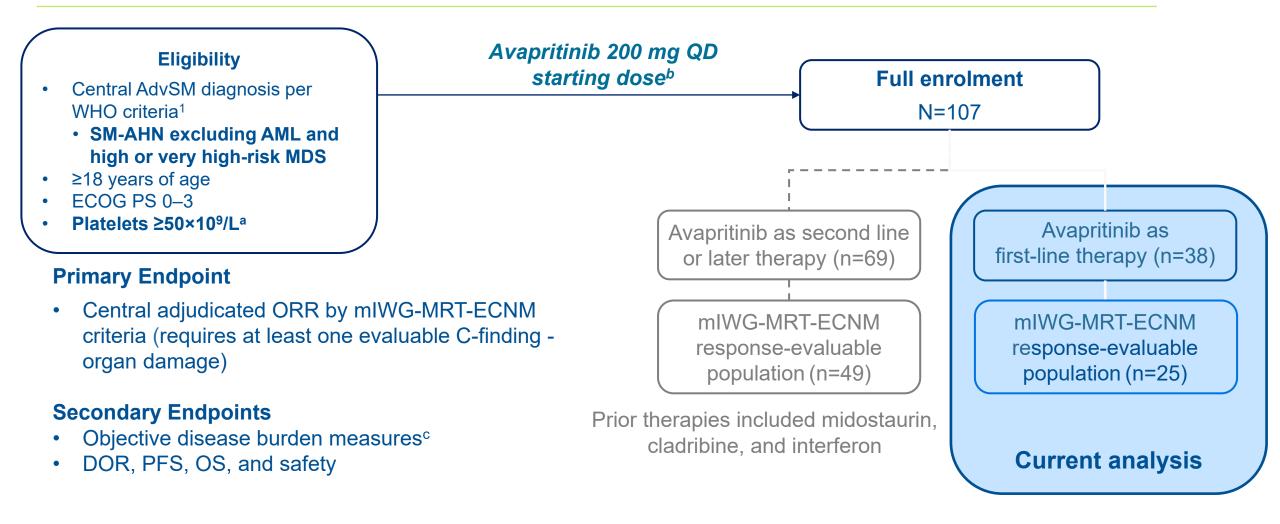
DeAngelo et al, Nature Med, 2021

Phase I EXPLORER: Adverse events (safety population)

Treatment-related AEs (N=86) ^a	All grades	Grade ≥3		
Non-hematologic AEs in ≥20°	% of patient	s, n (%)		
Periorbital edema/eyelid edema	57 (66)	2 (2)		
Cognitive effects ^b	34 (40)	2 (2)		
Diarrhea	24 (28)	1 (1)		
Nausea	29 (34)	2 (2)		
Fatigue	24 (28)	4 (5)		
Peripheral edema	26 (30)	0		
Vomiting	19 (22)	1 (1)		
Hair color changes	22 (26)	1 (1)		
Hematologic AEs in ≥10% of patients, n (%)				
Anemia	35 (41)	18 (21)		
Thrombocytopenia	26 (30)	18 (21)		
Neutropenia	12 (14)	10 (12)		

- Most AEs were Grade 1 and 2; 14 patients (16%) discontinued treatment due to disease progression, of which 6 (7%) were due to progression to acute myeloid leukemia
- 9 patients (10%) discontinued due to treatment-related AEs
- 63 (73%) patients experienced AEs leading to dose reduction, most commonly cytopenias
- Intracranial bleeding was reported in 10 (12%) patients, including 2 (2%) in the absence of severe thrombocytopenia
 - 5 were asymptomatic (Grade 1)
 - 3 were Grade 2; 1 was Grade 3
 - 1 was Grade 5
 - 2 events occurred following head trauma (Grade 2 and Grade 5) and
 1 in the context of progressive MCL (Grade 2)

^aSafety data includes all patients regardless of starting dose. ^bIncludes memory impairment, cognitive disorder, confusional state and encephalopathy. AE, adverse event.


Avapritinib as first-line therapy in patients with advanced systemic mastocytosis: Efficacy and safety from the PATHFINDER clinical study

Deepti H. Radia,¹ Jason Gotlib,² Mark W. Drummond,³ Tracy I. George,⁴ Hui-Min Lin,⁵ Saša Dimitrijević,⁶ Javier I. Muñoz-González,⁶ Ilda Bidollari,⁵ Michael W. Deininger,⁷ Daniel J. DeAngelo,⁸ Andreas Reiter⁹

¹Guy's & St Thomas's NHS Foundation Trust, London, UK; ²Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA;
 ³Beatson Cancer Centre, Glasgow, UK; ⁴ARUP Laboratories, University of Utah, Salt Lake City, UT, USA;
 ⁵Blueprint Medicines Corporation, Cambridge, MA, USA; ⁶Blueprint Medicines (Switzerland) GmbH, Zug, Switzerland;
 ⁷Versiti Blood Research Institute and Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA;
 ⁸Dana-Farber Cancer Institute, Boston, MA, USA;
 ⁹Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.

