
Chronic Lymphocytic Leukemia

18 March 2023

William G. Wierda M.D.,Ph.D. Professor of Medicine Department of Leukemia Division of Cancer Medicine U.T. M.D. Anderson Cancer Center Houston, TX USA

Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia

- Most common adult leukemia (~ 15,000 cases/yr)
 30% of adult leukemias
- Median age at diagnosis 72 years
- Median overall survival > 9 yrs (unknown with small molecule inhibitors)
- Survival increased over last 2 decades, continues to improving
- Advanced CLL has increased morbidity and mortality related to infections & other cancers

CLL Diagnosis

- ALC: >5,000 /μL mature monoclonal B cells
 - PLL = > 55% prolymphocytes or > 15,000 /μL
- Immunophenotype:
 - CD5⁺ / CD19⁺ / CD23⁺ / surface Ig light chain restricted (κ or λ) - monoclonal
- BM Bx: not required for diagnosis
 - > 30% lymphocytes on aspirate
- Additional testing for prognosis:
 - FISH, IGHV mutation status, stimulated karyotype, CD38, ZAP70, serum B2M

Clinical Course of CLL

- Diagnosis often incidental
- Asymptomatic at diagnosis and for prolonged periods
- Initial symptoms: lymph nodes 1, fatigue
- Progression: bone marrow impairment (anemia, thrombocytopenia)
- Increased susceptibility to infection
- Progressive hypogammaglobulinemia
- Long-term complications: autoimmune, Richter's transformation, 2nd cancers, infections

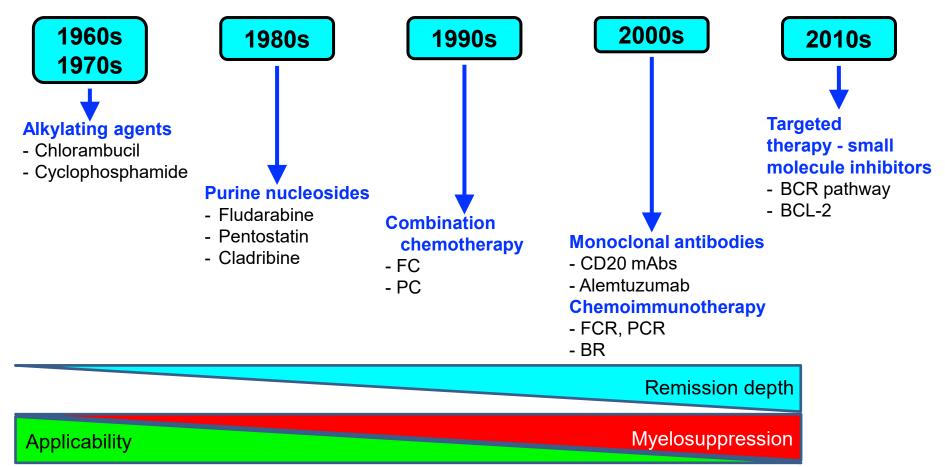
Autoimmune Complications of CLL

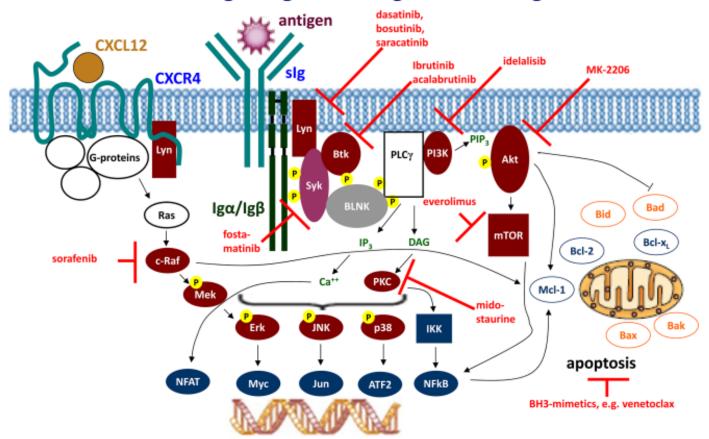
- Autoimmune hemolytic anemia
 - Coombs variable
 - Clinical hemolysis
- Pure red cell aplasia
- Immune-mediated thrombocytopenia
- Granulocytopenia
- Other autoimmune diseases uncommon

