Annual Steven Coutre Chronic Lymphocytic Leukemia Memorial Lecture

Therapeutic Options in CLL in 2023: Choosing Wisely: Initial Therapy in CLL

Jennifer Woyach, MD D Warren Brown Professor of Leukemia Research The Ohio State University

The James

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Steven Coutre, MD

Objective

 To discuss the currently available standards for frontline CLL in the context of open questions in the field

What are the ongoing questions in frontline CLL?

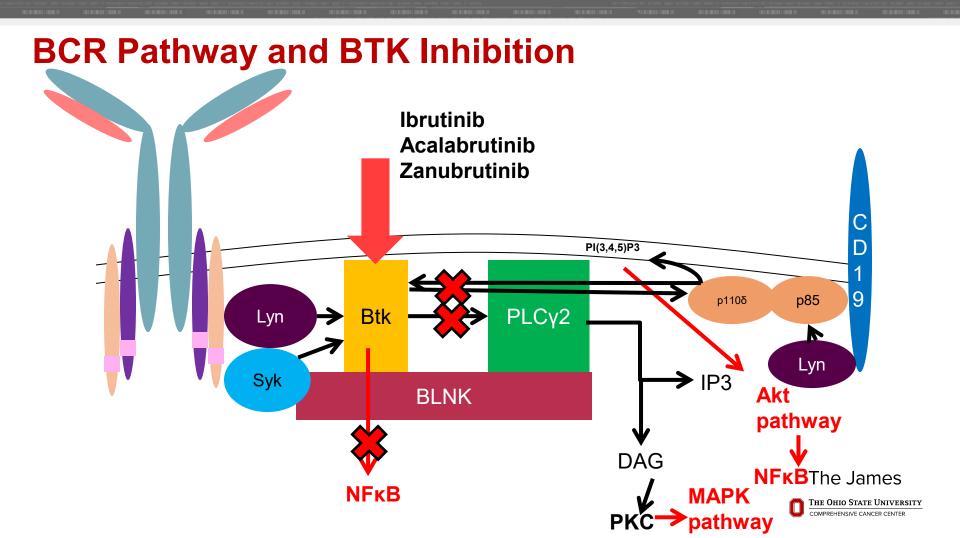
- Is venetoclax/obin or continuous BTKi based therapy better?
- Are there patients who should be treated with CIT, and what is the best way to do this?

The James

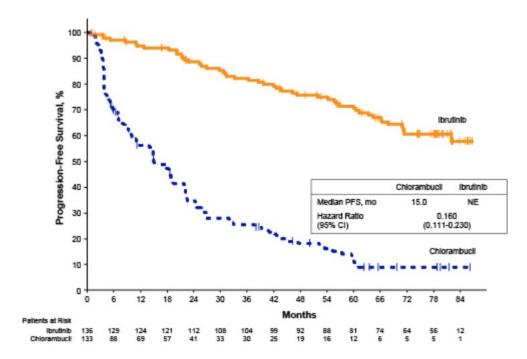
PREHENSIVE CANCER CENT

- What is the optimal fixed duration regimen in CLL?
- Should everyone receive a second generation BTKi?
- Is there a role for early therapy?

What are the ongoing questions in frontline CLL?


Is venetoclax/obin or continuous BTKi based therapy better?

Are there patients who should be treated with CIT, and what is the best way to do this?

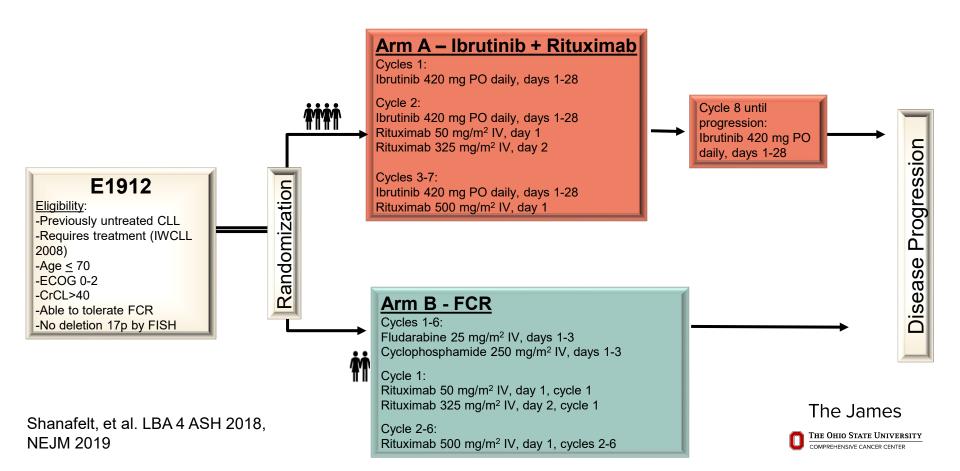

The James

THE OHIO STATE UNIVERSITY

- What is the optimal fixed duration regimen in CLL?
- Should everyone receive a second generation BTKi?
- Is there a role for early therapy?

Ibrutinib in Treatment-Naïve CLL: RESONATE 2

- Randomized untreated patients ≥65 to ibrutinib or chlorambucil
- 61% of patients
 - progression-free at 6.5


years

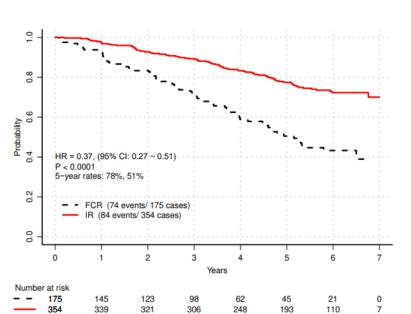
DRIVE score 1

Ghia et al, EHA 2021

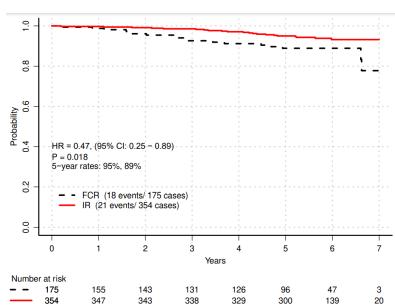
ECOG 1912 Study Design

E1912 Patient Characteristics

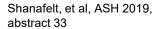
Baseline characteristics	IR n=354	FCR n=175	Total
Median age (y)	58	57	58
Age <u>≥</u> 60	41.0%	40.0%	40.6%
Female	33.3%	31.4%	32.7%
ECOG = 0	63.8%	62.3%	63.3%
Rai stage 0	3.1%	5.1%	3.8%
Rai stage I-II	52.8%	53.7%	53.1%
Rai stage III-IV	44.1%	41.1%	43.1%
FISH 11q deletion	22.0%	22.3%	22.2%
Trisomy 12	19.8%	15.4%	18.3%
13q deletion	34.2%	33.1%	33.8
B2M >3.5 mg/L	51.9%	48.0%	50.6%
IGHV Unmutated*	75.0%	61.7%	71.1%


