
Current and Emerging Therapies Acute Myeloid Leukemias and Myelodysplastic Syndromes

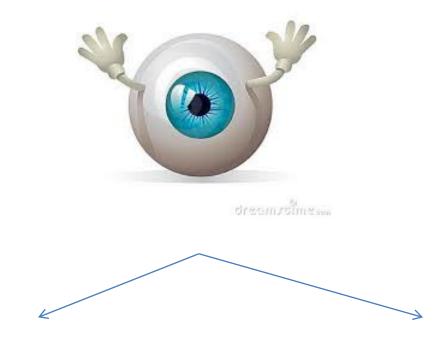
Rami Komrokji, MD

Senior Member and Professor of Oncologic Sciences Vice Chair-Malignant Hematology Department Moffitt Cancer Center

Acute Myeloid Leukemia

. American Society of Clinical Oncology. http://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics. Accessed July 23, 2019

Diagnosis and work up for AML


Tests to establish the diagnosis	
Complete blood count and differential count ^a	
Bone marrow aspirate ^b	
Bone marrow trephine biopsy	
Immunophenotyping by flow cytometry (see Table 5)	
Genetic analyses	Results preferably available within
Cytogenetics ^d Screening for gene mutations required for establishing the diagnosis and to identify actionable therapeutic targets ^e • <i>FLT3</i> , [†] <i>IDH1</i> , <i>IDH2</i> • <i>NPM1</i> • <i>CEBPA</i> , ^g <i>DDX41</i> , <i>TP53</i> ; <i>ASXL1</i> , <i>BCOR</i> , <i>EZH2</i> , <i>RUNX1</i> , <i>SF3B1</i> , <i>SRSF2</i> , <i>STAG2</i> , <i>U2AF1</i> , <i>ZRSR2</i>	 5-7 days 3-5 days 3-5 days 1st cycle
 Screening for gene rearrangements" PML::RARA, CBFB::MYH11, RUNX1::RUNX1T1, KMT2A rearrangements, BCR::ABL1, other fusion genes (if available) 	• 3-5 days
Additional genes recommended to test at diagnosis	
 ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history 	2, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history [×]	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history [×]	?, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹ Analysis of comorbidities Additional tests and procedures	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹ Analysis of comorbidities	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹ Analysis of comorbidities Additional tests and procedures Complete physical examination ^m Performance status (ECOG/WHO score)	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹ Analysis of comorbidities Additional tests and procedures Complete physical examination ^m	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹ Analysis of comorbidities Additional tests and procedures Complete physical examination ^m Performance status (ECOG/WHO score) Geriatric assessment ⁿ (optional)	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ⁸ Patient bleeding history ¹ Analysis of comorbidities Additional tests and procedures Complete physical examination ^m Performance status (ECOG/WHO score) Geriatric assessment ⁿ (optional) Biochemistry, coagulation tests ^o	P, KIT, KRAS, NRAS
ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history ¹ Detailed family history ^K Patient bleeding history ¹ Analysis of comorbidities Additional tests and procedures Complete physical examination ^m Performance status (ECOG/WHO score) Geriatric assessment ⁿ (optional) Biochemistry, coagulation tests ^o Hepatitis A, B, C; HIV-1 testing; CMV, EBV, HSV, VZV	2, KIT, KRAS, NRAS
 ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history¹ Detailed family history^k Patient bleeding history¹ Analysis of comorbidities Additional tests and procedures Complete physical examination^m Performance status (ECOG/WHO score) Geriatric assessmentⁿ (optional) Biochemistry, coagulation tests^o Hepatitis A, B, C; HIV-1 testing; CMV, EBV, HSV, VZV Serum pregnancy test^o 	
 ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history¹ Detailed family history⁸ Patient bleeding history¹ Analysis of comorbidities Additional tests and procedures Complete physical examination^m Performance status (ECOG/WHO score) Geriatric assessmentⁿ (optional) Biochemistry, coagulation tests^o Hepatitis A, B, C; HIV-1 testing; CMV, EBV, HSV, VZV Serum pregnancy test^o Eligibility assessment for allogeneic HCT (incl. HLA-typing)^q 	
 ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history¹ Detailed family history⁸ Patient bleeding history¹ Analysis of comorbidities Additional tests and procedures Complete physical examination^m Performance status (ECOG/WHO score) Geriatric assessmentⁿ (optional) Biochemistry, coagulation tests^o Hepatitis A, B, C; HIV-1 testing; CMV, EBV, HSV, VZV Serum pregnancy test^o Eligibility assessment for allogeneic HCT (incl. HLA-typing)^q Chest x-ray, 12-lead electrocardiogram, echocardiography or MUGA (on indication 	
 ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2 NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1 Medical history Demographics and medical history¹ Detailed family history^k Patient bleeding history¹ Analysis of comorbidities Additional tests and procedures Complete physical examination^m Performance status (ECOG/WHO score) Geriatric assessmentⁿ (optional) Biochemistry, coagulation tests^o Hepatitis A, B, C; HIV-1 testing; CMV, EBV, HSV, VZV Serum pregnancy test^o Eligibility assessment for allogeneic HCT (incl. HLA-typing)^q Chest x-ray, 12-lead electrocardiogram, echocardiography or MUGA (on indication Computed tomography of the chest (on indication)^r 	

- Assure diagnosis.
- Obtain all information for risk stratification.
- Tailor treatment and baseline testing prior to treatment.
- AML treatment is not Emergency in most of cases.

AML Risk Stratification by Cytogenetics and Molecular Abnormalities (ELN 2022 Recommendations)

Risk Category ^b	Genetic Abnormality
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1^{b,c} inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11^{b,c} Mutated NPM1^{b,d} without FLT3-ITD bZIP in-frame mutated CEBPA^e
Intermediate	 Mutated NPM1^{b,d} with FLT3-ITD Wild-type NPM1 with FLT3-ITD t(9;11)(p21.3;q23.3)/MLLT3::KMT2A^{b,f} Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse	 t(6;9)(p23;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged⁹ t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11;p13)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,^h monosomal karyotypeⁱ Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2ⁱ Mutated TP53^k

Therapeutic Decision Making 2024

Induction Chemotherapy

Non induction treatment

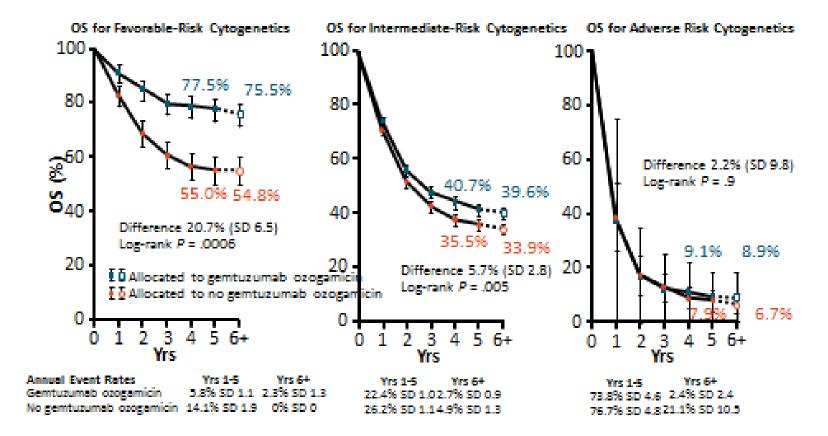
Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

Good risk AML	FLt-3 MT AML	Intermediate/poor risk
Induction: 3+7+GO	Induction: 3+7 + Midostaurin	Induction: 3+7
Consolidation: HiDAC/IDAC+/-GO	Consolidation : Allo-SCT	Consolidation: allo SCT
	Maintenance post allo SCT: Sorafenib	Maintenance: oral azacitidine if no transplant

MT: mutation GO: Gemtuzumab Ozogamicin Allo-SCT: allogeneic stem cell transplant HiDAC: high dose cytarabine IDAC: intermediate dose cytarabine


Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

Who is eligible?

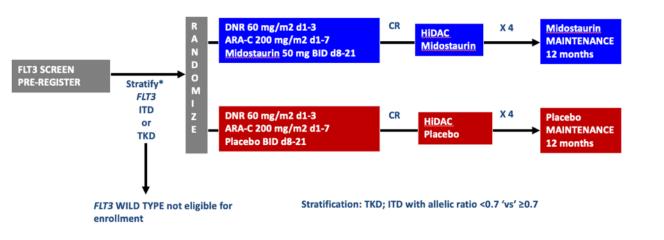
- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

Good risk AML	FLt-3 MT AML	Intermediate/poor risk
Induction: 3+7+GO	Induction: 3+7 + Midostaurin	Induction: 3+7
Consolidation: HiDAC/IDAC+/-GO	Consolidation : Allo-SCT	Consolidation: allo SCT
	Maintenance post allo SCT: Sorafenib	Maintenance: oral azacitidine if no transplant

Addition of Gemtuzumab Ozogamicin to Induction Therapy: Meta-analysis of 5 Randomized Trials

Hills RK, et al. Lancet Oncol. 2014;15:986-996.

Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

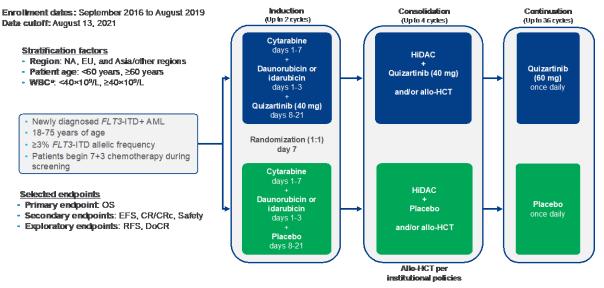

Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

Good risk AML	FLt-3 MT AML	Intermediate/poor risk
Induction: 3+7+GO	Induction: 3+7 + FLT3i	Induction: 3+7
Consolidation: HiDAC/IDAC+/-GO	Consolidation : Allo-SCT	Consolidation: allo SCT
	Maintenance post allo SCT: FLT3i	Maintenance: oral azacitidine if no transplant

Comparing Ratify and Quantum-First: design/eligibility

RATIFY/C10603

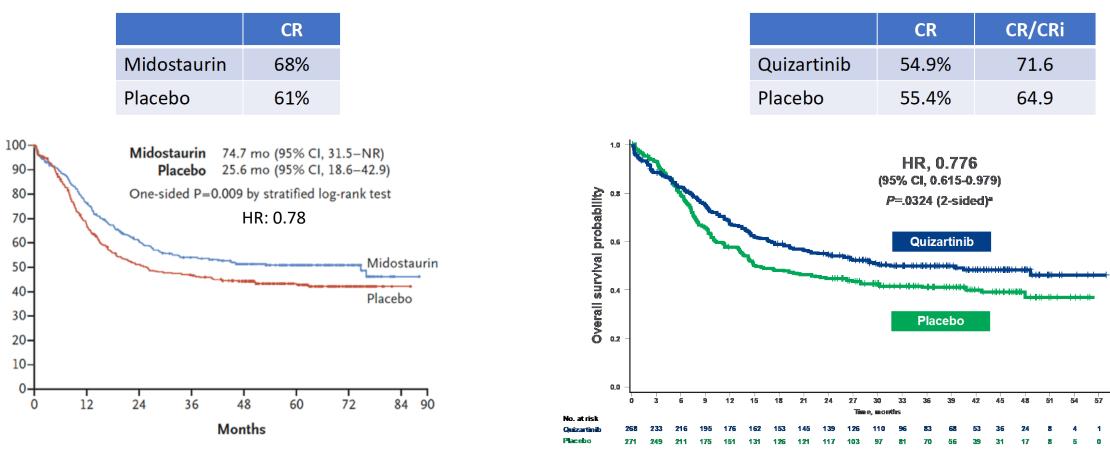


Primary endpoint: OS

- 3277 patients were screened, 717 were randomized (555 with FLT3-ITD)
- FLT3-ITD and TKD mutations
- Median age 48 years (range 18-60.9)
- Median follow-up 59 months
- HSCT was an off-protocol therapy
- maintenance given post-consolidation only
- MRD not collected

.

QuANTUM-First



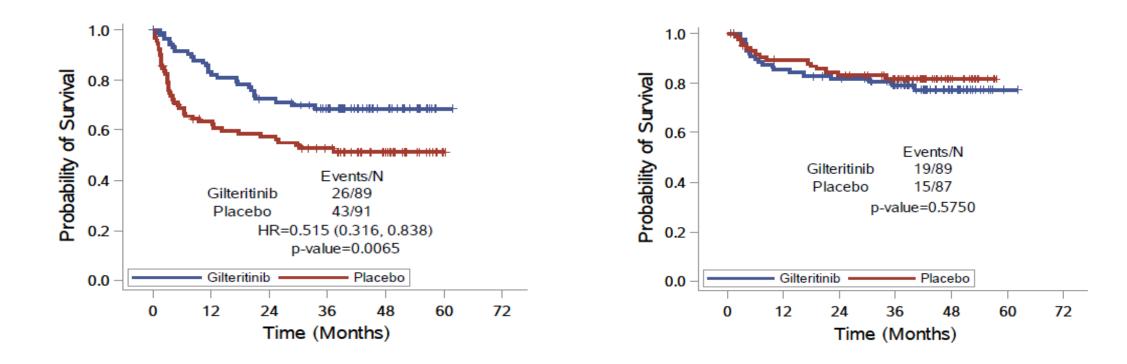
Primary endpoint: OS

- 3468 patients were screened, and 539 with FLT3-ITD were randomized
- FLT3 ITD only.
- Median follow-up 39 months
- Median age 56 (range 20-75)
- HSCT allowed on study
- maintenance given both post-HSCT and post-consolidation
- prospective monitoring of MRD

Stone RM, et al. *N Engl J Med.* 2017 Aug 3;377(5):454-464 Erba HP, et al. *Lancet.* 2023 May 13;401(10388):1571-1583

Response and survival

• 60-day mortality: not reported


Probability of Survival (%)

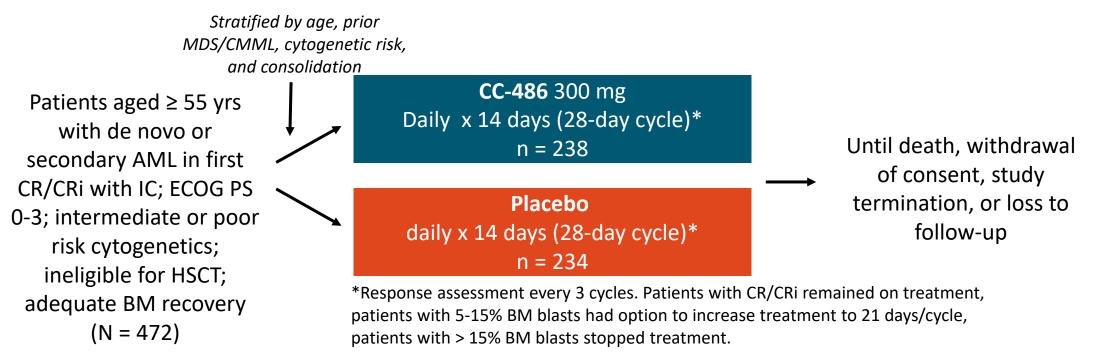
- 60-day mortality: quizartinib 7.5%, placebo 4.9% (mostly infections)
- ANC recovery was 7 days longer in quiz arm; platelets 2 days longer in quiz arm
- any grade QT prolongation: quizartinib 13.6%, placebo 4.1%
- 2 cases of cardiac arrest or VT in quiz arm (none in placebo)

Stone RM, et al. *N Engl J Med*. 2017 Aug 3;377(5):454-464 Erba HP, et al. *Lancet*. 2023 May 13;401(10388):1571-1583

Effect of detectable MRD6 on RFS by study arm

Levis MJ, et al. EHA 2023 LBA LB2711

Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

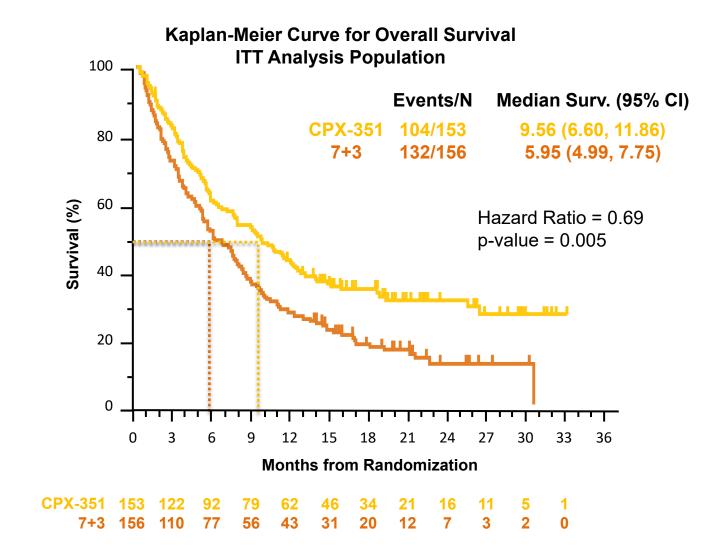

Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

Good risk AML	FLt-3 MT AML	Intermediate/poor risk
Induction: 3+7+GO	Induction: 3+7 + Midostaurin	Induction: 3+7
Consolidation: HiDAC/IDAC+/-GO	Consolidation : Allo-SCT	Consolidation: allo SCT
	Maintenance post allo SCT: Sorafenib	Maintenance: oral azacitidine if no transplant

Phase III QUAZAR AML-001: CC-486 as Maintenance Therapy in First-Remission AML—Study Design

Multicenter, randomized, placebo-controlled, double-blind, phase III study


- Primary endpoint: overall survival
- Key secondary endpoints: relapse-free survival, health-related QoL, and safety

QUAZAR AML-001: Survival

Outcome	CC-486 n = 238	Placebo n = 234		
Median OS, mos (95% CI)	24.7 (18.7-30.5)	14.8 (11.7-17.6)		
 Stratified P value 	.0009			
 Stratified HR (95% CI) 	0.69 (0.55-0.86)			
1-yr survival rate, % (95% CI)	73 (67-78)	56 (49-62)		
2-yr survival rate, % (95% CI)	51 (44-57)	37 (31-43)		
Relapse-free survival, mos (95% CI)	10.2 (7.9-12.9)	4.8 (4.6-6.4)		
 Stratified P value).	0001		
 Stratified HR (95% CI) 	0.65 (0	0.52-0.81)		

- Median follow up: 41.2 months
- 1-yr relapse rate was 53% (95% CI: 46-59) in CC-486 arm vs 71% (95% CI: 65-77) in placebo arm

CPX-351 Improves Overall Survival in secondary AML

Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

Who is ineligible?

1. P53 MT AML

2. Age > 75

3. Major comorbidities

4. frail

Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

Azactidine+Flt-3 inhibitor

P53 MT AML Clinical trials APR-246 Magrolimab

Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

Who is ineligible?