Rai System: Clinical Staging of CLL

Stage	Simplified 3-Stage System	Clinical Features	Median Survival (y)
0	Low risk	Lymphocytosis in blood and marrow only	>10
I	Intermediate risk	Lymphadenopathy	7
11		Splenomegaly ± hepatomegaly	
111	High risk	Anemia (HGB 11g/dl)	1.5 - 4
IV		Thrombopenia (PLT 100K	()

Rai et al. Blood. 1975;46:219


IWCLL-NCI: Indications to Initiate Treatment for CLL


- Constitutional symptoms referable to CLL
- Progressive marrow failure
- Autoimmune anemia +/- thrombocytopenia poorly responsive to steroids or other
- Massive (>6 cm) or progressive splenomegaly
- Massive (>10 cm) or progressive lymphadenopathy
- Progressive lymphocytosis, >50% increase over 2 months or LDT < 6 months

• NO EARLY TREATMENT, EVEN FOR HIGH-RISK

Hallek et al Blood 2008;111:5446-5456

Evolution of First-line Treatments for CLL

Survival signaling in CLL: targets of novel agents

Hallek, M., Am J Hem. 92:946, 2017

Therapeutic Agents for CLL

Chemotherapy	CD20 Antibody	ВТКі	РІЗКі	BCL-2i	Others
Chlorambucil	Rituximab	Ibrutinib	Idelalisib	Venetoclax	Lenalidomide
Fludarabine	Obinutuzumab	Acalabrutinib	Duvelisib		CAR-T cells
Cyclophosphamide	Ofatumumab	Zanubrutinib	Umbralisib		
Bendamustine		Pirtobrutinib			
		Nemtabrutinib			
		Tirabrutinib			
		CG-806 (Aptose)			
		Vecabrutinib			

FDA-approved for 1L treatment of CLL in US; FDA-approved for >1L treatment of CLL in US; Not FDA-approved in US

Generalizations about Treatments for CLL

- Treatment for indication, no early treatment first-line & relapse CLL
- Most patients are >70 yrs, have comorbidities and more toxicities
- Del(17p)/TP53-M; complex = high-risk, even with continuous treatment
- Shorter PFS with finite-duration treatment for: IGHV-UM; del(17p); del(11q)
- Deeper response = longer remission with finite-duration therapy for both treatment-naïve and relapsed/refractory
- Relapsed disease is not necessarily refractory to finite-duration targeted treatment retreatment is option, remission duration important
- Progression while <u>on</u> targeted therapy is resistance

Important for Selecting Treatment in CLL

- del(17p) status by FISH: can change²
 - Know % of cells with deletion
- TP53 mutation status: can change²
- IGHV mutation status (for first line): does not change¹

• Age and comorbidities are considerations

• *BTK* and *PLCG2* mutation status (in BTKi treated): **can change**³

1. Crombie. Am J Hematol. 2017;92:1393. 2. Chauffaille. Hematol Transfus Cell Ther. 2020;42:261. 3. Hallek. Am J Hematol. 2019;94:1266.

BTKi-*vs.* **BCL-2i-**based Treatment

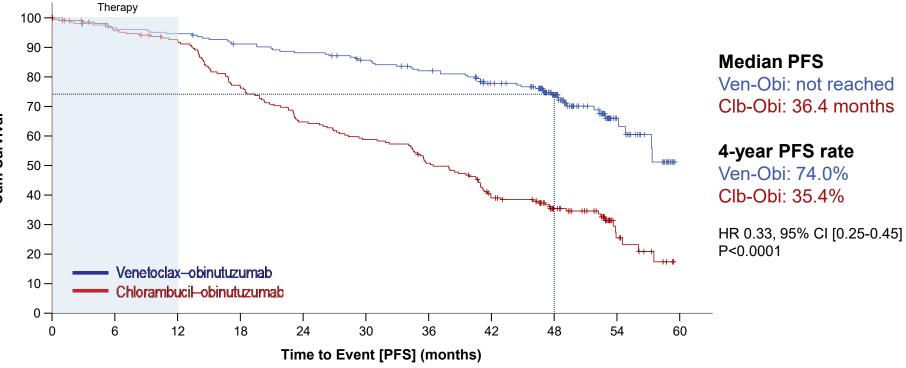
BTK Inhibitor¹⁻⁴

- Easy initiation
- Continuous and indefinite therapy
- Very low TLS risk
- More cardiac risk
- Some favor in del(17p)/ mutated-TP53
- Activity in nodal disease