*Tested in 437 (82%) patients

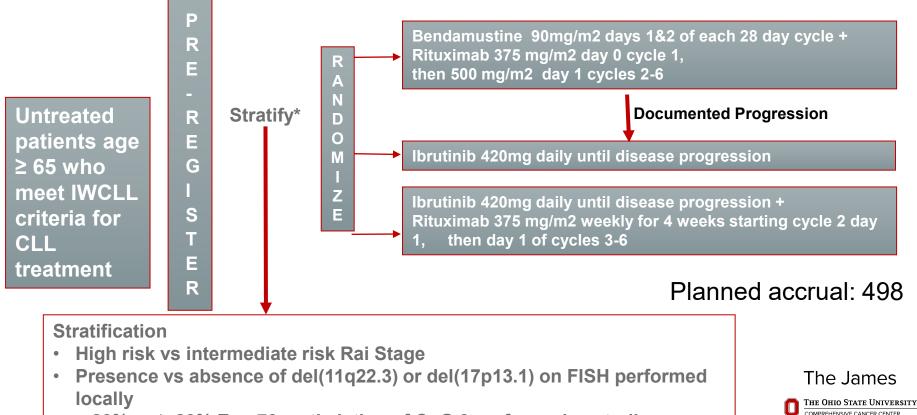
Shanafelt, et al. LBA 4 ASH 2018, NEJM 2019


Race NR

E1912 Progression Free Survival and Overall Survival



PFS

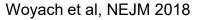

OS

5 yr PFS 78% vs 51% 5 yr OS 95% vs 89%

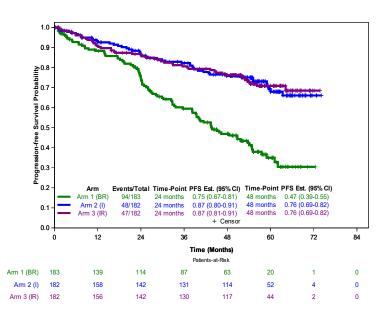
A041202 Schema

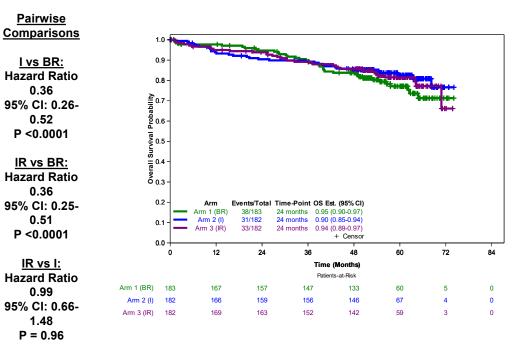
• < 20% vs ≥ 20% Zap-70 methylation of CpG 3 performed centrally

Patient Characteristics


Characteristic	Total N=547	BR N=183	lbrutinib N=182	IR N=182
Age (years), median (range)	71 (65-89)	70 (65-86)	71 (65-89)	71 (65-86)
Male, %	67	65	68	69
ECOG 0-1, %	97	95	97	99
White blood cell count x10 ³ /µL, median (range)	82 (4-518)	92 (7-518)	79 (6-438)	70 (4-481)
FISH Characteristics, %				
Del (17p)	6	8	5	6
Del (11q)	19	18	19	21
TP53 mutation, %	10	9	9	12
Complex Karyotype, %	29	27	24	36
Zap-70 Unmethylated, %	53	52	53	53
IGVH unmutated*, %	61	58	63	61

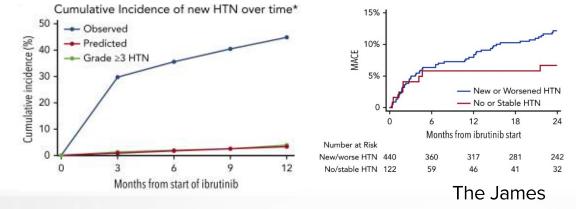
*N= 360 total


DRIVE score 3


The James

THE OHIO STATE UNIVERSITY

A041202 Progression Free Survival and Overall Survival

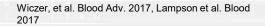

The James

THE OHIO STATE UNIVERSITY

What is the down-side?

- Toxicity with ibrutinib leads to discontinuation rate 15-20% in trials, higher in real world experience
- Some adverse events (arthralgias) are not dangerous but can impact QOL
- Other adverse events (arrhythmias, HTN, bleeding) can be life-threatening

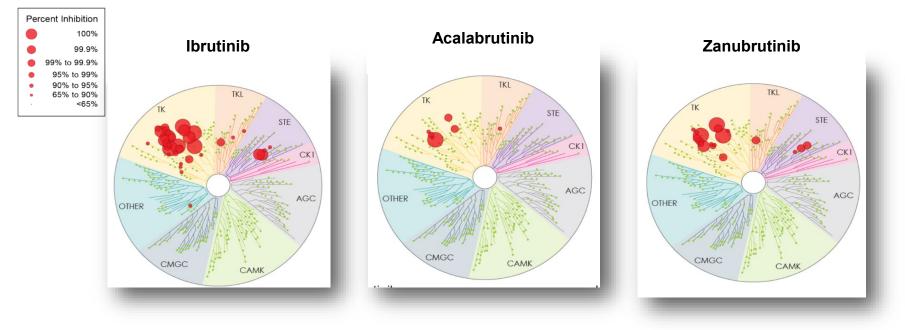
Median times to ibrutinib discontinuation stratified by toxicity			
8 months			
7.5 months			
7 months			
6 months			
5 months			
4.5 months			
3.5 months			