1. P53 MT AML

2. Age > 75

3. Major comorbidities

4. frail

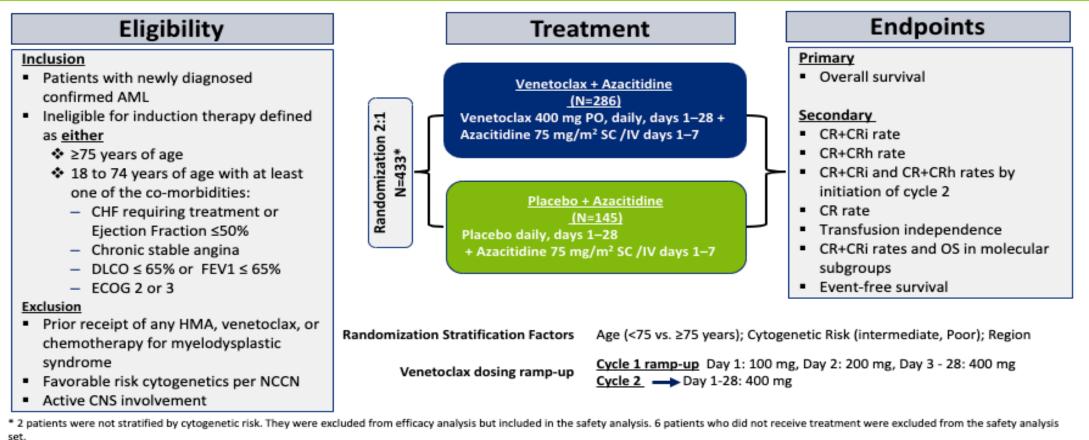
Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

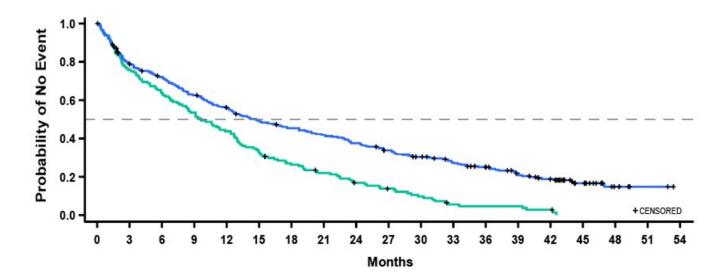

Azactidine+Flt-3 inhibitor

P53 MT AML Clinical trials APR-246 Magrolimab

Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia

VIALE-A Study Design

(NCT02993523)

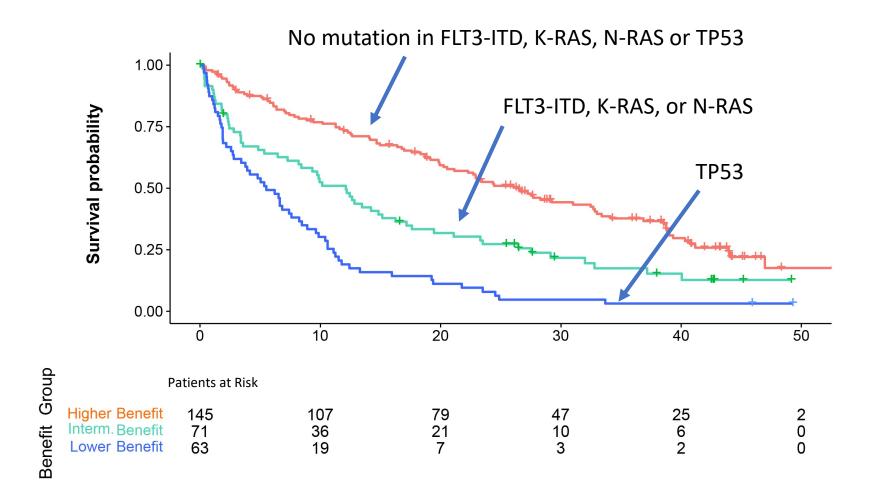


AML: Acute myeloid leukemia; CHF: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CRi: CR+ incomplete marrow remission; CRi: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1 : Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network

CD DiNardo et al. N Engl J Med 2020;383:617-629.

4

Longer term follow up of VIALE-A


	No. of events/No. of patients (%)	OS (months) median (95% CI)				
Ven+Aza	222/286 (77.6)	14.7 (12.1 - 18.7)				
Pbo+Aza	138/145 (95.2)	9.6 (7.4 - 12.7)				
Hazard ratio: 0.58 (95% Cl, 0.465 - 0.723), P < 0.001						
HR reduction from 0.66 (95% CI, 0.52 - 0.85) at 75% OS analysis						

Patients at Risk

Ven+Aza	286	220	199	173	153	133	122	113	101	89	78	67	57	45	34	18	6	2	0
Pbo+Aza	145	109	92	77	63	47	37	30	22	17	12	6	5	5	3	0	0	0	0

Pratz KW, et al. ASH 2022 #219

Lower intensity induction—predictors of benefit to VEN-AZA

Pratz KW, et al. ASH 2022 #219

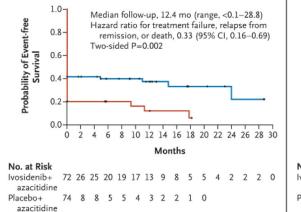
AGILE study: Azacitidine + Ivosidenib/Placebo

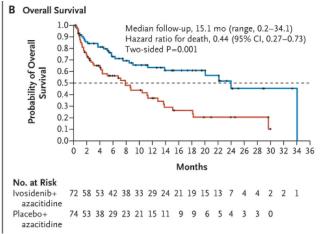
lvosidenib +

Azacitidine

Placebo +

Azacitidine

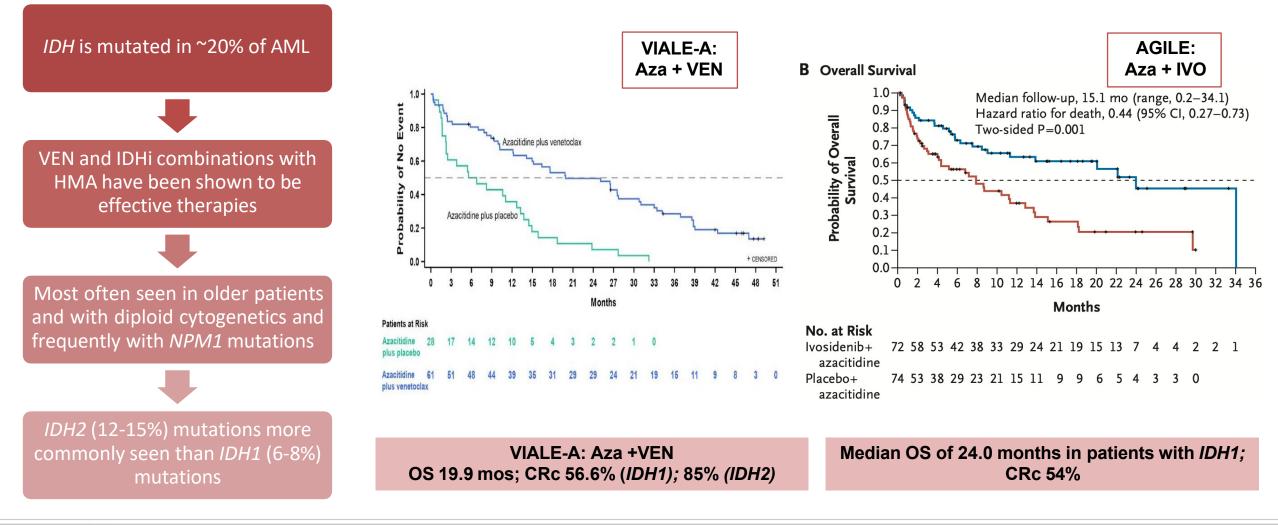

Key Eligibility


- Newly diagnosed AML with an *IDH1* mutation ineligible for intensive IC
- Aged ≥75 years
- ECOG PS 0-2

Stratification

 Stratified according to geographic region and disease status (primary vs secondary AML)

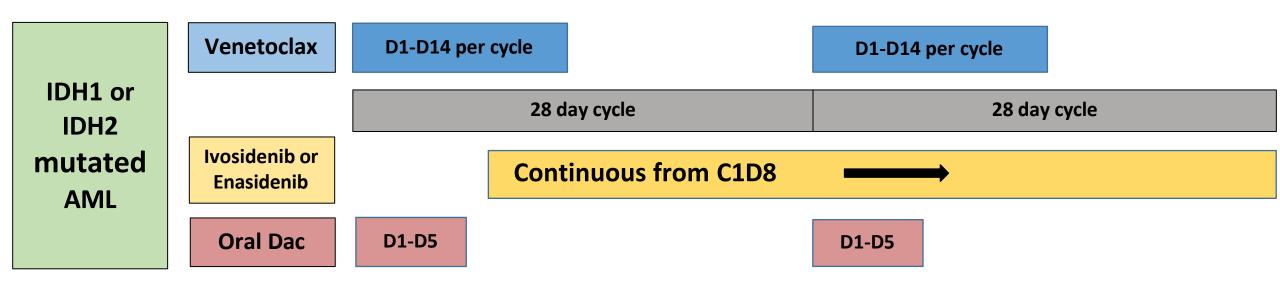
A Event-free Survival


N=72

N=74

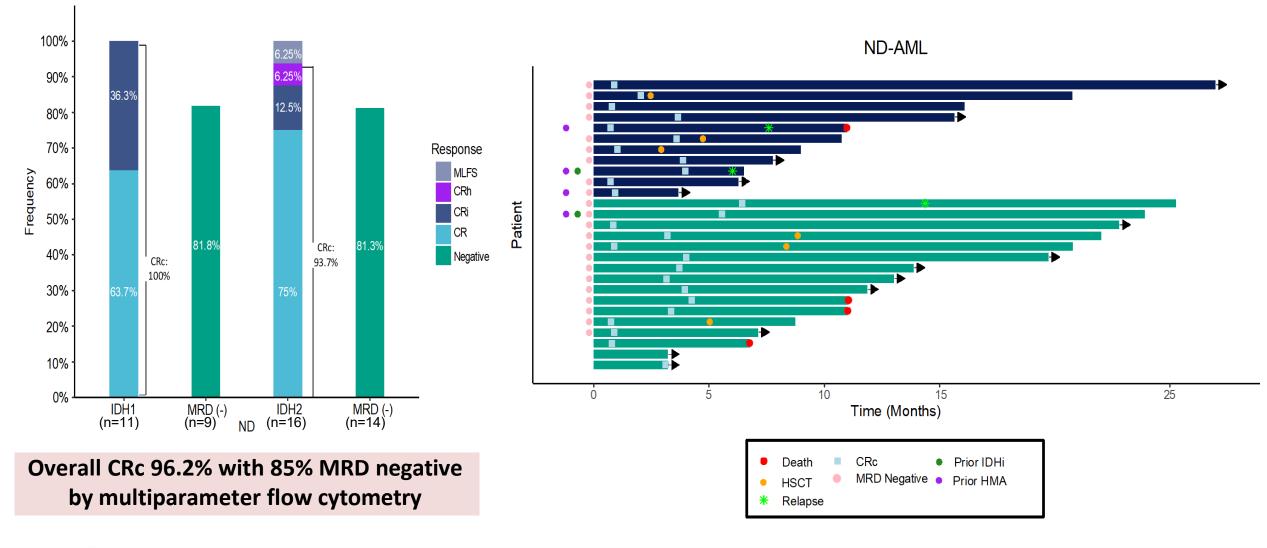
	lvosidenib + azacitidine	Azacitidine + placebo (control)	HR for death
Median OS (months)	24 months	7.9 months	0.44 (95% CI, 0.27- 0.73); <i>P</i> =0.001
Median EFS (at median follow-up of 12.4 months)	37%	12%	0.33 (95% CI, 0.16- 0.69); <i>P=</i> 0.002
CR	47%	15%	-

Montesinos P, et al. N Engl J Med. 2022;386(16):1519-1531


Doublet Therapy in IDH Mutated AML

Pratz et al. Blood. Dec 2022 Montesinos et al. NEJM. 2022 DiNardo et al. NEJM 2020

American Society of Hematology


ASTX727 + Venetoclax + IDHi in Newly Diagnosed and Relapsed Refractory IDH mutated AML: ASH 2023 Abstract 968

Selected RP2D Combination Doses					
Arm A: ASTX727 (D1-5) + <u>VEN 600 mg</u> (D1-14) + Ivosidenib 500 mg daily (D8 onwards)					
Arm B: ASTX727 (D1-5) + VEN 400 mg (D1-14) + Enasidenib 100 mg daily (D8 onwards)					

CRc Rates in ND-AML

American Society *of* Hematology

ASTX727 + Venetoclax + IDHi in Newly Diagnosed and Relapsed Refractory IDH mutated AML: ASH 2023 Abstract 968

Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

Who is ineligible?

