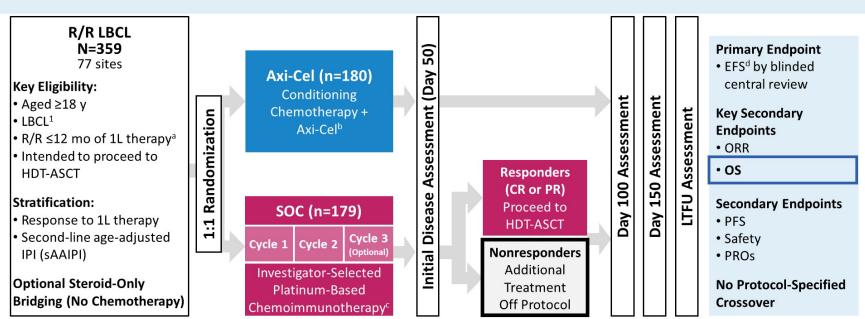


Tycel J. Phillips, MD Associate Professor of Medicine City of Hope Comprehensive Cancer Center **Understanding and Managing Your Patients with Current Immune Effector Therapeutic Options in Lymphomas**


Disclosures

- Research Support
 - Abbvie, Bayer, BMS, Genentech
- Advisory Board
 - Abbvie, ADC Therapeutics, AstraZeneca, Bayer, Beigene, BMS, Genmab, Genentech, Gilead, Eli Lily, Epizyme, Incyte, Pharmacyclics, TG Therapeutics, Seattle Genetics
- Strategic Counsel
 - Epizyme, Genmab
- Scientific Board
 - Genentech, Merck, Genmab

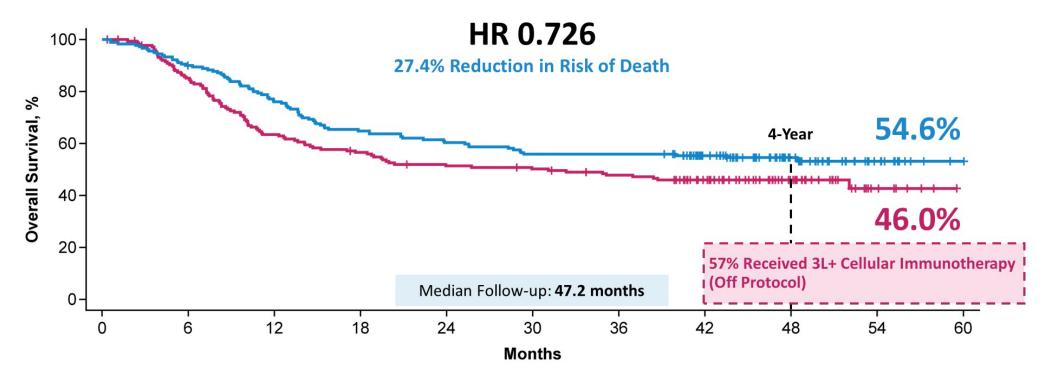
CAR-T 2L+

ZUMA-7 Study Schema and Endpoints

^a Refractory disease was defined as no complete response to 1L therapy; relapsed disease was defined as complete response followed by biopsy-proven disease relapse ≤12 months from completion of 1L therapy. ^b Axi-cel patients underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide (500 mg/m²/day) and fludarabine (30 mg/m²/day) 5, 4, and 3 days before receiving a single axi-cel infusion (target intravenous dose, 2×10⁶ CAR T cells/kg). ^c Protocol-defined SOC regimens included R-GDP, R-DHAP, R-ICE, or R-ESHAP. ^d EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification,² commencement of new lymphoma therapy, or death from any cause.

1. Swerdlow SH, et al. Blood. 2016;127:2375-2390. 2. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

1L, first line; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; EFS, event-free survival; HDT-ASCT, high-dose therapy with autologous stem cell transplantation; IPI, International Prognostic Index; LBCL, large B-cell lymphoma; LTFU, long-term follow-up; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; PRO, patient-reported outcome; R/R, relapsed/refractory; SOC, standard of care.


Westin et al ASCO 2023 Late-Breaking Abstract 107

5

DRIVE SCORE 2

Axi-Cel Improved Overall Survival Versus Standard of Care

• 57% (n=102/179) of SOC patients received subsequent cellular immunotherapy (off protocol)

• Despite the increased survival in the SOC arm versus historical studies, axi-cel increased survival over SOC^{a,b}

^a Approximately 30% for early R/R LBCL in ORCHARRD (van Imhoff GW, et al. *J Clin Oncol*. 2017;35:544-551). ^b <40% for those with prior rituximab and early R/R LBCL in CORAL (Gisselbrecht C, et al. *J Clin Oncol*. 2010;28:4184-4190). 3L, third line; axi-cel, axicabtagene ciloleucel; HR, hazard ratio; LBCL, large B-cell lymphoma; R/R, relapsed/refractory; SOC, standard of care.