Arrhythmias with Ibrutinib

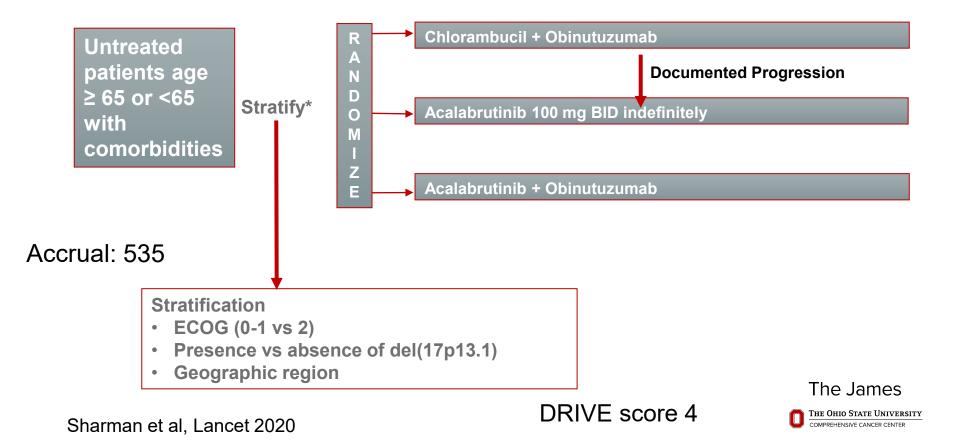
Atrial Fibrillation

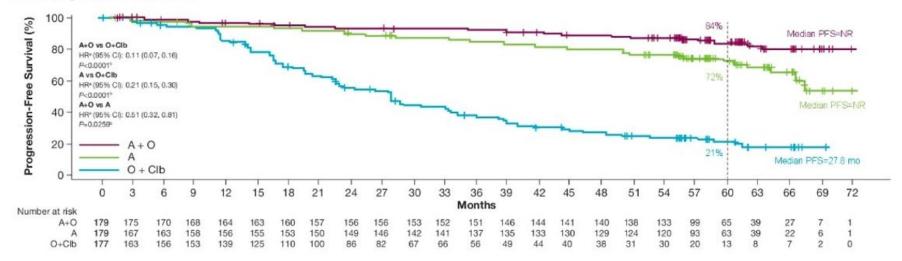
- Analysis in 582 patients treated at Ohio State University
- Estimated cumulative incidence of atrial fibrillation by time on treatment
 - 6 mo: 5.9%
 - 12 mo: 7.5%
 - 24 mo: 10.3%
- Median time to onset of atrial fibrillation: 7.6 mo
- Rate of atrial fibrillation increased ~4-fold with ibrutinib vs non-ibrutinib therapy (3.3 vs 0.84/100 personyear)

Ventricular arrhythmias

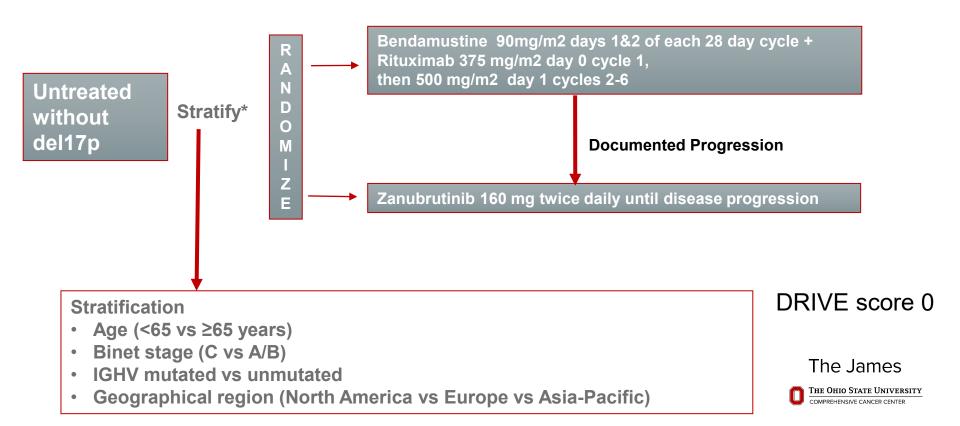

- Uncommon, but frequency increased vs general population (788 vs 200 to 400/100,000 person-year)
- Long-term data with ibrutinib suggests about a 1% sudden death rate

The James

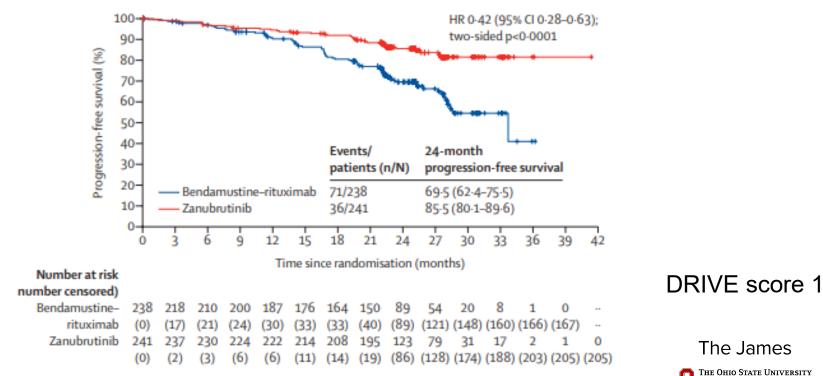

How are Next-Generation BTKi Different?