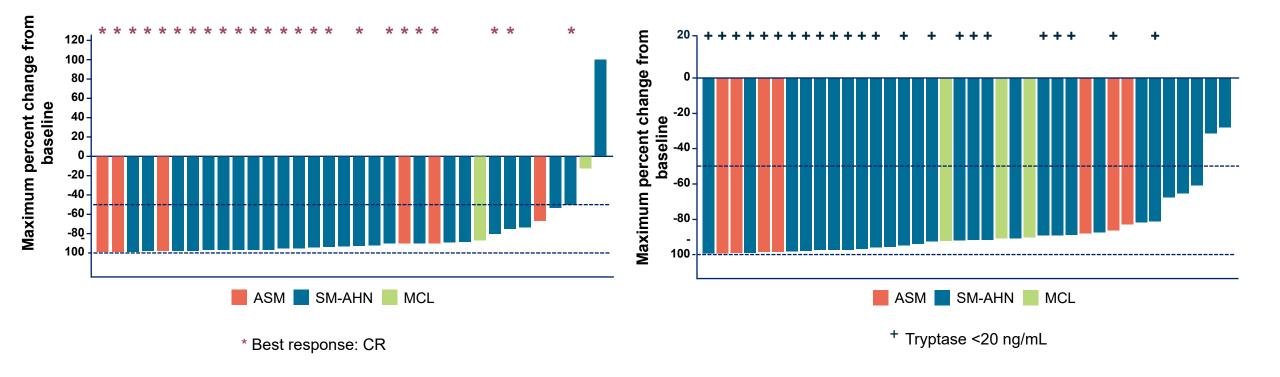
Presented at: ASH 2022 Annual Meeting, New Orleans, Louisiana December 10 to December 13, 2022 Abstract #625

Avapritinib as first-line therapy in patients from PATHFINDER

^aImplemented in 2019 to reduce risk of intracranial bleeding. ^b2 patients initiated 100 mg QD avapritinib, all others initiated at 200 mg QD. ^cDisease burden measures include bone marrow MCs, serum tryptase, *KIT* D816V variant allele fraction, and spleen volume. No type 1 error control for these endpoints.

DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; MC, mast cell; mIWG-MRT-ECNM, modified International Working Group-Myeloproliferative Neoplasms Research and Treatment and European Competence Network on Mastocytosis; ORR, overall response rate; OS, overall survival; PFS, progression free survival; QD, once daily; WHO, World Health Organization. 1. Horny HP et al. Mastocytosis. In: Sverdlow SH et al. World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2016.

Reduction in disease burden observed across subtypes

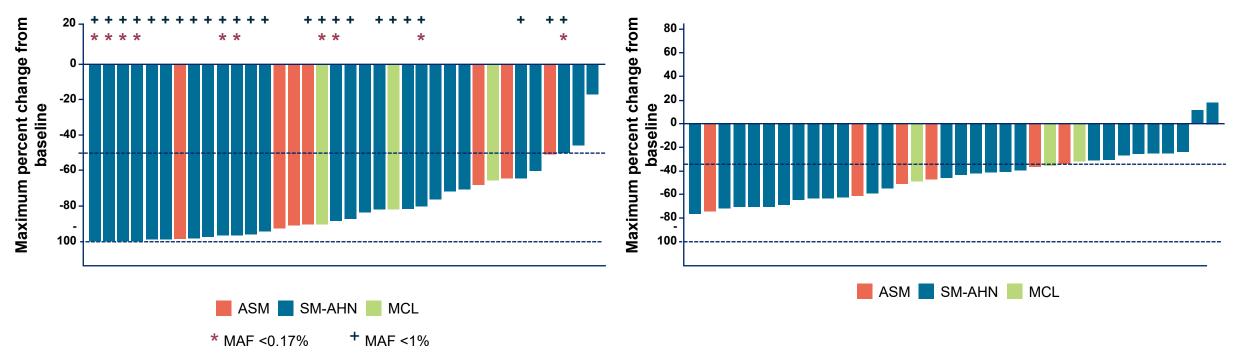

Bone marrow MCs^a

Bone marrow MCs decreased by ≥50% in 84% of patients (32/38), including 25 of 28 patients with SM-AHN