Cityof

Hope

14

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Key Safety Data At Primary Overall Survival Analysis

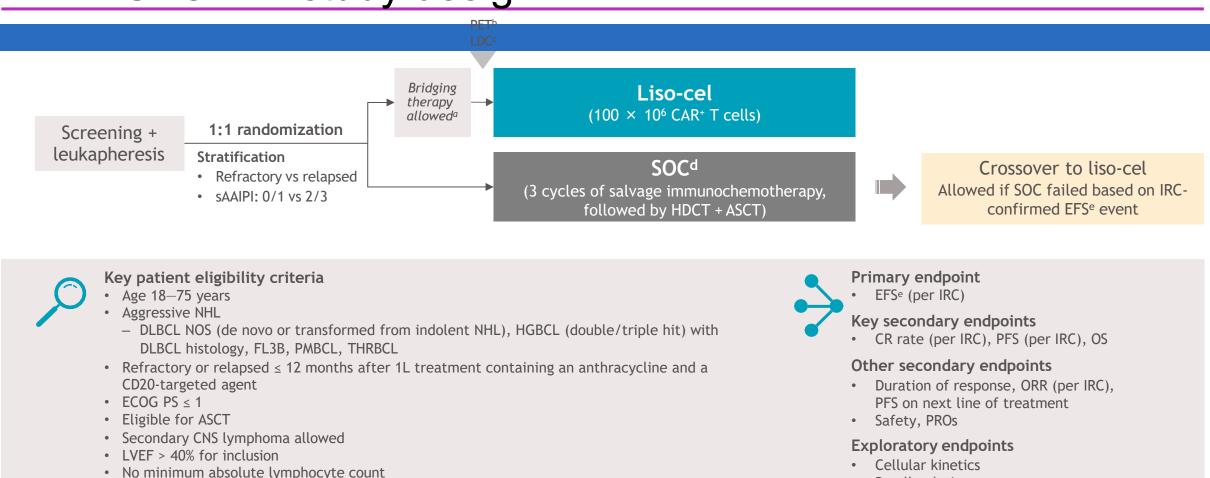
AEs of Interest, %	Axi n=1		SOC n=168	
ALS OF INTEREST, 70	Any Grade	Grade ≥3	Any Grade	Grade ≥3
CRS	92%	6%	—	—
Neurologic event	61%	21%	20%	1%
Hypogammaglobulinemia	11%	0%	1%	0%
Cytopenia	80%	75%	80%	75%
Infections	45%	16%	32%	12%

No changes in cumulative treatment-related serious or fatal AEs occurred since the primary EFS analysis

Reason for Death	Axi-Cel n=170	SOC n=168	
Progressive disease, n (%)	51 (30)	71 (42)	
Grade 5 AE during protocol-specific reporting period, n (%)	8 (5)ª	2 (1) ^b	
New or secondary malignancy, n (%)	2 (1) ^c	0	
Other reason for death, ^d n (%)	13 (8)	18 (11)	
Definitive therapy-related mortality, ^e n/N (%)	1/170 (1) ^f	2/64 (3) ^g	

Data here are presented for the safety analysis set. Fewer SOC patients remained in the AE reporting period post-progression or start of new lymphoma therapy; thus, cross-arm comparisons of AE rates warrant cautious interpretation. ^a COVID-19 (n=2), sepsis (n=2), hepatitis B reactivation, myocardial infarction, pneumonia, and progressive multifocal leukoencephalopathy (n=1 each). ^b Acute respiratory distress syndrome and cardiac arrest (n=1 each). ^c One patient died of acute myeloid leukemia and one died of lung adenocarcinoma, both deemed unrelated to study treatment per investigator assessment. ^d Includes fatal AEs that occurred outside of the protocol-specified AE reporting window. COVID-19 (n=4), other infection/inflammation (n=3), neurologic organ failure (n=2), respiratory organ failure, cardiac organ failure, progressive disease, and unknown (n=1 each) in the axi-cel arm. Other infection/inflammation (n=7), unknown (n=5), COVID-19 (n=4), respiratory organ failure, and cardiopulmonary/neurologic organ failure (n=1 each) in the SOC arm. ^e Related to axi-cel or high-dose therapy with autologous stem cell transplantation. ^f Hepatitis B reactivation. ^g Cardiac arrest and acute respiratory distress syndrome (n=1 each).