Increased selectivity is expected to lead to improved tolerability

ELEVATE TN Study



A. Investigator-assessed PFS



Sequoia Baseline Characteristics

Baseline character	ristics	Zanu n=241	BR n=238
Median age (y)		70	70
Age <u>></u> 65		81%	81%
Female		37%	39%
ECOG = 0		46%	42%
Binet Stage A/B		71%	71%
Binet Stage C		29%	29%
TP53 mutated		6%	6%
FISH	11q deletion	18%	19%
	Trisomy 12	19%	21%
	13q deletion	56%	54%
B2M >3.5 mg/L		58%	57%
IGHV Unmutated		53%	52%

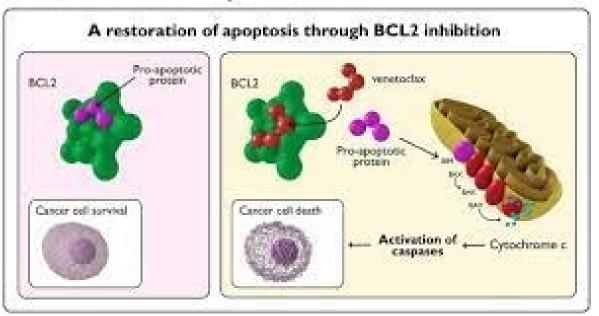
Sequoia PFS

The James

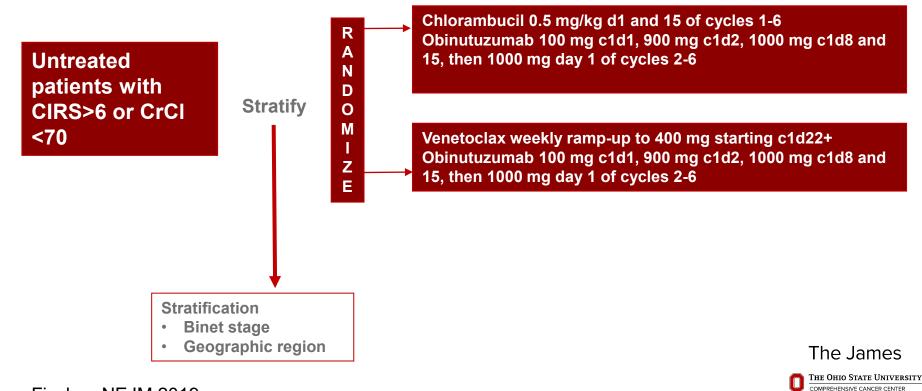
COMPREHENSIVE CANCER CENTER

THE OHIO STATE UNIVERSITY

Tam et al, Lancet Oncol 2022


What do these data tell us?

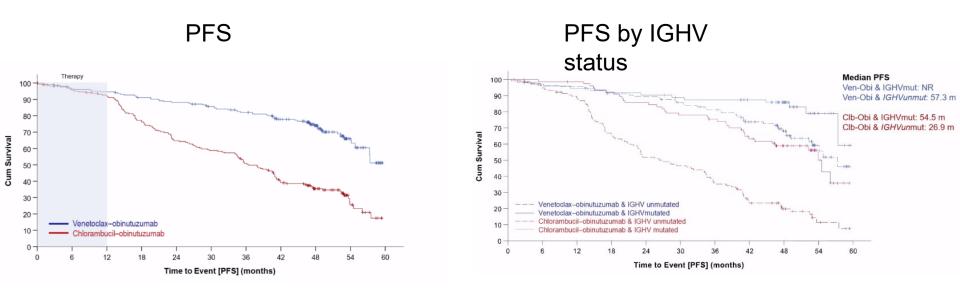
- Ibrutinib is more effective than chemoimmunotherapy in the treatment of CLL
- Ibrutinib may be more toxic in older patients than in younger
- The addition of rituximab to ibrutinib does not improve PFS.
- Acalabrutinib and zanubrutinib also show excellent results with better safety profiles
- Acalabrutinib may combine better with anti-CD20 ab than ibrutinib


BCL2 inhibition in CLL: Venetoclax

Venetoclax - a BCL2 specific inhibitor

CLL14 Study Design

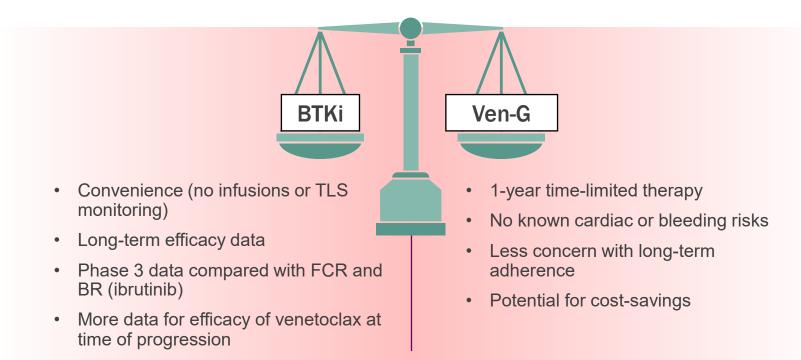
Fischer, NEJM 2019


Characteristic	VO N=216	ChO N=216
Age (years), median (range)	72 (41-89)	72 (41-89)
Male, %	67.6	66.2
CIRS-G score >6	86.1	81.9
FISH Characteristics, %		
Del (17p)	8.5	7.3
Del (11q) without del(17p)	18	19.7
TP53 mutation, %	11.1	8.3
IGVH unmutated, %	60.5	59.1

DRIVE score 3

Fischer, NEJM 2019

Long-term update from CLL14


Al-Sawaf et al, EHA 2021

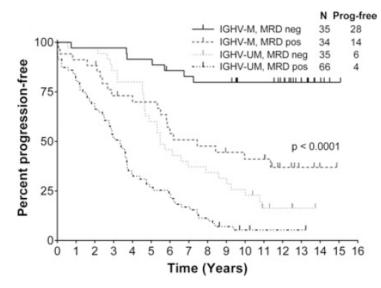
What does this trial tell us?