MC aggregates total clearance in 63% of patients (24/38), including 19 of 28 patients with SM-AHN

Serum tryptase^a

- Serum tryptase level decreased by ≥50% in 95% of patients (36/38), including 26 of 28 patients with SM-AHN
- 60% of patients (22/37) had CR (decrease to <20 ng/mL) in serum tryptase, including 18 of 28 patients with SM-AHN

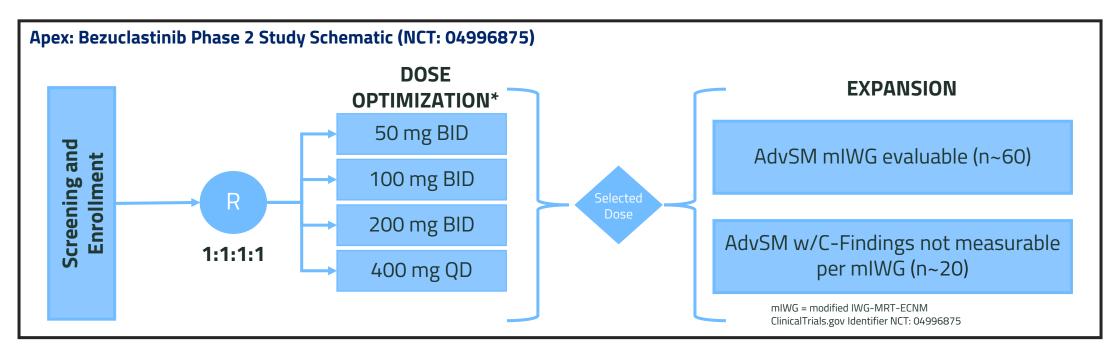

Reduction in disease burden observed across subtypes

KIT D816V variant allele fraction in peripheral blood^a

- *KIT* D816V VAF^b decreased by ≥50% in 89% of patients (34/38), including 24 of 28 patients with SM-AHN
- *KIT* D816V VAF^b decreased below 1% in 63% of patients (24/38), including 19 of 28 patients with SM-AHN

Spleen volume^a

- Spleen volume decreased by ≥35% in 66% of patients (25/38), including 18 of 28 patients with SM-AHN
- 61% (n=11/18) of patients whose spleen was palpable at baseline became non-palpable during treatment, including 10 of 28 patients with SM-AHN



Data cut off: April 20, 2021.

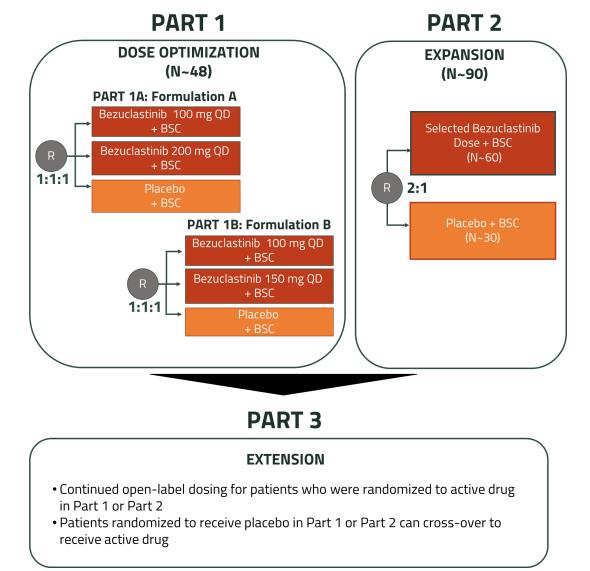
^aThere was no type I error control

^b*KIT* D816V VAF measured in peripheral blood using a ddPCR assay with detection limit of 0.17%, consistent with prior presentations on AdvSM. ddPCR, droplet digital polymerase chain reaction.