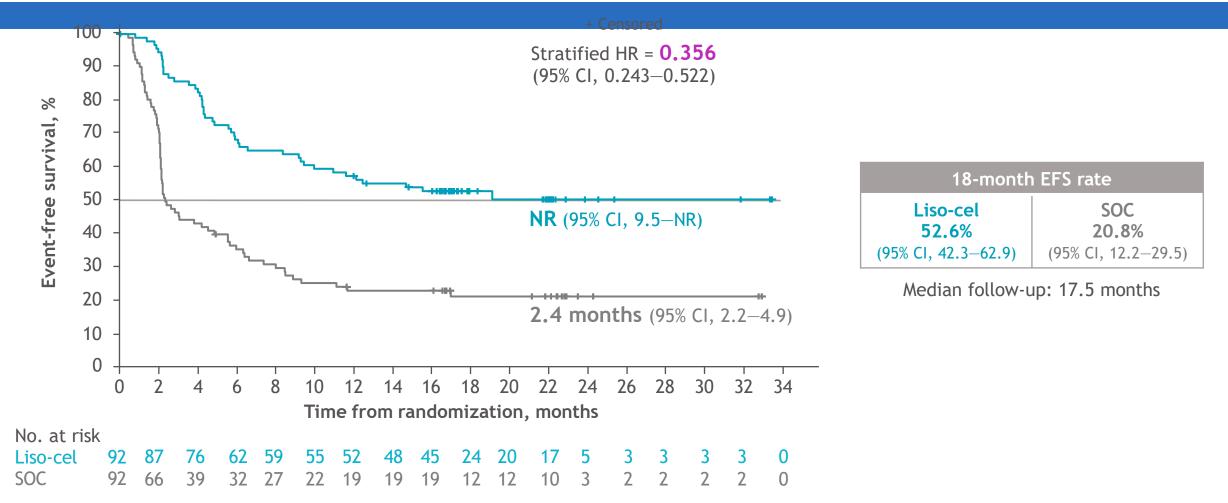
AE, adverse event; axi-cel, axicabtagene ciloleucel; CRS, cytokine release syndrome; EFS, event-free survival; SOC, standard of care.


Westin et al ASCO 2023 Late-Breaking Abstract 107

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

TRANSFORM: study design

DRIVE SCORE 2

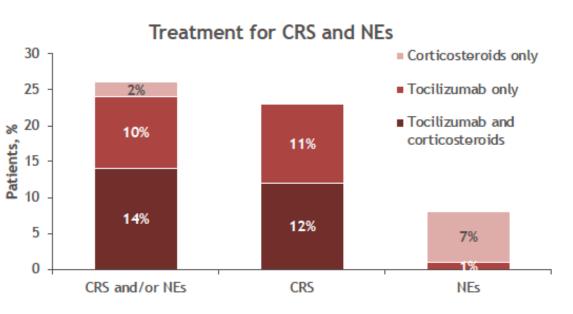


B-cell aplasia

^aPatients may have received a protocol-defined SOC regimen to stabilize their disease during liso-cel manufacturing; ^bOnly for patients who received bridging therapy; ^cLymphodepletion with fludarabine 30 mg/m² and cyclophosphamide 300 mg/m² for 3 days; dSOC was defined in the protocol as physician's choice of R-DHAP, R-ICE, or R-GDP; eEFS was defined as time from randomization to death due to any cause, PD, failure to achieve CR or PR by 9 weeks post-randomization, or start of a new antineoplastic therapy, whichever occurred first. EFS, event-free survival; FL3B, follicular lymphoma grade 3B; HGBCL, high-grade B-cell lymphoma; IRC, independent review committee; NOS, not otherwise specified; PMBCL, primary mediastinal large B-cell lymphoma; PRO, patient-reported outcome; sAAIPI, secondary age-adjusted International Prognostic Index; THRBCL, T-cell/histiocyte-rich large B-cell lymphoma

Abramson JS, et al. ASH 2022 [Abstract #655]

TRANSFORM: EFS per IRC (ITT set; primary endpoint)


EFS was defined as the time from randomization to death due to any cause, PD, failure to achieve CR or PR by 9 weeks post-randomization, or start of a new antineoplastic therapy due to efficacy concerns, whichever occurred first. This endpoint was not statistically retested for the primary analysis. NR, not reached.

Abramson JS, et al. ASH 2022 [Abstract #655]

TRANSFORM AEs

TRANSFORM: TEAEs of special interest (safety set)

Patients with CRS and NEs	Liso-cel arm (n = 92)
CRS,ª n (%)	
Any grade	45 (49)
Grade 1	34 (37)
Grade 2	10 (11)
Grade 3	1 (1)
Grade 4/5	0
Time to onset, days, median (range)	5.0 (1–63)
Time to resolution, days, median (range)	4.0 (1–16)
NE, ^b n (%)	
Any grade	10 (11)
Grade 1	4 (4)
Grade 2	2 (2)
Grade 3	4 (4)
Grade 4/5	0
Time to onset, days, median (range)	11.0 (7–17)

• No vasopressors or prophylactic corticosteroids were used

Other adverse events of special interest	Liso-cel arm (n = 92)	SOC arm (n = 91)
Prolonged cytopenia ^c	40 (43)	3 (3)

- Most notable AE's include CRS and ICANS
 - Managed with antipyretics, anti-IL-6 agents, steroids and other advanced care with higher grade CRS
 - High grade ICANS treatment should include anti-seizure +/- additional medications
 - Other issues of note include HLH, profound/durable cytopenias and infections.