- 1. P53 MT AML
- 2. Age > 75
- 3. Major comorbidities
- 4. frail

Azacitidine + Venetoclax

FLt-3 MT AML

HMA+ Venetoclax+ Flt3-

P53 MT AML Clinical trials APR-246 Magrolimab

Decitabine, Venetoclax, Quizartinib in FLT3-ITD AML

- 50 pts-10 newly Dx; 40 R-R (prior FLT3i 85%, prior allo SCT 40%)
- DAC 20mg/m²/Dx10→5; QUIZ 30-40mg/D; VENx14→7. Day 14 BM and stop if marrow CR

Parameter	Newly Dx	R-R
% CR-CRi	100	33
		13
Median OS (mos)	NR	7.1
		22

Yilmaz. Blood 142: abst 158; 2023

Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

Who is ineligible?

- 1. P53 MT AML
- 2. Age > 75
- 3. Major comorbidities
- 4. frail

Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

Azactidine+Flt-3 inhibitor


P53 MT AML Clinical trials

Conclusions AML

- Landscape of AML management is changing and improved
- Molecular diagnostic and risk stratification should be standard approach.
- GO addition to intensive chemotherapy (IC) improves overall survival in Good risk AML.
- Flt-3 inhibitors combinations with IC is standard of care for FLT-3 MT AML.
- Maintenance therapy in AML is standard care now in FLT-3 AML after allo-SCT especially if MRD+ and for intermediate and poor risk AML after IC if no allo-SCT.
- Azacitidine and venetoclax combination is the new standard of upfront treatment in AML patients not eligible for IC.
 - Exceptions?: TP53, M5, FLT-3?
- Azacitidine and IDH inhibitors are option for patients with IDH mutations
- Patients with TP53 MT AML should be enrolled on clinical trials.
- CPX-351 is approved by FDA for induction therapy for secondary AML
- MRD assessment and disease status will guide our future tailoring of treatment.

Myelodysplastic Syndromes (MDS)

- A group of malignant hematopoietic neoplasms characterized by¹:
 - Bone marrow failure with resultant cytopenia and related complications
 - Evidence of clonality by cytogenetic abnormalities or somatic gene mutations
 - Dysplastic cytologic morphology is the hallmark of the disease
 - Tendency to progress to AML
- Overall incidence 3.7-4.8/100,000²
 - In US (true estimates ≈37,000-48,000)
- Median age: 70 yrs; incidence: 34-47/100,000 >75 yrs³

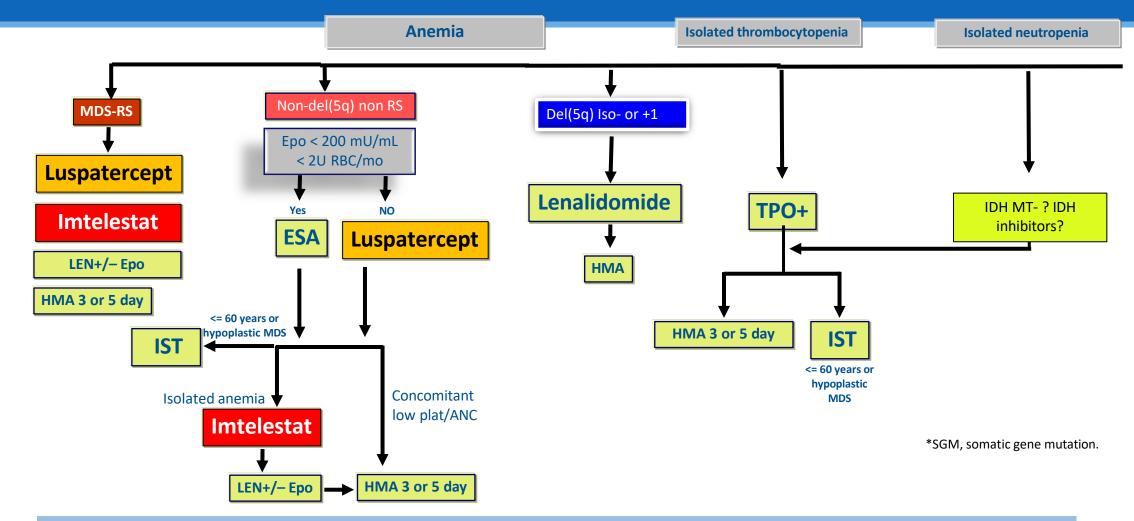
1. Bennett J et al. *Clinical Oncology*. New York, NY: Churchill Livingstone; 2004:2849-2881; 2. SEER data. 2000-2009. 3. SEER 18 data. 2000-2009.

Similarities and Differences: WHO and ICC 2022 for MDS

Genetically Defined Subgroups	SF3B1	No specific category	MDS- <i>SF3B1</i> : MDS with low blasts (BM <5%, PB <2%) and <i>SF3B1</i> mutation - No del 5q, -7, complex karyotype - No biallelic <i>TP53</i>	 MDS-<i>SF3B1</i>: MDS with low blasts (BM <5%, PB <2%) and <i>SF3B1</i> mutation <i>SF3B1</i> VAF ≥10% No del 5q, -7, inv3/t(3;3), complex karyotype No multi-hit <i>TP53</i> or <i>RUNX1</i> mutations
	Del 5q	MDS with isolated del(5q)	MDS-5q: MDS with low blasts and isolated del 5q or with 1 other cytogenetic abnormality except - 7/del(7)	MDS del(5q): MDS with isolated Del 5q or with 1 other cytogenetic abnormality except -7/del(7)
	<i>TP</i> 53 mutation (supersedes all other MDS categories)	Not included	MDS-bi <i>TP53:</i> MDS with biallelic <i>TP53</i> inactivation - ≥2 <i>TP53</i> mutations, or 1 mutation with evidence of <i>TP53</i> copy number loss or cnLOH	 MDS with mutated <i>TP53</i> MDS/AML with mutated <i>TP53</i> MDS (blast <10%): Criteria same as WHO or, 1 <i>TP53</i> mutation plus complex karyotype MDS/AML (blast 10-19%): Any <i>TP53</i> mutation (VAF ≥10%)
Other genetic Subgroups	MDS-related gene mutations and cytogenetic abnormalities	Not included		MDS/AML with myelodysplasia related gene mutations MDS/AML with myelodysplasia related cytogenetic abnormalities

Arber et al. Blood. 2016; Khoury et al. Leukemia. 2022; Arber et al. Blood. 2022.

Similarities and Differences: WHO and ICC 2022 for MDS


MORPHOLOGY		WHO 2016	WHO 2022	ICC 2022	
Ring Sideroblasts	RS ≥15%	MDS with ring sideroblasts and single lineage dysplasia (MDS-RS-SLD) and multi- lineage dysplasia (MDS-RS- MLD)	MDS with ring sideroblasts (MDS-RS): Low blast, SF3B1 wild-type	No RS specific category	
Number of Dysplastic Lineages	1 vs. >1	MDS with single lineage dysplasia (MDS-SLD) and multi-lineage dysplasia (MDS- MLD)	Dysplastic lineages are removed MDS with low blasts (MDS-LB): <5% BM and <2% PB	MDS, not otherwise specified with single lineage dysplasia (MDS, NOS- SLD) and multi-lineage dysplasia (MDS, NOS-MLD)	
Blasts	5-9%	MDS with excess blasts-1 (MDS-EB1): 5-9% BM blasts	MDS with increased blasts-1 (MDS- IB1): 5-9% BM and/or 2-4% PB blasts	MDS with excess blasts (MDS-EB; 5-9% BM and/or 2-9% PB blasts or Auer rods)	
	10-19%	MDS excess blasts-2 (MDS- EB2): 10-19% BM or PB blasts or Auer rods	MDS with increased blasts-2 (MDS- IB2): 10-19% BM or 5-19% PB blasts or Auer rods	MDS/AML (10-19% BM or PB blasts)	
Added Subgroup	WHO	Not included	MDS, hypoplastic (MDS-h): Hypocellular marrow (age-adjusted)	Not included	
		Not included	MDS with fibrosis (MDS-f): BM blasts 5-19%, PB blasts 2-19%; BM Fibrosis- grade ≥ 2	Not included	
Removed		MDS unclassifiable	Not included	Not included	

Arber et al. Blood. 2016; Khoury et al. Leukemia. 2022; Arber et al. Blood. 2022.