- Venetoclax + obinutuzumab is more effective than chlorambucil + obinutuzumab
- At 4 years, PFS for VO is similar to what is reported for BTKi
- Long term results will be critical to determine efficacy of this fixed duration regimen vs indefinite regimens

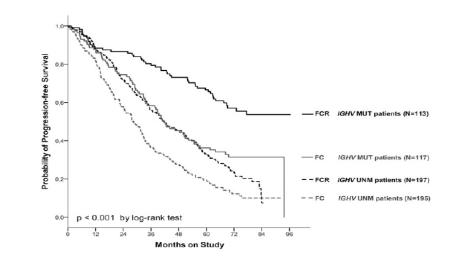
Is venetoclax/obin or continuous BTKi based therapy better?

- Efficacy differences—unknown. CLL17 will definitively answer this question. Long-term follow-up from current studies will be helpful
- Cost differences—likely favors venetoclax/obin
- Safety differences—short term probably favors venetoclax, but longterm unknown
- My approach: Assuming relatively equivalent efficacy, comes down to patient preference on therapy duration, willingness for upfront visit intensity. I prioritize ven/obin for IGHV mutated and BTKi for patients with TP53 abnormalities

THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER


What are the ongoing questions in frontline CLL?

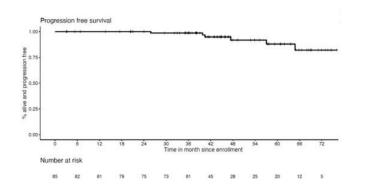
- Is venetoclax/obin or continuous BTKi based therapy more effective?
- Are there patients who should be treated with CIT, and what is the best way to do this?
- What is the optimal fixed duration regimen in CLL?
- Should everyone receive a second generation BTKi?
- Is there a role for early therapy?


Long-Term FCR Data

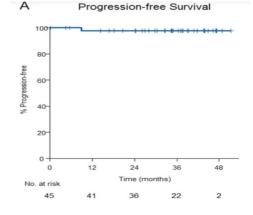
- Two studies showing a plateau in relapse in IGHV mutated patients
- FISH panel data not available

MD Anderson Cohort

GCLLSG CLL8


Thompson et al, Blood 2016; Fischer et al., Blood 2016

COMPREHENSIVE CANCER CENTER


Long-Term FCR Toxicities

Cancer	Number		A -7	07			
Secondary hematologic			4.7 ′	70			
AML/myelodysplasia	14						
Myeloproliferative disorder, unclassified	1						
T-acute lymphoblastic leukemia	1			0	I		
Mature T-cell lymphoproliferative disorders	3			Cumulative	Inclaer	ice of Death	
RT							
Diffuse large B-cell lymphoma	20		2 –	(1933)			
Hodgkin lymphoma	3				ncers in unm ncers in muta	utated patients	
Burkitt lymphoma	1		0.8		nmutated pat		
Solid tumors				·-·-· CLL in m	utated patier	its	
Non-melanoma skin cancer	28	ility	0.6		ransformatio	n in unmutated patier	nts
Prostate	9	Probability		Richter T	ransformatio	n in mutated patients	
Breast cancer	4	Pro	0.4			ماند ماند. من ماند ماند ماند می ماند ماند می ماند ماند.	
Melanoma	4				فميد	n in mutated patients	
Lung cancer	3		0.2		and the second		
Ovarian cancer	3						
Renal cell carcinoma	3		· · ·				
Papillary thyroid cancer	2				1	1	1
Esophageal adenocarcinoma	1		L.)	5	10	15
Merkel cell tumor	1				Tim	e (years)	
Brain tumor	1					0.77 50	
Colorectal cancer	1					-	The lame
Other	3						The James
						n 1	THE OHIO STATE UNIV

Thompson et al, Blood 2016

- iFCR (6 cycles)
- Median f/u 40.3 mo, CR with uMRD marrow 55% (uMRD marrow 84%)
- 40 month PFS 97%
- 2 MDS

- iFCG (3 cycles)
- All mutated IGHV and no TP53
- Median f/u 41.3 mo, CR 69%, uMRD marrow 98%
- 36 month PFS 98%
- 1 MDS

The James

Davids et al, ASH 2021 Jain et al, Leukemia 2021

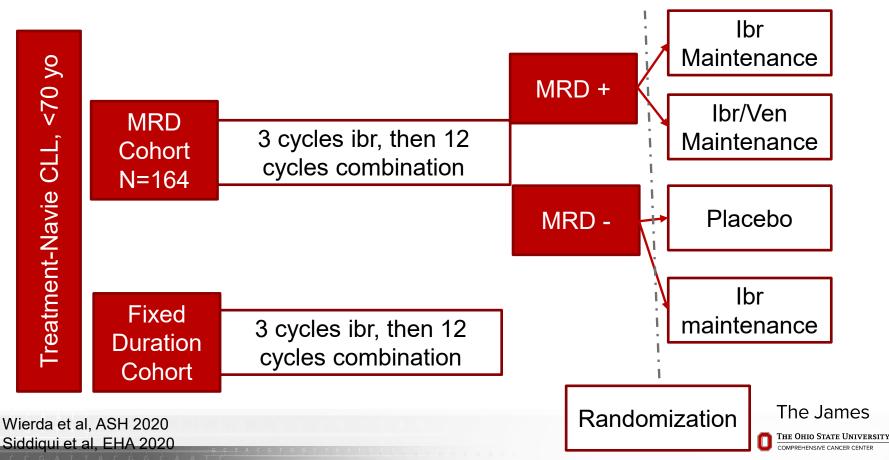
Are there patients who should be treated with CIT, and what is the best way to do this?

- Only young, fit patients with IGVH mutated CLL and without high risk genomic abnormalities should be considered for FCR due to the high chance of cure (but ven-based regimens also look great; follow-up from CLL13 trial will help)
- FCR + ibrutinib and FCG + ibrutinib in clinical trials with excellent results

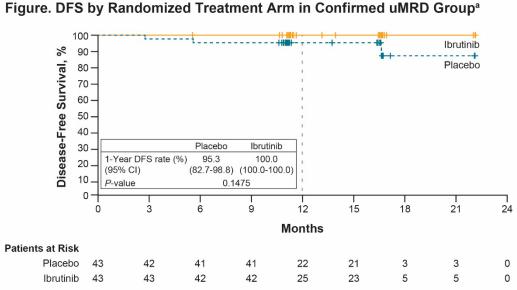
My approach: No chemotherapy

What are the ongoing questions in frontline CLL?