Cytokine Release Syndrome			ICANS		
Product	Any Grade	Severe	Any Grade	Severe	
Axi-cel	93%	13%	64%	28%	
Tisa-cel	58%	23%	21%	12%	
Liso-cel	37%	1%	25%	15%	

AE's (CRS/ICANS) ---Follicular Lymphoma

ZUMA-5

- Cytokine release syndrome occurred in 97 [78%] of 124 with FL.
- Most cases were grade 1 or 2 (89 [72%] of 124 with FL
- Grade 3 or worse cytokine release syndrome occurred in eight [6%] of 124 with FL
- Median time to onset of cytokine release syndrome after infusion was 4 days (IQR 2–6) in patients with FL. Median duration was 6 days (IQR 4–8) in patients with FL
- Neurological events occurred in 70 [56%] of 124 with FL, grade 1 or 2 events occurred in 51 [41%] with FL, grade 3 or 4 events occurred in 19 (15%) with FL.
- No grade 5 neurological events occurred.

ELARA

Table 3 Overall safety profile				
Parameter	Treated patients, n = 97			
Any AE of special interest within 8 weeks post infusion, <i>n</i> (%)	88 (90.7)			
AESIs occurring in patients 8 weeks post infusion, drug relationship, n (%)	, regardless of study			
CRS	47 (48.5)			
Grade ≥3	0			
Neurological events	36 (37.1)			
Grade ≥3	3 (3.1)			
Headache	23 (23.7)			
Grade ≥3	1 (1)			
Dizziness	6 (6.2)			
Grade ≥3	0			
Immune effector-cell-associated neurotoxicity syndrome	4 (4.1)			
Grade ≥3	1 (1.0)			

Cytokine Release Syndrome/Neurotoxicity

No Grade 5 CRS occurred

Parameter	N = 68
CRS, n (%) ^a	
Any grade	62 (91)
Grade ≥ 3	10 (15)
Most common any grade symptoms of CRS, n (%)	
Pyrexia	62 (91)
Hypotension	35 (51)
Нурохіа	23 (34)
AE management, n (%)	
Tocilizumab	40 (59)
Corticosteroids	15 (22)
Median time to onset (range), days	2 (1 – 13)
Median duration of events, days	11
Patients with resolved events, n (%)	62/62 (100)

Parameter	N = 68
Neurologic events, n (%) ^a	
Any grade	43 (63)
Grade ≥ 3	21 (31)
Most common any grade symptoms, n (%)	
Tremor	24 (35)
Encephalopathy	21 (31)
Confusional state	14 (21)
AE management, n (%)	
Tocilizumab	18 (26)
Corticosteroids	26 (38)
Median time to onset (range), days	7 (1 – 32)
Median duration of events, days	12
Patients with resolved events, n (%)	37/43 (86) ^b

Wang M et al, KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020 Apr 2;382(14):1331-1342. doi: 10.1056/NEJMoa1914347. PMID: 32242358; PMCID: PMC7731441.

Other agents to manage ICANS/CRS

Agent	MOA	Data suggesting benefit
Anakinra	IL-1 receptor antagonist	Preclinical data supporting the role of IL-1 in mediating CRS/ICANS, alongside the impact of IL-1 blockade in treatment of CAR T-cell toxicitie
Emapalumab	IFN-γ–blocking antibody	Preclinical data supporting the role of IFN-γ in mediating CRS/ICANS, alongside the impact of IFN-γ blockade in treatment of CAR T-cell toxicities. ⁹⁸ Clinical experience is limited
Antithymocyte globulin (ATG)	Direct T-cell targeting	Potential use is based on clinical efficacy of targeting T cells. Data on CRS/ICANS are limited
Alemtuzumab (anti-CD52)	Depletion of T and B cells by binding to CD52 on the cell surface	No published reports on its use for treatment of relapsed/refractory CRS/ICANS
Dasatinib	TKI (BCR-ABL)	Preclinical studies demonstrate the ability of dasatinib to suppress CAR T- cell cytotoxicity, cytokine secretion, and proliferation
Ibrutinib	BTK inhibitor	Based on the role of ibrutinib to inhibit IL-2–induced tyrosine kinases, there is evidence of reduction in cytokine production in a preclinical model of CD19 CAR T cells. Emerging using ibrutinib suggest the potential of reducing CRS severity
Ruxolitinib or alternative JAK1 inhibitors	JAK inhibitor	Preclinical studies demonstrate a role of JAK pathway singling blockade and dose-dependent reduction of multiple cytokines implicated in CRS