Risk stratification and clinical decisions in MDS – IPSS-M

Diagnosis ¹	Classification ¹	Incidence (%) ¹	Median OS (yrs) ¹	Progression risk (yrs)*,1	Treatment goal ²	Current SoC ²
	Very low (Very low/low)	i 14	10.6	2.8		Transfusion
26 16 26 26 11 16 26 16 26 26 26 11 16 26 16 26 26 11 16	Low (Very low/low/int)	()) 33	6.0	5.1 11.4	Hematologic improvement (lower risk of infection & bleeding)	ESAs Watch & wait
	Moderate low (Low/int)	† 11	4.6			
	Moderate high (Low/int/high)	i i 11	2.8	18.9	Alter disease natural	HMAs/ICT +/- ASCT
	High (Int/high/very high)	14	1.7	29.2	history (higher risk of infection	
AND AND	Very high (High/very high)	17	1.0	42.8	& bleeding)	

How Would I Manage LR-MDS in 2024

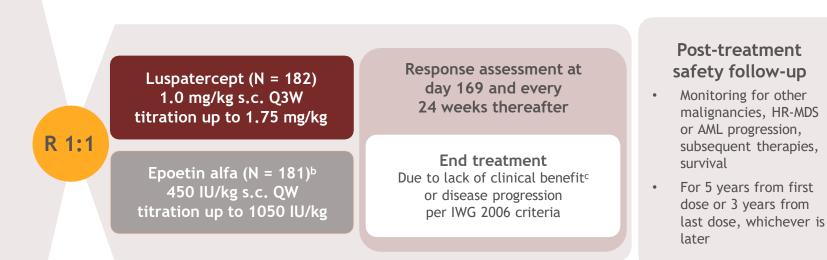
- Allogeneic stem cell transplant maybe considered after standard therapy failure or in younger patients with higher-risk disease features by IPSS-M.
- Iron chelation should be considered in patients with evidence of iron overload.

Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive patients with transfusion-dependent lower-risk myelodysplastic syndromes: full analysis of the COMMANDS trial

Guillermo Garcia-Manero,¹ Uwe Platzbecker,² Valeria Santini,³ Amer M. Zeidan,⁴ Pierre Fenaux,⁵ Rami S. Komrokji,⁶ Jake Shortt,⁷ David Valcarcel,⁸ Anna Jonasova,⁹ Sophie Dimicoli-Salazar,¹⁰ Ing Soo Tiong,¹¹ Chien-Chin Lin,¹² Jiahui Li,¹³ Jennie Zhang,¹³ Ana Carolina Giuseppi,¹³ Sandra Kreitz,¹⁴ Veronika Pozharskaya,¹³ Karen L. Keeperman,¹³ Shelonitda Rose,¹³ Thomas Prebet,¹³ Andrius Degulys,^{15,16} Stefania Paolini,¹⁷ Thomas Cluzeau,¹⁸ Matteo Giovanni Della Porta^{19,20}

¹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany; ³MDS Unit, Hematology, University of Florence, AOUC, Florence, Italy; ⁴Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ⁵Service d'Hématologie Séniors, Hôpital Saint-Louis, Université Paris 7, Paris, France; ⁶Moffitt Cancer Center, Tampa, FL, USA; ⁷Monash University and Monash Health, Melbourne, VIC, Australia; ⁸Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁹Medical Department Hematology, Charles University General University Hospital, Prague, Czech Republic; ¹⁰Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; ¹¹Malignant Haematology & Stem Cell Transplantation, The Alfred, Melbourne, VIC, Australia; ¹²Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹³Bristol Myers Squibb, Princeton, NJ, USA; ¹⁴Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland; ¹⁵Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; ¹⁶Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; ¹⁷IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy; ¹⁸Département d'Hématologie Clinique, Université Cote d'Azur, CHU Nice, Nice, France; ¹⁹Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy; ²⁰Department of Biomedical Sciences, Humanitas University, Milan, Italy

COMMANDS: study design

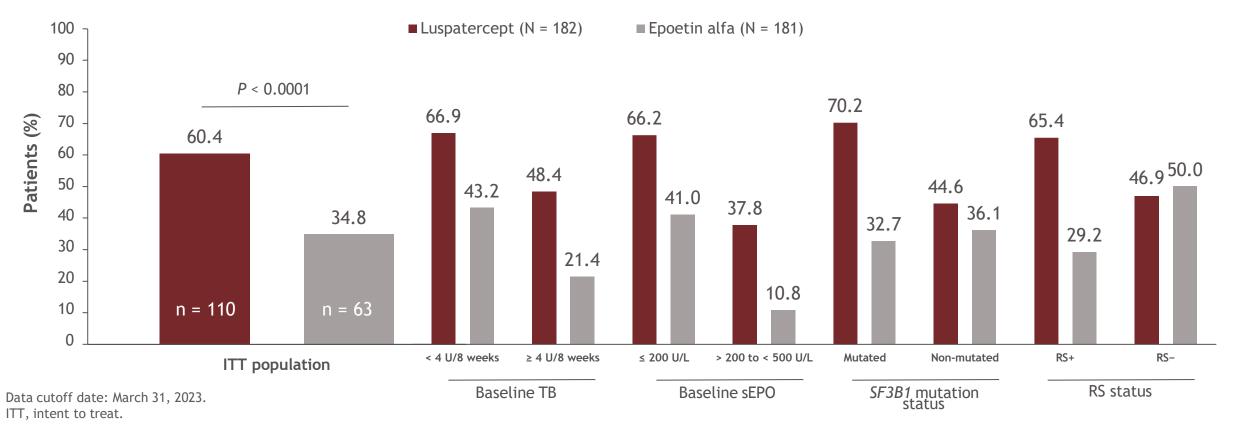

• COMMANDS is a global, phase 3, open-label, randomized controlled trial (NCT03682536)

Key patient eligibility criteria

- \geq 18 years of age
- IPSS-R Very low-, Low-, or Intermediate-risk MDS (with or without RS) by WHO 2016, with
 5% blasts in bone marrow^a
- Required RBC transfusions (2-6 pRBC units/8 weeks for a minimum of 8 weeks immediately prior to randomization)
- Endogenous sEPO < 500 U/L
- ESA-naive

Patients stratified by:

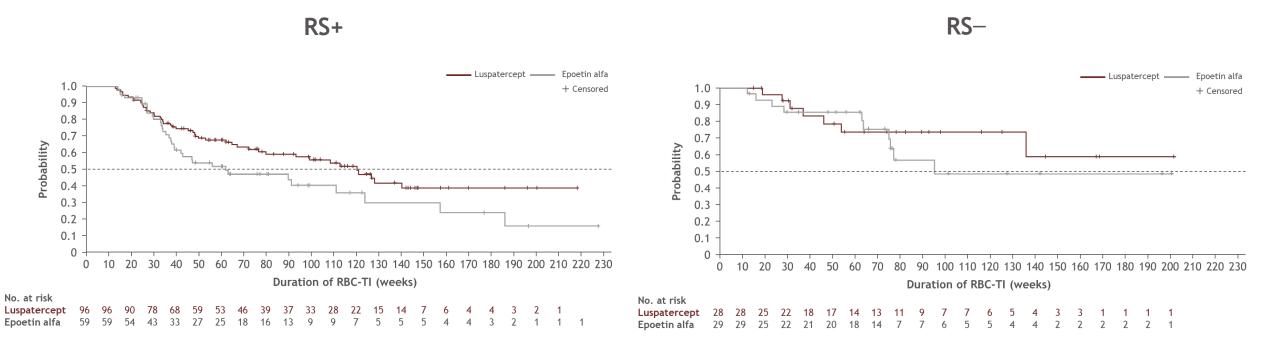
- Baseline RBC transfusion burden
- Baseline sEPO level
- RS status



aMDS patients with del(5q) were excluded; b2 patients randomized to the epoetin alfa arm withdrew consent prior to receiving their first dose; Clinical benefit defined as transfusion reduction of \geq 2 pRBC units/8 weeks versus baseline.

AML, acute myeloid leukemia; HR-MDS, higher-risk MDS; IPSS-R, Revised International Prognostic Scoring System; IWG, International Working Group; pRBC, packed RBC; QW, once weekly; Q3W, every 3 weeks; R, randomized; RS, ring sideroblasts; s.c., subcutaneously; sEPO, serum erythropoietin; WHO, World Health Organization.

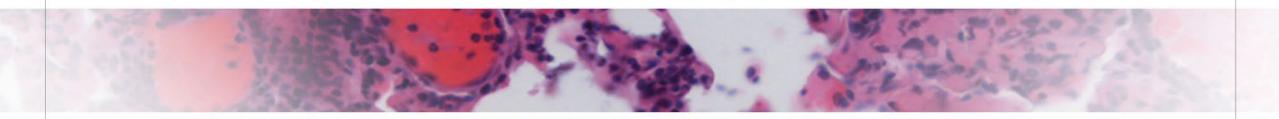
COMMANDS: achievement of primary endpoint in ITT population and subgroups


- The primary endpoint was achieved by 110 (60.4%) patients in the luspatercept arm versus 63 (34.8%) patients in the epoetin alfa arm (P < 0.0001)
 - Subgroup analysis of the primary endpoint showed greater response rates with luspatercept regardless of baseline TB, sEPO category, or SF3B1 mutation status

COMMANDS

COMMANDS: duration of RBC-TI \geq 12 weeks by RS subgroups (week 1-EOT)

Duration, median (95% CI), weeks	Luspatercept	Epoetin alfa	HR (95% CI)
RS+	120.1 (76.4-NE)	61.9 (38.9-123.9)	0.650 (0.415-1.018)
RS-	NE (135.9-NE)	95.1 (74.9-NE)	0.709 (0.269-1.866)



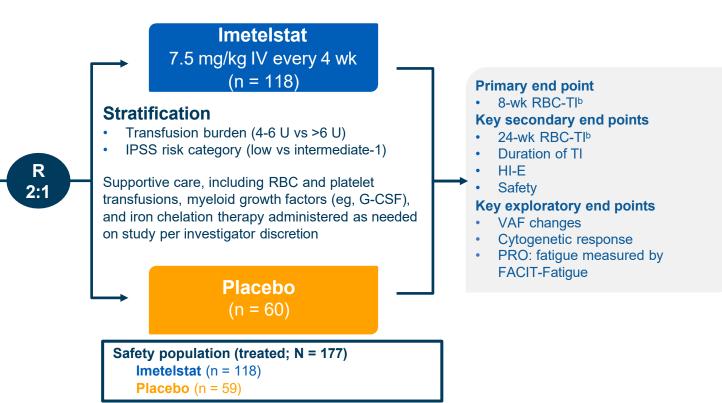
Data cutoff date: September 28, 2023.