- Is venetoclax/obin or continuous BTKi based therapy more effective?
- Are there patients who should be treated with CIT, and what is the best way to do this?
- What is the optimal fixed duration regimen in CLL?
- Should everyone receive a second generation BTKi?
- Is there a role for early therapy?

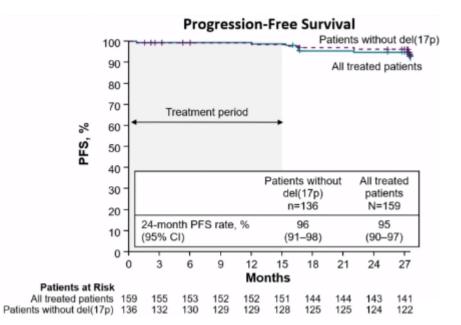

What is the optimal time-limited regimen in CLL?

- Venetoclax/Obinutuzumab
- Venetoclax/Ibrutinib
- Venetoclax/Ibrutinib/Obinutuzumab
- Venetoclax/Acalabrutinib
- Venetoclax/Acalabrutinib/Obinutuzumab
- Venetoclax/Zanubrutinib
- Venetoclax/Zanubrutinib/Obinutuzumab


Also, should they be fixed duration or MRD-guided??

Phase 2 CAPTIVATE

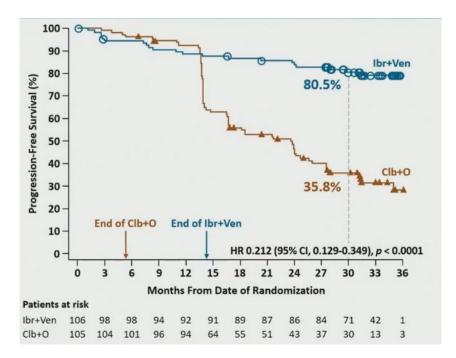
Phase 2 CAPTIVATE MRD Cohort


^aThe 3 DFS events in placebo arm were disease progression in 2 patients and MRD relapse in 1 patient.

- Confirmed uMRD 30 month PFS
 - 95.3% placebo
 - 100% ibrutinib
- Without confirmed uMRD 30 month PFS
 - 95.2% ibrutinib
 - 96.7% ibr/ven

Ibrutinib/Venetoclax Fixed Duration: CAPTIVATE

Characteristic	All treated patients N=159
Median age, years (range)	60 (33-71)
Male, n (%)	106 (67)
Rai stage III/IV disease, n (%)	44 (28)
High-risk features, n (%)	
Unmutated IGHV	89 (56)
del(17p)/TP53 mutation	27 (17)
del(17p)	20 (13)
del(11q) ^a	28 (18)
Complex karyotype ^b	31 (19)
Any cytopenia, n (%)	54 (34)
ANC ≤1.5 × 10 ⁹ /L	13 (8)
Hemoglobin ≤11 g/dL	37 (23)
Platelets ≤100 × 10 ⁹ /L	21 (13)
Lymph node diameter ≥5 cm, n (%)	48 (30)
Median ALC × 10º/L (range)	70 (1–503)
ALC ≥25 × 10 ⁹ /L, n (%)	120 (75)

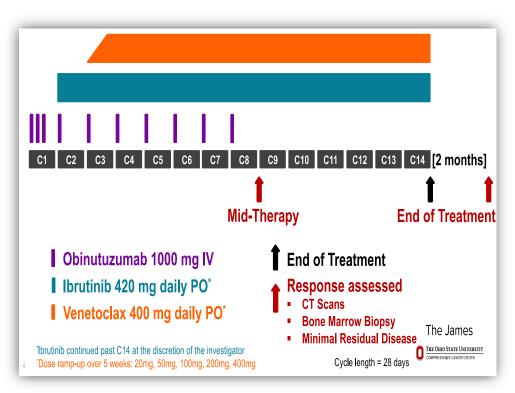


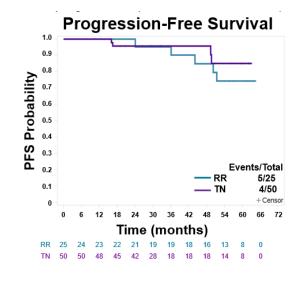
The James

Allan et al, EHA 2021

Ibrutinib/Venetoclax Fixed Duration: GLOW

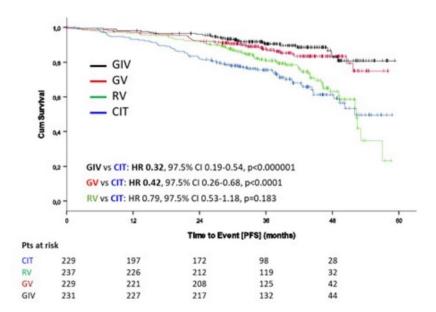
Characteristic	I+V (N = 106)	Clb+O (N = 105)
Age, median (range), years	71.0 (47, 93)	71.0 (57, 88)
≥ 75 years, %	33.0	35.2
Male, %	55.7	60.0
ECOG PS 1-2, %	67.0	62.9
CIRS score, median (IQR)	9 (6-12)	8 (5-10)
> 6, %	69.8	58.1
CrCl, median (range) mL/min	66.5 (34.0, 168.1)	63.2 (32.3, 180.9)
Rai Stage III-IV, %	57.3	52.5
Bulky Disease ≥5cm, %	39.0	36.2
Elevated LDH, %	33.0	48.6
Mutated IGHV [®] , %	25.5	25.7
Unmutated IGHV ^a , %	51.9	51.4
Del(11q), %	18.9	17.1
TP53 mutation, %	6.6	1.9