• Adapted from Jain et al. Blood 2023 141(20):2340-2442

Late Complications

Table 1. Incidence and characteristics of infectious complications in selected registered studies of patients treated with CD19 chimeric antigen receptor T-cells.										
	CD19-positive B cell Non-Hodgkin lymphoma									
	ZUMA-1 (2)	JULIET (3)	TRANSCEND- NHL-001 (4)	ZUMA-7 (23)	BELINDA (27)	TRANSFORM (24)	ZUMA- 12 (25)	ZUMA-2 (5)	ZUMA-5 (7)	ELARA (26)
Clinicaltrials.gov Identifier Number	NCT02348216	NCT02445248	NCT02631044	NCT03391466	NCT03570892	NCT03575351	NCT03761056	NCT02601313	NCT03105336	NCT03568461
Patient Population	r/r dlbcl, r/ r PMBCL, r/ r tfl	r/r dlbcl, r/ r hgbl, r/ r tfl	R/R DLBCL, R/ R tNHL, R/R FL Gr 3, R/R HGBL, R/ R PMBCL	R/R DLBCL, R/R PMBCL, R/R tFL	R/R DLBCL, R/ R HGBL, R/ R tFL	R/R DLBCL, R/R tNHL, R/R FL Gr 3, R/R HGBL, R/ R PMBCL	High-risk DLBCL, HGBL	R/R MCL	R/R FL	R/R FL
Number of patients	105	111	269	170 in axi-cel arm	162 in tisa- cel arm	92 in liso-cel arm	40	68	148	97
Median duration of follow-up	15 months	14 months	12.3 months	24.9 months	10 months	6 months	15.9 months	17.5 months	17.5 months	16.6 months
Overall infection										
- Any Grades	38%	34% (<8 wks), 39% (>8 wks)	NR	41%	NR	NR	33%	56%	NR	18.6% (8 wks)
- Grade ≥3	28%	20% (<8 wks), 18% (>8 wks)	12% (5% after day 90)	14%	NR (Grade 5 3.1%)	15%	19%	32% (Grade 5 in 2 pts)	18%	5.2% (8 wks)
Bacterial infection	Any Grades 40%	NR	Grade≥3 10%	NR	NR (3 pts died from bacterial sepsis)	NR	Grade ≥ 3 5%	NR	NR	NR
Viral infection	Any Grades 10%	NR	Grade≥3 1%	NR (1 pt had hepatitis B reactivation, 3 pts had COVID-19 pneumonia (Grade ≥ 3)	NR (2 pts died from COVID- 19 pneumonia)	NR	Grade ≥ 3 2%	NR CMV 2% HZV 4% Influenza 4%	NR	NR
Fungal infection	Any Grades 6%	NR	Grade≥3 1%	NR	NR	NR	Grade ≥ 3 1%	NR	NR	NR

R/R relapse/refractory, DLBCL diffuse large B cell lymphoma, PMBCL primary mediastinal B cell lymphoma, tFL transformed follicular lymphoma, HGBL high grade B cell lymphoma, MCL mantle cell lymphoma, ALL acute lymphoblastic leukemia, NR not reported, CMV cytomegalovirus, HZV Herpes Zoster virus, pt patient.

Table 1. Early, prolonged and late grade 3-4 cytopenias following CAR T-cell therapy as reported in registry studies and real-world data

	Early (<30 d from infusion)	Prolonged (30-90 d from infusion)	Late (>90 d from infusion)
CD19-directed CAR T-cells, pediatrics			
ELIANA ¹²	Neutropenia: 53%		Neutropenia: 34%
	Thrombocytopenia: 41%		Thrombocytopenia: 27%
CD19-directed CAR T-cells, adults			
ZUMA-1 ^{13,14}	Neutropenia: 78%		Neutropenia: 11%
	Thrombocytopenia: 38%		Thrombocytopenia: 7%
	Anemia: 43%		Anemia: 3%
JULIET ¹⁵	Neutropenia: 33%	Neutropenia: 24%	Grade 3-4 neutropenia: 0%
	Thrombocytopenia: 28%	Thrombocytopenia: 41%	Thrombocytopenia: 38%
	Anemia: 39%		
TRANSCEND ¹⁶	Neutropenia: 60%		Neutropenia: 7%
	Thrombocytopenia: 27%		Thrombocytopenia: 22%
	Anemia: 37%		Anemia: 2%
ZUMA-217	Neutropenia: 85%		Neutropenia: 16%
	Thrombocytopenia: 51%		Thrombocytopenia:16%
	Anemia: 50%		Anemia: 12%
ZUMA-3 ¹⁸	Neutropenia: 27%	Neutropenia: 25%	
	Thrombocytopenia: 30%	Thrombocytopenia: 18%	
	Anemia: 49%	Anemia: 7%	
ZUMA-5 ¹⁹	Neutropenia: 33%		
	Thrombocytopenia: 15%		
	Anemia: 25%		