COMMANDS

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Efficacy of Imetelstat in Achieving Red Blood Cell Transfusion Independence Across Different Risk Subgroups in Patients With Lower-Risk Myelodysplastic Syndromes Relapsed/Refractory to Erythropoiesis-Stimulating Agents in IMerge Phase 3 Study

<u>Rami Komrokji,</u>¹ Valeria Santini,² Pierre Fenaux,³ Michael R. Savona,⁴ Yazan F. Madanat,⁵ Tymara Berry,⁶ Laurie Sherman,⁷ Shyamala Navada,⁶ Faye Feller,⁶ Libo Sun,⁶ Qi Xia,⁶ Ying Wan,⁶ Fei Huang,⁶ Amer M. Zeidan,⁸ and Uwe Platzbecker⁹

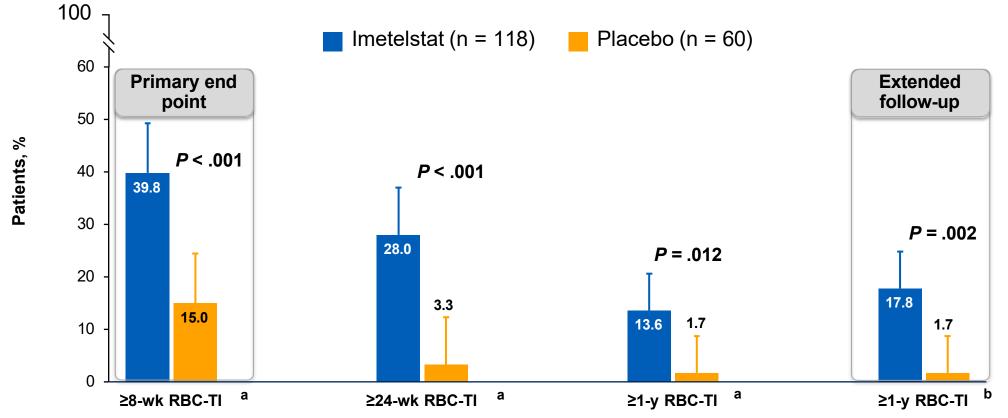

¹Moffitt Cancer Center, Tampa, FL, USA; ²MDS Unit, Hematology, AOUC, University of Florence, Florence, Italy;
 ³Hôpital Saint-Louis, Université de Paris 7, Paris, France; ⁴Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; ⁵Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA;
 ⁶Geron Corporation, Parsippany, NJ, USA; ⁷Vividion Therapeutics, San Diego, CA, USA; ⁸Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ⁹Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany

IMerge Phase 3 Trial Design

Phase 3 Double-blind, randomized 118 clinical sites in 17 countries

Patient population (ITT; N = 178)

- IPSS low-risk or intermediate-1–risk MDS
- R/R^a to ESA or EPO >500 mU/mL (ESA ineligible)
- Transfusion-dependent: ≥4 U RBCs/8 wk over 16 wk before study
- Non-del(5q)
- No prior treatment with lenalidomide or HMAs


^aReceived \geq 8 weeks of ESA treatment (epoetin alfa \geq 40,000 U, epoetin beta \geq 30,000 U, darbepoetin alfa 150 µg, or equivalent per week) without Hb rise \geq 1.5 g/dL or decreased RBC transfusion requirement \geq 4 U/8 wk or transfusion dependence or reduction in Hb by \geq 1.5 g/dL after HI-E from \geq 8 weeks of ESA treatment. ^bPercentage of patients without any RBC transfusion for \geq 8 consecutive weeks since entry to the trial (8-week TI); percentage of patients without any RBC transfusion for \geq 24 consecutive weeks since entry to the trial (24-week TI).

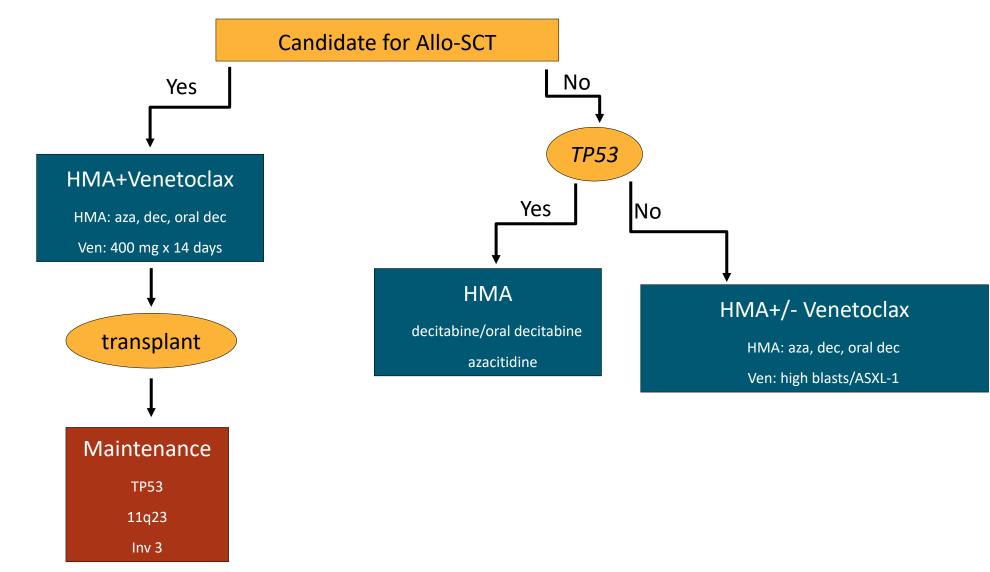
EPO, erythropoietin; ESA, erythropoiesis-stimulating agent; FACIT, Functional Assessment of Chronic Illness Therapy; G-CSF, granulocyte colony-stimulating factor; Hb, hemoglobin; HI-E, hematologic improvement–erythroid; HMA, hypomethylating agent; IPSS, International Prognostic Scoring System; ITT, intent-to-treat; IV, intravenous; MDS, myelodysplastic syndromes; PRO, patient-reported outcome; R, randomization; RBC, red blood cell; R/R, relapsed/refractory; TI, transfusion independence, VAF, variant allele frequency.

Platzbecker U, et al. Lancet. Published Online December 1, 2023. https://doi.org/10.1016/S0140-6736(23)01724-5.

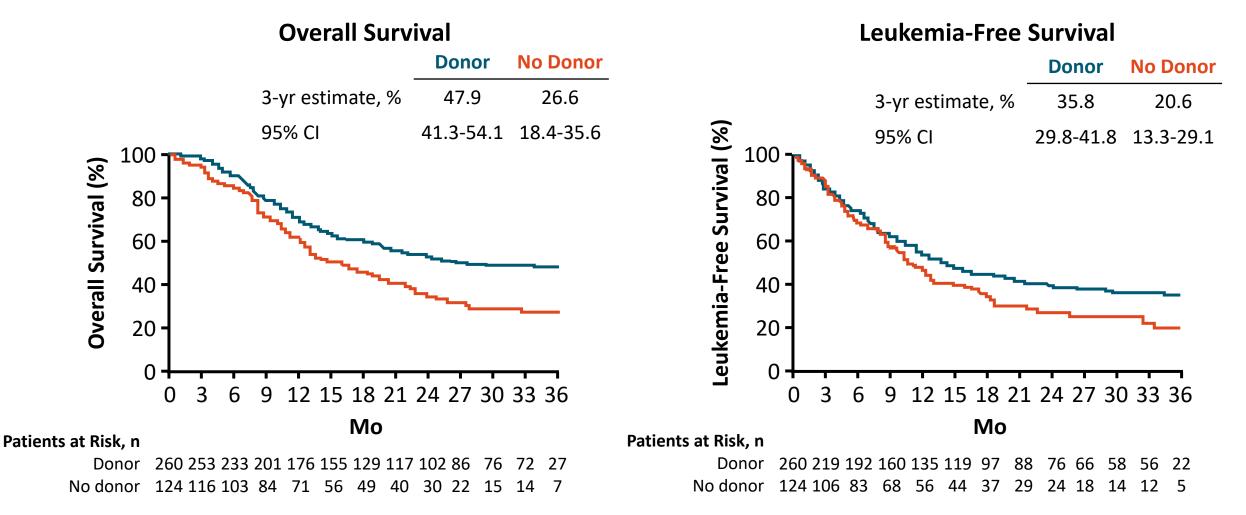
American Society of Hematology

Overall Population: Higher Rates of Longer-Term Duration of RBC-TI With Imetelstat vs Placebo^{1,2}

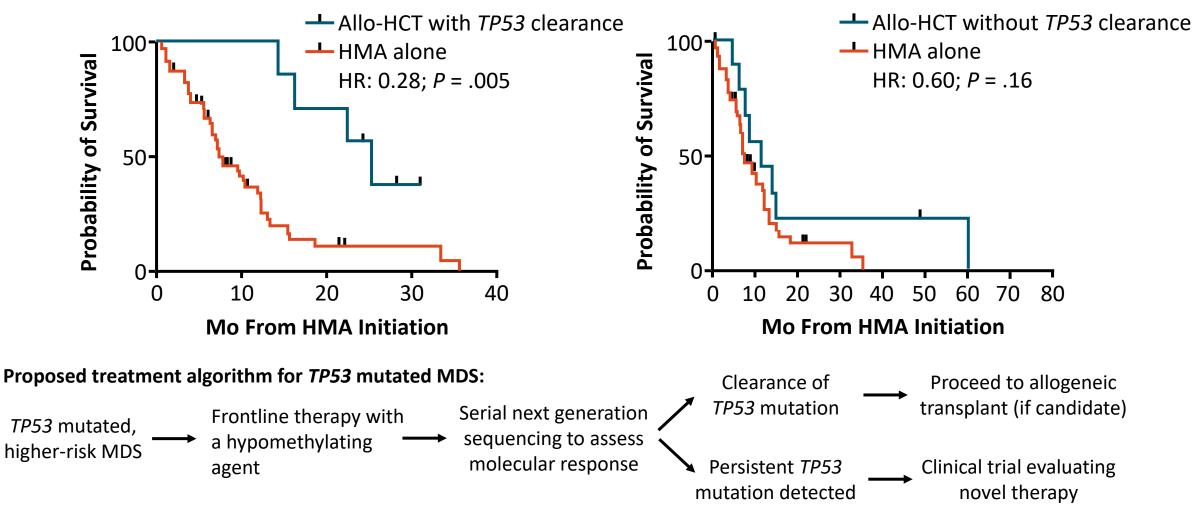
^aData cutoff date: October 13, 2022. ^bData cutoff date: January 13, 2023.