BCL-2 Inhibitor^{4,5}

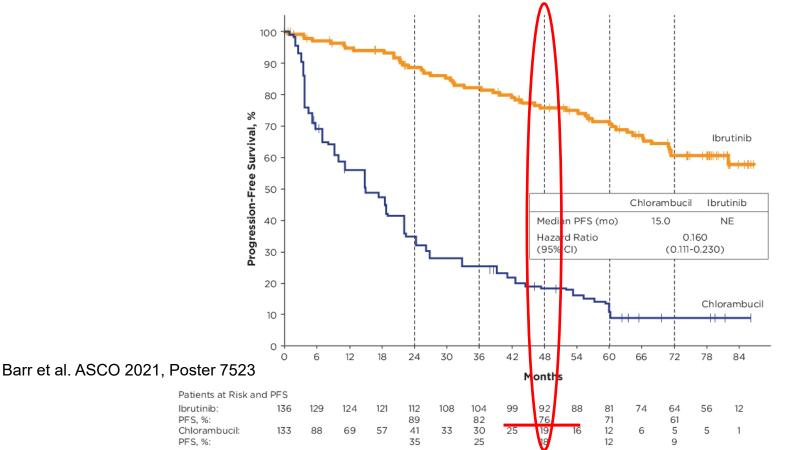
- Risk for TLS requires monitoring for initiation
- Includes CD20 mAb immunosuppression
- Fixed duration
- GFR sensitivity
- Concern for del(17p)/mutated-TP53
- Activity in BM and blood

1. Acalabrutinib PI. 2. Ibrutinib PI. 3. Zanubrutinib PI. 4. Awan. Am Soc Clin Oncol Educ Book. 2020;40:1. 5. Venetoclax PI.

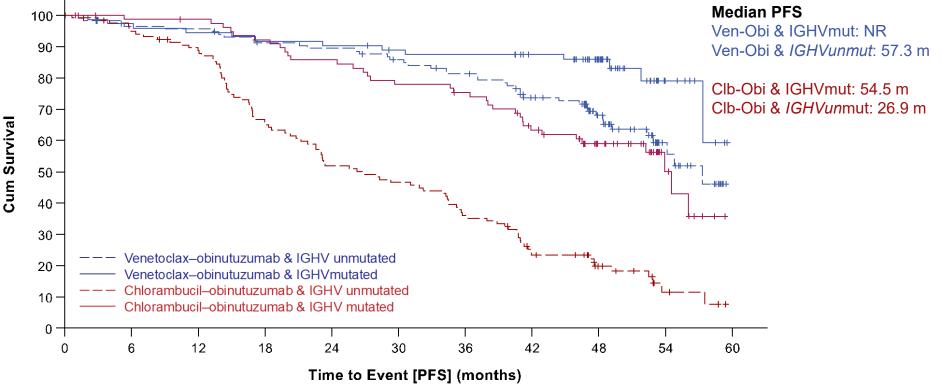

First-line Phase III Randomized Trials

- CLL14 (CIRS >6; CrCl <70 mL/min)
 - Venetoclax + Obinutuzumab vs.
 - Chlorambucil + Obinutuzumab
- **GLOW** (>65yo or ≤65yo with comorbidities)
 - Ibrutinib + Venetoclax vs.
 - Chlorambucil + Obinutuzumab
- **CLL13 / GAIA** [CIRS ≤ 6; non-del(17p)]
 - Venetoclax + Obinutuzumab vs.
 - Venetoclax + Ibruitnib + Obinutuzumab vs.
 - Venetoclax + Rituximab vs.
 - FCR / BR
- RESONATE-2
 - Ibrutinib vs.
 - Chlorambucil
- **ILLUMINATE** (PCYC-1130) (>65yo or ≤65yo with comorbidities)
 - Ibrutinib + Obinutuzumab vs.
 - Chlorambucil + Obinutuzumab