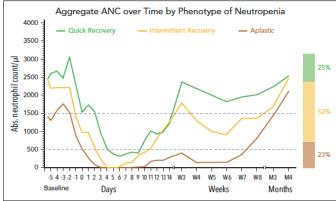
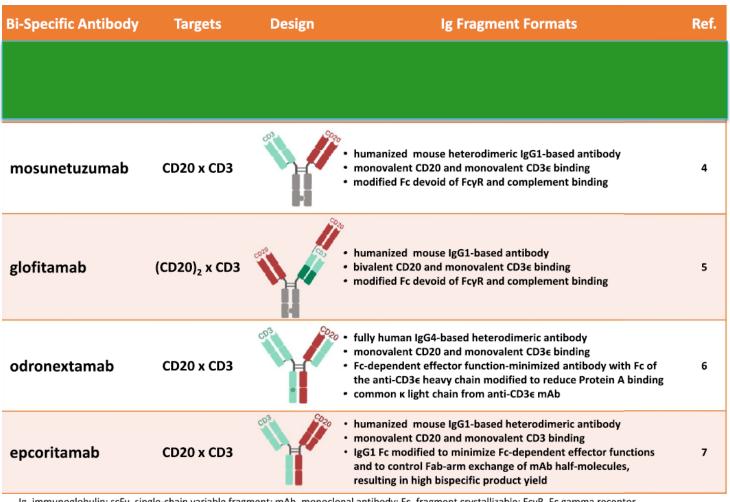


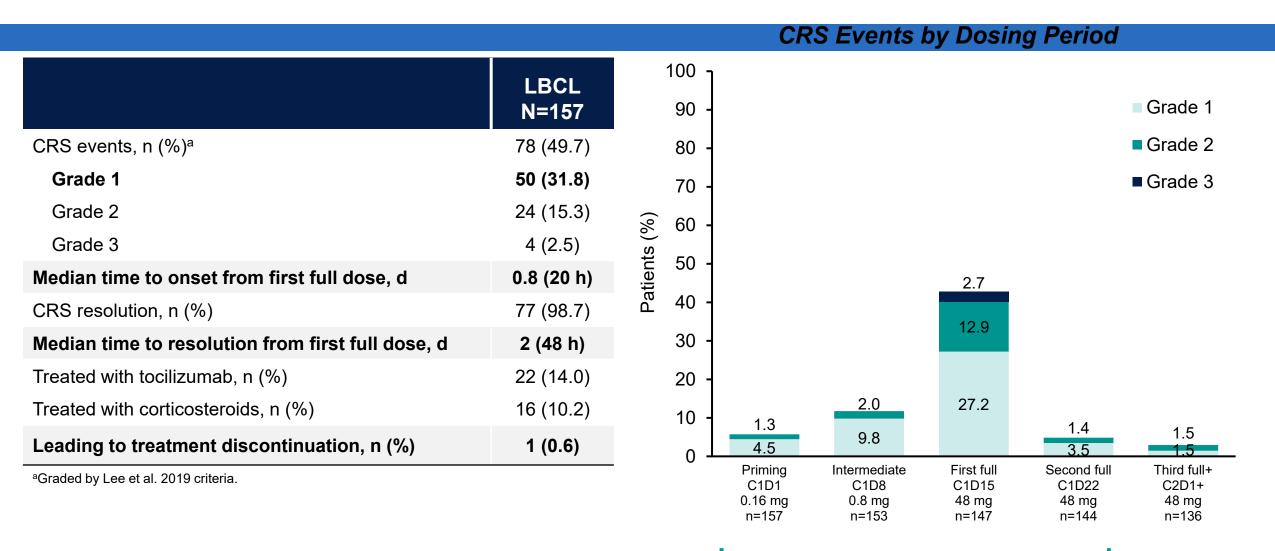
Figure 2. Patterns of neutrophil recovery in lymphoma patients treated with CAR T-cell therapy. Reproduced from Rejeski et al.²⁷


Locke et al. 2023

So what can you do for these issues???

- Infectious complications
 - Prophylaxis including anti-fungal during the initial period when counts expected to be low.
 - Prolongation of anti-viral therapy during 1st year
 - Monitoring IgG levels and replace for values < 400
- Cytopenias
 - Transfusions prn for thrombocytopenia/anemia
 - GCSF
 - Rare data on stem cell boost (if stem cells are available)

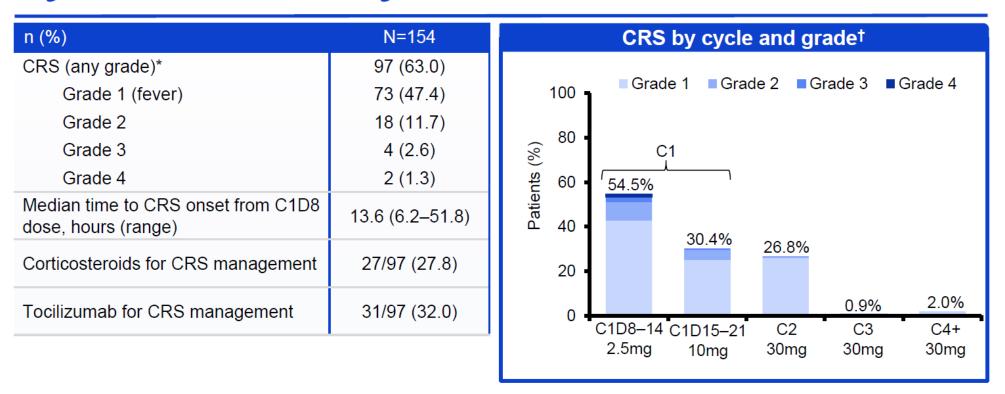
Bispecifics



lg, immunoglobulin; scFv, single-chain variable fragment; mAb, monoclonal antibody; Fc, fragment crystallizable; FcγR, Fc gamma receptor