The *P* value was determined by the Cochran-Mantel-Haenszel test, with stratification for prior RBC transfusion burden (≥ 4 to ≤ 6 vs >6 RBC U/8 wk during a 16-week period before randomization) and baseline IPSS (low-risk vs intermediate-1–risk) applied to randomization.

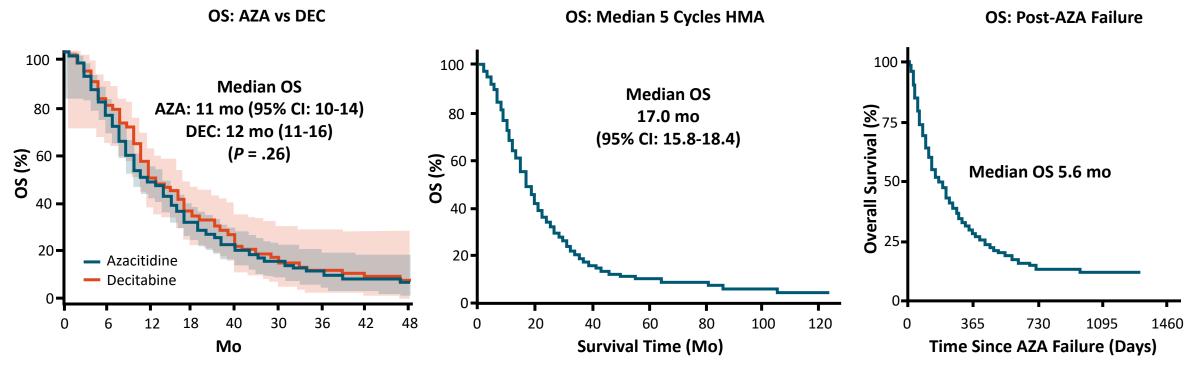
IPSS, International Prognostic Scoring System; RBC, red blood cell; TI, transfusion independence.


1. Zeidan A, et al. ASCO 2023. Abstr 7004. 2. Platzbecker U, et al. Lancet. Published Online December 1, 2023. https://doi.org/10.1016/S0140-6736(23)01724-5.

How do I manage Higher risk MDS 2024?



BMT CTN 1102: RIC Plus Allo-HSCT vs BSC in Older Patients With Higher-Risk MDS



Nakamura. JCO. 2021;39: 3328.

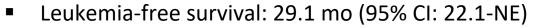
Baseline and Serial Molecular Profiling Predicts Outcomes With HMAs in MDS

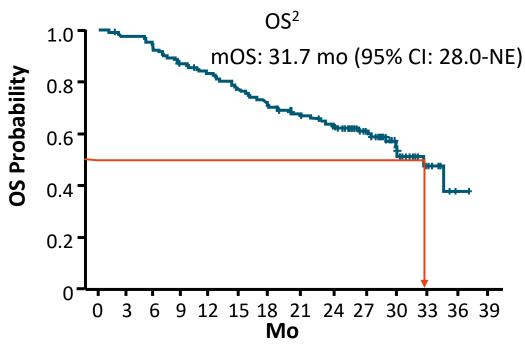
Survival of Patients With HR-MDS Remains Poor Despite Use of HMAs

532 patients ≥66 yr at diagnosis who received ≥10 days of HMA therapy

636 HR-MDS of all ages in the MDS Clinical Research Consortium who received HMA (median 5 cycles), 72% received ≥4 cycles. 68% received AZA.

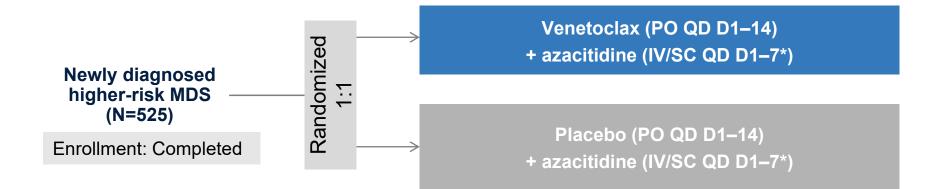
Survival post-AZA failure for patients with HR-MDS


ASCERTAIN: Update on Efficacy and Safety of Oral Decitabine/Cedazuridine in Patients With MDS and CMML


Response Category ^{1,2}	Treated Patients (N = 133)			
CR, n (%)	29 (22)			
PR, n (%)	0			
mCR, n (%)	43 (32.3)			
mCR with HI	22 (16.5)			
HI, n (%)	10 (7.5)			
 HI-erythroid 	2 (1.5)			
 HI-neutrophils 	1 (0.8)			
 HI-platelet 	7 (5.3)			
Overall response (CR + PR + mCR + HI), n (%)	82 (61.7)			
RBC transfusion independence, n/N (%)*	27/53 (51)			
Platelet transfusion independence, n/N (%)*	6/12 (50)			
*# patients TI/# patients TD at baseline.				

Median CR duration: 14.0 mo (range: 2-29)

 Median duration of best response: 12.7 mo (range: 1-33)


Number of patients proceeding to HCT: 34 (26%)

1. Savona. ASH 2020. Abstr 1230. 2. Savona. MDS 2021. Abstr P48.

VERONA: Phase 3 study of Ven+Aza in higher-risk MDS

Key inclusion criteria

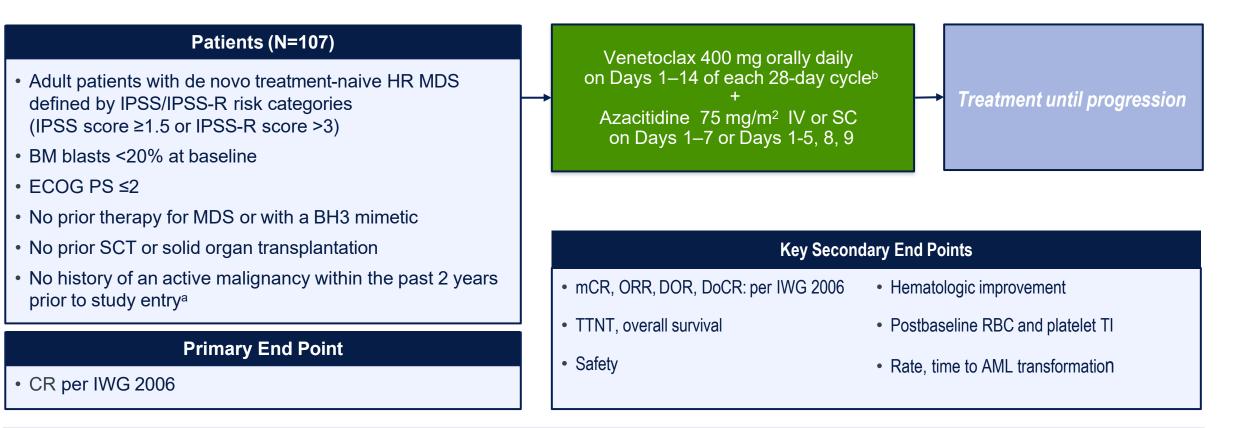
- ≥18 years old with newly diagnosed MDS according to 2016 WHO classification
- <20% BM blasts
- ECOG PS 0-2
- IPSS-R score of >3 (Intermediate, high, very high)
- No planned HSCT at the time of C1D1

Primary endpoints

• CR

• OS

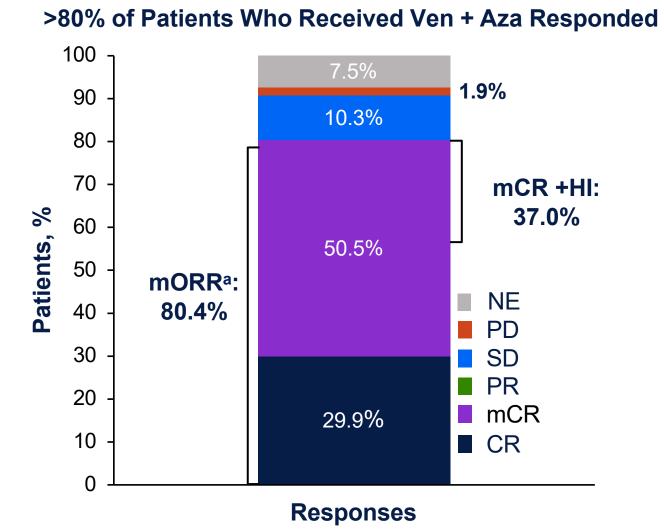
Secondary endpoints


- Modified overall response (mOR)
- Transfusion independence (TI)
- ORR
- QoL

Efficacy and Safety of Venetoclax in Combination With Azacitidine for the Treatment of Patients With Treatment-Naive, Higher-risk Myelodysplastic Syndromes

Jacqueline S. Garcia¹, Uwe Platzbecker ², Olatoyosi Odenike³, Shaun Fleming⁴, Chun Yew Fong⁵, Rachel Cook⁶, Meagan Jacoby⁷, Daniel Nowak⁸, Brenda Chyla⁹, Huipei Wang⁹, Grace Ku¹⁰, Jalaja Potluri⁹, Guillermo Garcia-Manero¹¹