Munir et al, ASH 2021; Kater et al NEJM Evidence 2022

The James

Ibrutinib/Venetoclax/Obinutuzumab Phase 2



Rogers et al, ASCO 2022

Ibrutinib/Venetoclax/Obinutuzumab Phase 3

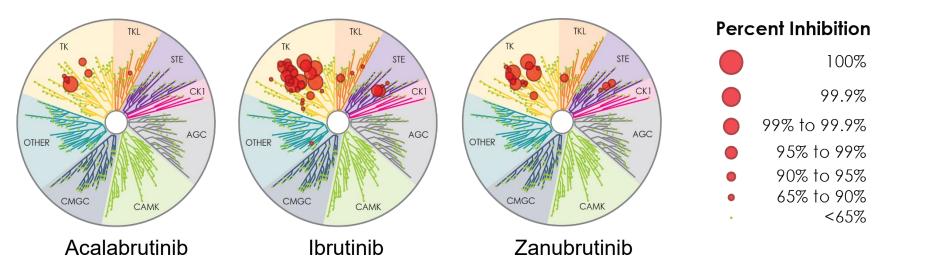
- GAIA/CLL13 Study
- CIT vs VR vs VO vs IVO
- Median follow-up 38.8 months

What is the Optimal Time-Limited Regimen in CLL

- Second generation combinations: AVO, ZV, ZVO all showing excellent early efficacy, may have improved safety
- Adding obinutuzumab adds some toxicity, studies will need to clarify the role of this
- Several ongoing and planned studies will compare BTK/BCL2 regimens to Ven/Obin

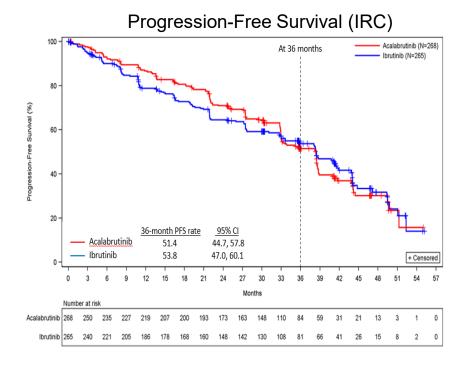
 My thoughts: BTK/BCL2 combos are appealing for patients with intermediate/?high risk disease, but long-term data are needed before switching practice from ven/obin

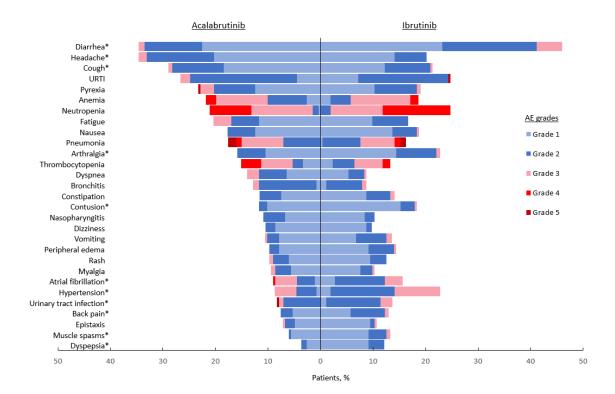
The James


What are the ongoing questions in frontline CLL?

- Is venetoclax/obin or continuous BTKi based therapy more effective?
- Are there patients who should be treated with CIT, and what is the best way to do this?
- What is the optimal fixed duration regimen in CLL?
- Should everyone receive a second generation BTKi?
- Is there a role for early therapy?

MPREHENSIVE CANCER CENTE

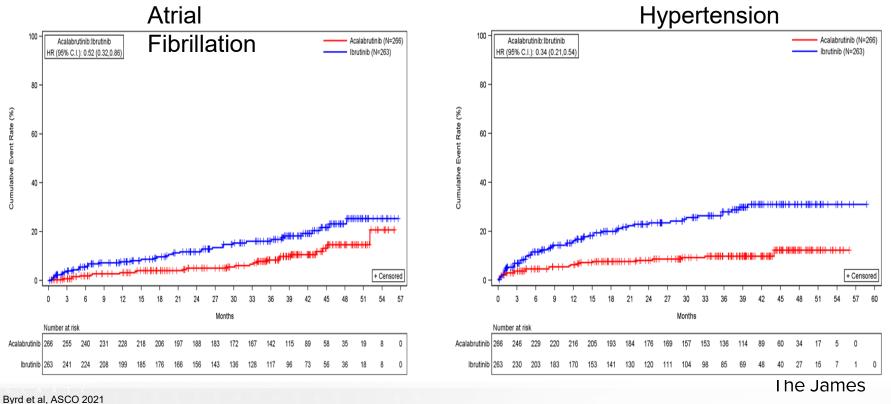

Acalabrutinib and Zanabrutinib are much more specific than Ibrutinib


Ibrutinib vs Acalabrutinib (not frontline)

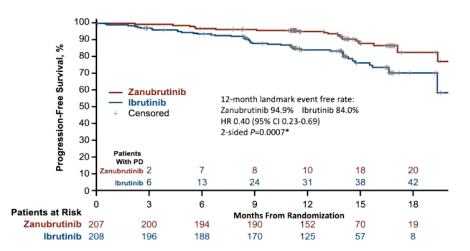
- 533 high risk R/R patients randomized to acalabrutinib vs ibrutinib
- Primary endpoint noninferiority of acalabrutinib in terms of PFS
- Secondary endpoints (hierarchical): a fib, grade 3+ infection, Richter's, OS

OMPREHENSIVE CANCER CENTE

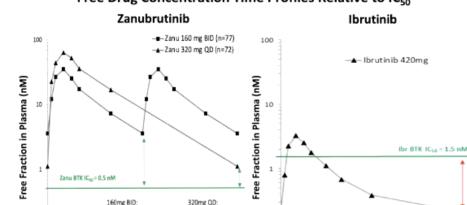
ELEVATE R/R Adverse Events


Key Toxicities

- Arthralgias: 16% vs 23%
- Diarrhea: 35% vs 46%
- Bleeding: 38% vs 51% for minor, major no different
- HTN: 9% vs 23%
- Atrial fibrillation: 16% vs 9%


Byrd et al, ASCO 2021

Cumulative Incidence of Cardiac Events



Zanubrutinib vs Ibrutinib (not frontline)