¹Dufner V, et al. Blood Adv (2019) 3:2491; ²Goebeler ME, et al. J Clin Oncol (2016) 34:1104; ³Viardot et al. Blood (2016) 127(11):1410; ⁴Schuster SJ, et al. ASH 2019, Plenary Abstract 6; ⁵Hutchings M, et al. ASH 2020, Abstract 403; ⁶Bannerji R, et al. ASH 2020, Abstract 400; ⁷Hutchings M, et al. ASH 2020, Abstract 406

SC Administration and Step-up Dosing May Mitigate CRS (LBCL)



Cycle 1

CRS (LBCL)

Cytokine release syndrome

CRS was mostly low grade, time of onset was predictable, and most events occurred during C1

Mosunetuzumab Safety (FL)

Safety profile

N=90
100% 92%
70% 51%
47% 33%
2%* 0
4% [†] 2%

CRS summary

CRS by ASTCT criteria ¹	N=90	CRS by cycle and grade						
CRS (any grade) Grade 1 Grade 2 Grade 3 Grade 4	44% 26% 17% 1% 1%		50 40 -	Grade 1	Grade 2 C1	Grade	3 ∎Gra	ade 4
Median time to CRS onset, hours (range) C1D1 C1D15	5.2 (1.2–24) 27 (0.1–391)		20 -	23%				
Median CRS duration, days (range)	3 (1–29)	<u>،</u>	_				10%	
Corticosteroids for CRS management	11%		10 -		6%			2%
Tocilizumab for CRS management	8%		0					
Events resolved	100%	Mosunetu	izumab dose		C1D8–14 (2mg	C1D15–21 60mg	C2 60mg	C3+ 30mg

CRS was predominantly low grade and during Cycle 1 All CRS events resolved; no new events were reported with 10 months of additional follow-up

C1 Optimization Reduced Risk and Severity of CRS

	Pivotal Cohort N=128	C1 Optimization Cohort ^a N=50
CRS, n (%) ^b	85 (66)	24 (48)
Grade 1	51 (40)	20 (40)
Grade 2	32 (25)	4 (8)
Grade 3	2 (2)	0
Treated with tocilizumab, n/n (%)	31/85 (36)	6/24 (25)
Leading to epcoritamab discontinuation, n (%)	0	0
CRS resolution, n/n (%)	85/85 (100)	24/24 (100)
Median time to resolution, d (range)	2 (1–54)	3 (1–14)

- · Patient baseline characteristics were consistent between cohorts
- C1 optimization substantially reduced rate and severity of CRS
- In both cohorts, CRS was mostly confined to C1
- Similar response rates were observed in the C1 optimization cohort
- There were no cases of ICANS in the C1 optimization cohort; 8 cases were observed in the pivotal cohort (all grade 1–2 and resolved; none led to discontinuation)

^aData cutoff: September 21, 2023. Median follow-up: 3.8 mo (range, 1.9–8.7). ^bGraded by Lee et al 2019 criteria.¹ **1.** Lee DW, et al. *Biol Blood Marrow Transplant*. 2019;25:625-38.

11

Linton et al. ASH 2023

Cytokine Release Syndrome

Cytokine release syndrome*

n (%) of patients with ≥1 AE unless stated	Glofitamab SUD + 1000mg Gpt (n=16)	Glofitamab SUD + 2000mg Gpt (n=21)	All patients (N=37)	CRS by cycle, grade and regimen		nd regimen
Any CRS	14 (87.5)	14 (66.7)	(N=57) 28 (75.7)		Glofitamab SUD + 1000mg Gpt	Glofitamab SUD + 2000mg Gpt
Grade 1	4 (25.0)	7 (33.0)	11 (29.7)	C1D8–14 2.5mg	66.8	45.0
Grade 2	6 (37.5)	5 (23.8)	11 (29.7)	C1D15–21 10mg	40.0	30.0
Grade 3	2 (12.5)	2 (9.5)	4 (10.8)	C2 30mg	13.3	26.3
Grade 4	2 (12.5)	0 (0.0)	2 (5.4)	, i i i i i i i i i i i i i i i i i i i		
Serious AE of CRS (any grade)	10 (62.5)	5 (23.8)	15 (40.5)	C3 30mg		5.3
Median time to CRS onset, hours (range)	7.55 (4.4–14.0)	9.77 (5.0–20.8)	9.31 (4.4–20.8)	C4+30mg 		5.3
Tocilizumab for CRS management	11 (68.8)	6 (28.6)	17 (45.9)	100 0 10 Patients (%)		
Corticosteroid for CRS management	8 (50.0)	6 (28.6)	14 (37.8)	Grade 1	Grade 2 G	rade 3 ■ Grade 4

Higher Gpt (2000mg) was associated with a lower rate of CRS, with no Grade 4 events reported in this group