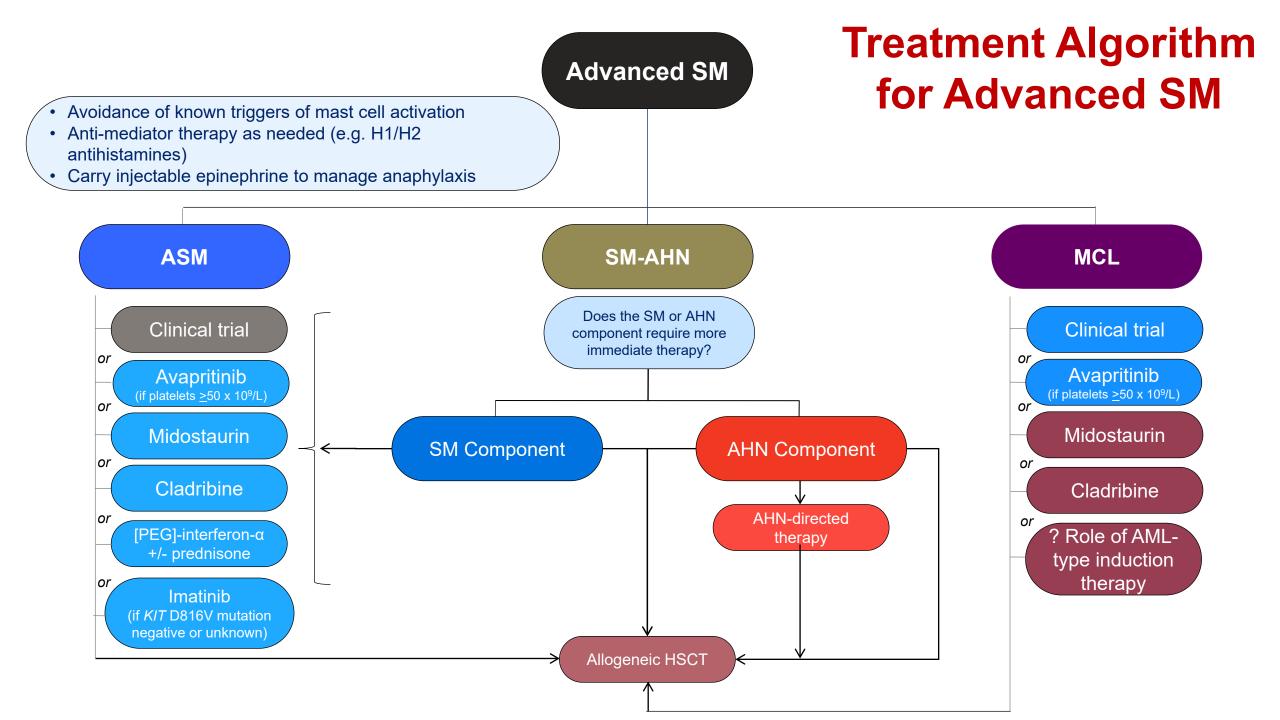
Apex: Phase 2, open-label, 2-part clinical study to evaluate safety, efficacy, PK, and PD of the KIT inhibitor bezuclastinib in patients with AdvSM

- Part 1 (dose optimization): Patients will be randomized to receive 1 of 4 doses of bezuclastinib
 - A panel of expert clinicians and pathologists will determine patient eligibility and approve patient enrollment during the Screening Period based on clinical history and pathology
 - Clinical activity will be assessed according to mIWG response criteria by the central response review committee (CRRC)
 - *Interim analysis (IA) will be performed after ~28 patients have completed at least 2 cycles of treatment
- **Part 2 (expansion):** Patients will receive bezuclastinib at the optimal dose selected in Part 1
- Bezuclastinib is administered orally, once or twice daily for 28 days of each 4-week cycle
- Severity of adverse events will be graded using the NCI-CTCAE v5.0

Summit: A Multi-Part, Randomized, Double-Blind, Placebo-Controlled Phase 2 Clinical Study of the Safety and Efficacy of Bezuclastinib in participants with Nonadvanced Systemic Mastocytosis


Key Inclusion Criteria

Key Exclusion Criteria


- Diagnosed with 1 of the following World Health Organization (WHO) classifications for SM (ISM, including BMM, or SSM)¹²
- Inadequate control of symptoms despite a stable regimen of at least 2 antimediator therapies
- Eastern Cooperative Oncology Group (ECOG) Performance Status 0 to 2

nex

- Diagnosed with mastocytosis of the skin without systemic involvement
- Received prior treatment with any targeted KIT inhibitor with the exception of approved agents for the treatment of SM
- Received prior cytoreductive therapy or investigational agent for <14 days or 5 half-lives of the drug and for cladribine, interferon alpha, pegylated interferon, or antibody therapy <28 days or 5 half-lives of the drug (whichever is longer), before starting screening assessments
- Active, uncontrolled, systemic bacterial, fungal, or viral infections at screening
- Need for treatment with systemic corticosteroids (i.e., >10 mg/day prednisone or equivalent)
 - Patient on stable dose of prednisone ≤10 mg/day (or equivalent) are eligible

Memorial Sloan Kettering Cancer Center

Questions?

rampalr@mskcc.org