- ECOG E1912 [<70yo; non-del(17p)]
 - Ibrutinib + Rituximab vs.
 - FCR
- Alliance (A041202) (>65yo)
 - Ibrutinib vs.
 - Ibrutinib + Rituximab vs.
 - BR
- **ELEVATE-TN** (>65yo or younger with CIRS score >6, or CrCl <70 mL/min)
 - Acalabrutinib vs.
 - Acalabrutinib + Obinutuzumab
 - Chlorambucil + Obinutuzumab
- SEQUOIA [≥65 yo OR unsuitable for FCR; non-del(17p)]
 - Zanubrutinib vs.
 - BR

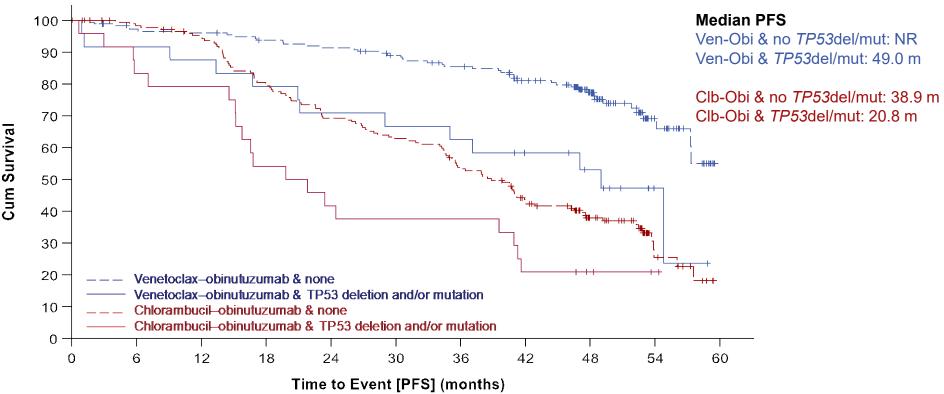

Progression-free Survival

Median observation time 52.4 months

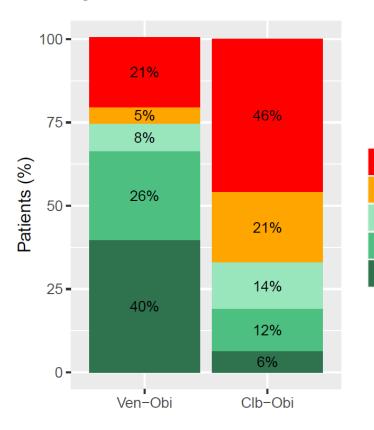

Al-Sawaf et al. EHA 2021, Abstract S146

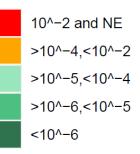
RESONATE-2: First-line, Age >65yrs Ibrutinib Prolonged PFS Over Chlorambucil

Progression-free Survival – IGHV Status


Median observation time 52.4 months

Al-Sawaf et al. EHA 2021, Abstract S146


Progression-free Survival – TP53 Status

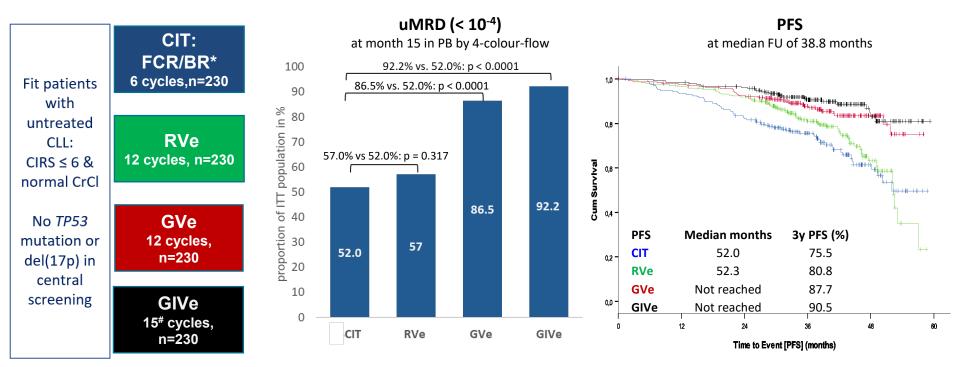

Median observation time 52.4 months

Al-Sawaf et al. EHA 2021, Abstract S146

CLL14 MRD Results MRD by NGS at EoT

uMRD rate at EoT

- Ven-Obin: 74%
- Clb-Obin: 32%


What happens after treatment completion?