CRS with	
Glofitamah in	N=154
CRS (any grade)*	97 (63.0)
Grade 1 (tever)	73 (47.4)
Grade 2	18 (11.7)
Grade 3	4 (2.6)
Grade 4	2 (1.3)
Median time to CRS onset from C1D8 dose, hours (range)	13.6 (6.2–51.8)
Corticosteroids for CRS management	27/97 (27.8)
Tocilizumab for CRS management	31/97 (32.0)

*By American Society for Transplantation and Cellular Therapy (ASTCT) criteria.1

1. Lee et al. Biol Blood Marrow Transplant 2019.

Study design: Phase II dose expansion

Study design: Phase II dose expansion

Key inclusion criteria	Objectives				
 R/R MCL ECOG PS 0–2 ≥2 prior therapies (including an anti-CD20 antibody, anthracycline or bendamustine therapy, and BTKi) 	 Primary: efficacy of mosun-pola (best ORR¹ by IRC) Secondary: efficacy by INV, durability of response, and safety 				
Mosun-pola fixed duration administration (NCT03671018)					
 SC administered in 21-day cycles with step-up dosing in Cycle (C) 1; total of 17 cycles Pola 1.8mg/kg IV on Day [D],1 of C1–6 No mandatory hospitalization All patients received corticosteroid 	D8 D15 D1 D1 D1 45mg 45mg 45mg 45mg 45mg Pola Pola Pola C1 C2 C3–C6 C7–C17 -day cycles				

*From C2 and beyond, premedication was optional for patients who did not experience CRS in the previous cycle; corticosteroid premedication consisted of 20mg of dexamethasone or 80mg of methylprednisolone, either IV or orally.

1. Cheson BD, et al. J Clin Oncol 2014;32:3059-68.

*From C

CRS summary

CRS by ASTCT criteria ¹	N=20	CRS by cycle and grade			
Any grade, n (%) Grade 1 Grade 2* Grade 3+	9 (45) 8 (40) 1 (5) 0	50 40 - 40%	■ Grade 1 ■ Grade 2		
Median time to first CRS onset relative to last dose, days (range)	1 (0–2)	Patients (%) 0 - 05 (%)			
Median CRS duration, days (range)	3 (1–9)	- 02 Datio	5%		
CRS management, n (%) Corticosteroids Tocilizumab Low-flow oxygen	1 (5) 1 (5) 1 (5)	0 C1D1–7 Mosunetuzumab 5mg dose	C1D8–14 C1D15–21 45mg 45mg		

All CRS events were low grade and resolved within C1

Clinical cut-off date: July 6, 2023. *This patient experienced Grade 2 fever, confusion, and hypoxia on D3; management included tocilizumab, low-flow oxygen, acetaminophen, and broad-spectrum antibiotics. ASTCT, American Society for Transplantation and Cellular Therapy

Late Complications

- Infections are a risk with bispecifics but not to the degree or severity as compared to CAR-T. During SUD prophylaxis is recommended as well as during concurrent steroid use.
 - Thereafter no overt need for prophy (PJP) but consideration for continuation of HSV prophy can be given due to B cell depletion and hypogammaglobulinemia.
 - Most common infections overall are viral and likely could be avoided with careful monitoring and replacement of IgG

Integration into the community

- Major issues remain CRS during SUD
 - Companies have looked at methods to reduce incidence for FL and LBCL but overall most events are grade 1.....so doesn't require hospitalization or use of toci.
 - Issue remains in identifying which patients will and won't experience CRS as well as labels suggesting hospitalization during SUD
 - Good news is for both epco and glofit outpatient studies are ongoing
 - Hopefully will remove this wording from label
 - For smalled community settings the first step is being comfortable with giving drugs and having mechanisms in place to manage rare complication
 - Alternative is partnering with larger center for SUD then resuming care for remainder.....unicorn to get late complications.

Conclusions

- CAR-T approved in both 2L+ (primary refractory) and 3L+ DLBCL
 - Provides another curative option for patients
 - Recent data indicates that in 2L setting CAR-T has an OS benefit
- FL with two agents approved for R/R patients
 - Responses durable but cure unlikely to be proved in near future
- MCL more difficult space given increased AE and no hint that treatment is curative.
 - Liso-cel with potential to provide response with improved AE profile as compared to brexu-cel

Lymphoma Center at COH

- Steve Rosen MD
- Larry Kwak MD PhD
- Jasmine Zain MD
- Alex Herrera MD
- Tanya Siddiqi MD
- Matt Mei MD
- Elizabeth Budde MD, PhD
- Lili Wang PhD
- Vu Ngo PhD
- Joo Song MD
- LEUKEMIA & LYMPHOMA SOCIETY®

- Geoff Shouse MD
- James Godfrey MD
- John Baird MD
- Swetha Kambhampati MD
- Niloufer Khan MD
- Avy Kallam MD
- Lu Chen PhD
- Alexey Danilov MD, PhD
- Leslie Popplewell MD
- CRNs and CRCs

Questions