- 652 patients
- Primary endpoint ORR
- Atrial fibrillation 10.1% vs 2.5%

Ctrough/ICso ~2-fold

24

18

0.1 +

6

Ctrough/IC50 ~7-fold

12

Time post-dose (hours)

0.1

Free Drug Concentration Time Profiles Relative to $\mathrm{IC}_{\mathrm{50}}$

12

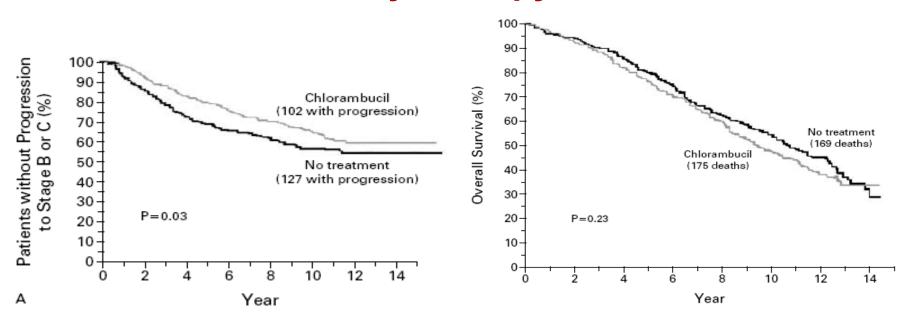
Time post-dose (hours)

Ctrough/ICso ~1/7-fold

24

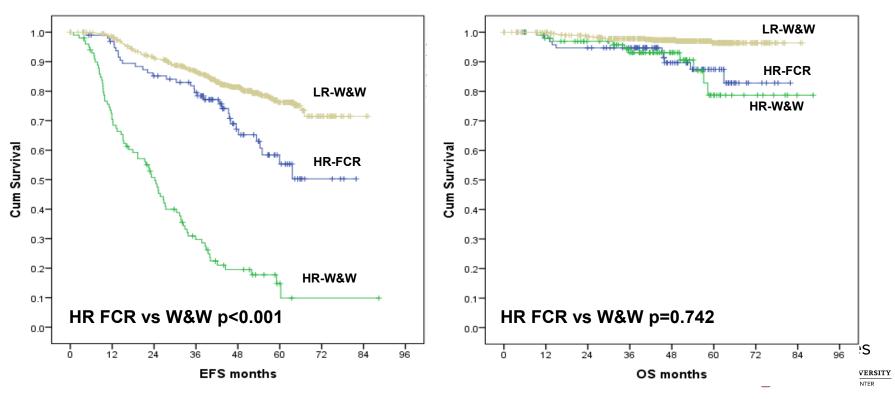
Hillmen et al, EHA 2021

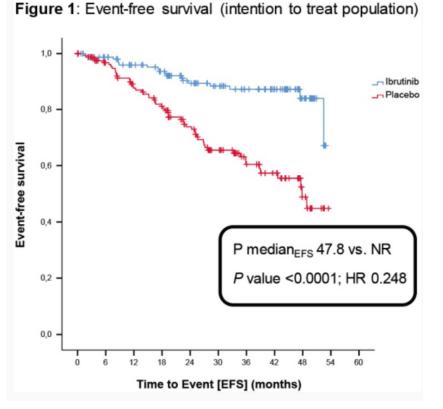
Should all patients receive a second generation BTKi?


- Safety data favors second generation BTKi
- Twice daily dosing of second generation BTKi may limit compliance/efficacy in the real world setting
- NCCN guidelines favor second generation BTKi

What are the ongoing questions in frontline CLL?

- Is venetoclax/obin or continuous BTKi based therapy more effective?
- Are there patients who should be treated with CIT, and what is the best way to do this?
- What is the optimal fixed duration regimen in CLL?
- Should everyone receive a second generation BTKi?
- Is there a role for early therapy?

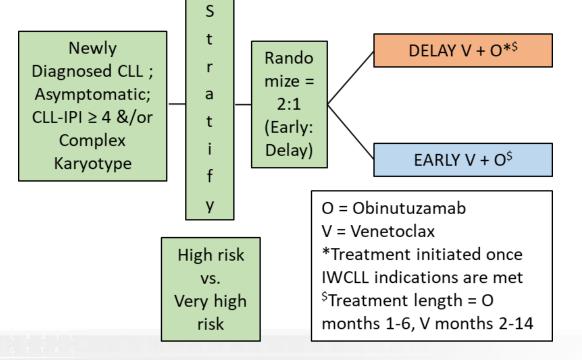



Is There a Role for Early Treatment: CIT Era

Event Free Survival

Overall Survival

CLL 12 Event Free Survival


The James

Langerbeins et al, EHA 2019

NCTN Early Intervention Study S1925

Randomized, Phase III Study of <u>Early</u> Intervention with <u>Venetoclax</u> and <u>O</u>binutuzumab versus DeLayed Therapy with <u>VEnetoclax</u> and Obinutuzumab in Newly Diagnosed Asymptomatic High-Risk

Patients with CLL: EVOLVE CLL Study

- Primary endpoint = OS
- Goal = Improve 6-yr OS from 60% to 80%
- N = 247 patients
- Secondary endpoints =
 - Safety, ORR, DOR, PFS, TTNT, MRD, QOL, resistance

The James

So where are we going in frontline CLL?

- Long-term follow-up of E1912 and FLAIR will be critical to determine how best to manage young IGHV mutated patients
- Combinations of targeted therapies are promising, with multiple ongoing and planned studies to answer key questions
- Acalabrutinib and Zanabrutinib are more tolerable and as effective than ibrutinib
- Whether some patients may benefit from early therapy remains to be seen, but is an attractive concept for high risk patients

Final Conclusions

 Ibrutinib and now venetoclax, acalabrutinib, and zanubrutinib have changed the paradigm of CLL therapy, and most patients with CLL should never receive chemotherapy

Although our current treatments are effective, there remain many open questions

 Prospective clinical trials remain extremely important to help determine the optimal frontline treatments for our patients with CLL

The James

Jennifer.Woyach@osumc.edu

CLL.osu.edu