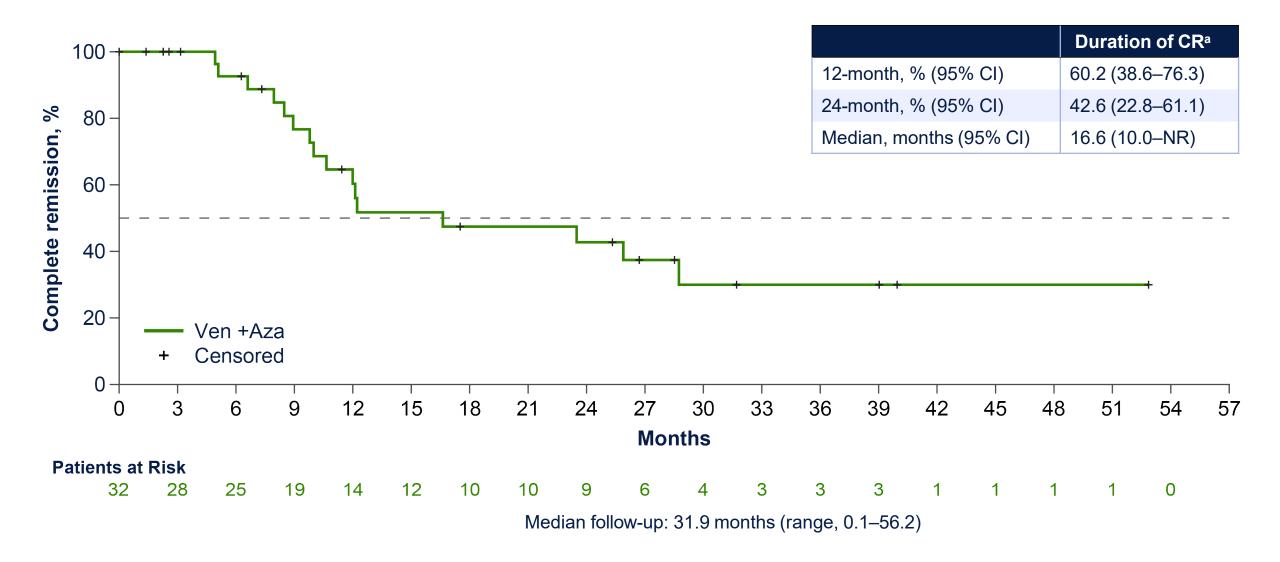
 ¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Universitätsklinikum Leipzig, Saxony, Germany; ³The University of Chicago Medicine and Comprehensive Cancer Center, Chicago, IL, USA; ⁴Alfred Health, Melbourne, Australia; ⁵Austin Health, Heidelberg, Australia; ⁶Oregon Health and Science University, Portland, OR, USA; ⁷Washington University-School of Medicine, St. Louis, MO, USA; ⁸Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; ⁹AbbVie Inc, North Chicago, IL, USA; ¹⁰Genentech Inc., South San Francisco, CA, USA; ¹¹University of Texas MD Anderson Cancer Center, Houston, TX, USA


Phase 1b Study of Venetoclax Plus Azacitidine in Patients With Treatment-Naive Higher-Risk Myelodysplastic Syndromes¹

^aWith the exception of asymptomatic prostate cancer without known metastases and no requirement for therapy; adequately treated in situ carcinoma of the cervix uteri; adequately treated basal cell/localized squamous cell carcinoma of the skin. ^bProphylactic antibiotics were mandated in Cycle 1 and for patients with grade ≥3 neutropenia thereafter.

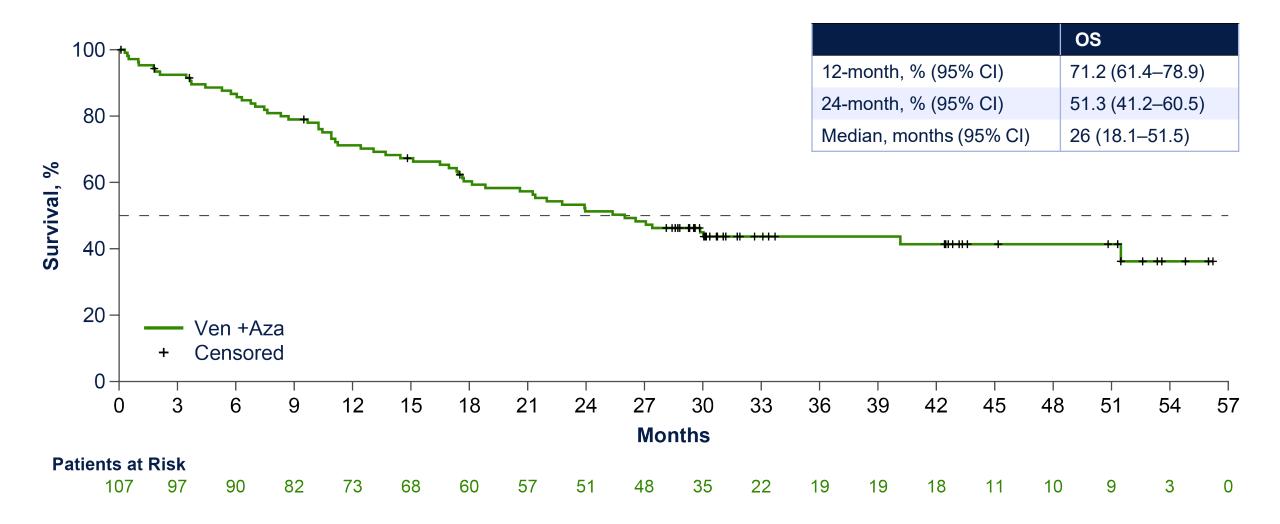
1. ClinicalTrials.gov. Accessed August 15, 2023. https://www.clinicaltrials.gov/study/NCT02942290

AML, acute myeloid leukemia; BH3, BCL-2 Homology 3; BM bone marrow; CR, complete remission; DOR, duration of response; DoCR, duration of CR; ECOG PS, Eastern Cooperative Oncology Group performance status; IPSS-R, International Prognostic Scoring System-Revised; IV, intravenous; IWG, International Working Group; mCR, marrow complete remission; MDS, myelodysplastic syndromes; ORR, overall response rate; RBC, red blood cell; SC, subcutaneous; SCT, stem cell transplantation; TTNT, time to next treatment, TI, transfusion independence.



- Median number of treatment cycles with Ven 400 + Aza: 4.0 (range, 1–57)
- Median time to CR: 2.8 months (range, 1.0–16.1)
- Median duration of CR: 16.6 months (95% CI, 10.0–NR)
- MDS to AML transformation: in 13 (12.3%) patients (95% CI, 6.7–20.1)
 - Median time to AML transformation was 5.95 months (range, 0.72–29.31)

amORR=CR+mCR+PR; PR, n=0; response rates based on International Working Group 2006 response criteria.


AML, acute myeloid leukemia; Aza, azacitidine; CR, complete remission; HI, hematologic improvement; mCR, marrow complete remission; MDS, myelodysplastic syndromes; mORR, modified overall response rate; NE, not evaluable; NR, not reached; PD, progressive disease; PR, partial remission; RP2D, recommended phase 2 dose; SD, stable disease; Ven, venetoclax.

Duration of CR in Patients Who Received Ven 400 mg + Aza

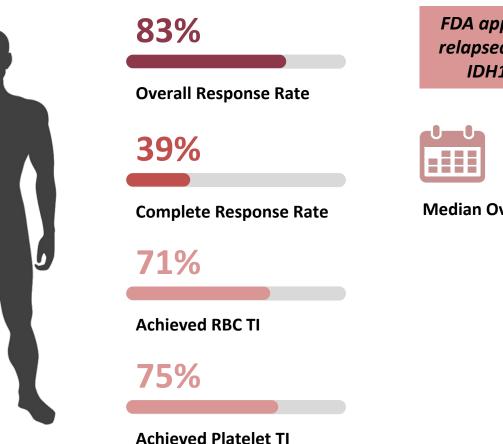
^aDuration of CR is defined as the number of days from the date of first response CR to the earliest documentation of progressive disease or death of any cause, whichever occurs earlier. The data were censored at the date the patient was last known to be alive on or before the cutoff date. Aza, azacitidine; CR, complete remission; Ven, venetoclax.

Overall Survival^a for Patients Who Received Ven 400 mg + Aza

^aOverall survival was defined as the number of months from the date of the first dose of study drug to the date of death. The data were censored at the date the patient was last known to be alive on or before the cutoff date. Aza, azacitidine; OS, overall survival; Ven, venetoclax.

Ivosidenib for R/R IDH1-Mutant MDS

Ivosidenib: Phase I AG120-C-001 Trial (NCT02074839)



- ✓ IDH1-mutated advanced hematologic malignancy
- MDS cohort (N = 19): relapsed/refractory disease following prior standard therapy, including intensive chemotherapy and HMA
 ✓ ECOG PS 0-2

Adverse Event Profile

- 1 patient with grade 1 corrected QT interval increase
- 1 patient with grade 3 fatigue
- 1 patient with grade 3 hyponatremia
- 2 patients with grade 2 differentiation syndrome
- 1 patient with grade 2 skin infection

FDA approved for patients with relapsed/refractory MDS with a IDH1-mutation 10/24/23

Median Overall Survival

HMA = Hypomethylating Agent; RBC = Red Blood Cell; TI = Transfusion Independent; ORR = Overall Response Rate; mOS = median Overall Survival **DiNardo CD, et al. EHA 2023. Abstract P724**

Conclusions MDS

- New classification systems for MDS recognize molecularly defined entities.
- Molecular risk stratification (IPSS-M) is better prognostic tool.
- Luspatercept is new standard of care for treating anemia in lower risk MDS-RS+ and ? Selected MDS-RS- cases.
- Imetlestat shows promising activity and if approved by FDA will be second line treatment for lower risk MDS patients with anemia.
- Allogeneic hematopoietic stem cell transplant is only curative option for higher risk MDS pts.
- Hypomethylating agents including oral approved formulation remain standard of care.
- Venetoclax addition is borrowed from AML literature and we use in practice now particularly for MDS/AML, bridge to allo-SCT or ASXL-1 MT HR-MDS.
- Ivosidenib is approved by FDA for R/R MDS IDH-1 mutant.

Thank You Rami.Komrokji@moffitt.org

MEET THE TEAM

Dr. Jeffrey Lancet

Dr. David Sallman

Dr. Kendra Sweet

Moffitt Myeloid team: Only perfect counts !!!

Acknowledgements:

Dr. Eric Padron

- Our patients and their caregivers
- Moffitt Myeloid team

- 181 M

....

100

Same States