> Fischer et al, N Engl J Med, 2019 Al-Sawaf et al, Lancet Oncol, 2020

CLL14: Most Common ≥ Grade 3 Adverse Events

	Venetoclax-obinutuzumab (N=212)			obinutuzumab 214)
	During Treatment	After Treatment	During Treatment	After Treatment
Neutropenia	51.9%	4.0%	47.2%	1.9%
Thrombocytopenia	13.7%	0.5%	15.0%	0.0%
Anemia	7.5%	1.5%	6.1%	0.5%
Febrile neutropenia	4.2%	1.0%	3.3%	0.5%
Leukopenia	2.4%	0.0%	4.7%	0.0%
Pneunomia	3.3%	3.0%	2.8%	1.4%
Infusion-related reaction	9.0%	0.0%	9.8%	0.5%
Tumour lysis syndrome	1.4%	0.0%	3.3%	0.0%

CLL13/GAIA: venetoclax-based treatments vs. CIT in younger/fit patients

* \leq 65 years: FCR, > 65 years: BR; [50% FCR / 50% BR] # continuation of ibrutinib up to cycle 36 if MRD detectable

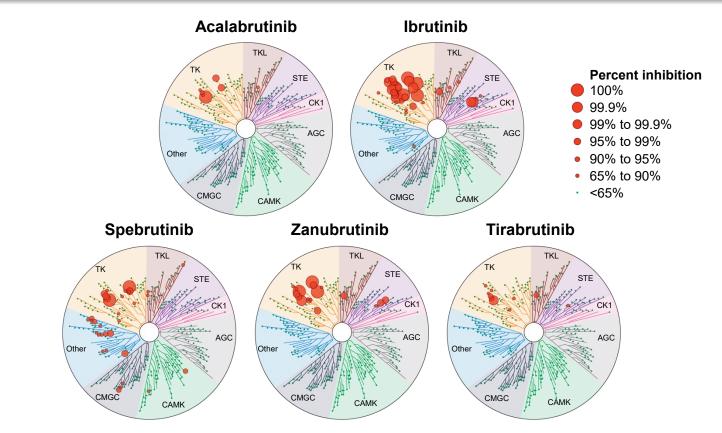
Eichhorst et al, ASH2021 and EHA2022

GAIA/CLL13: Multivariate analysis for CIT and RVe/GVe/GIVe

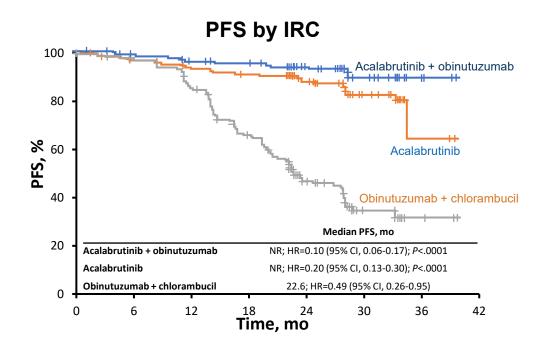
Full trial analysis for PFS							
	HR	95%CI	р				
GVe vs. CIT	0.42	0.27-0.65	<0.001				
GIVe vs. CIT	0.33	0.21-0.52	<0.001				
U-IGHV	2.43	1.70-3.47	<0.001				
СКТ	1.98	1.42-2.77	< 0.001				
Binet B/C vs. A	1.55	1.06-2.27	0.03				
NOTCH1mut	1.46	1.05-2.05	0.03				

U-IGHV, CKT and *NOTCH1* mutations were independent prognostic factors for CIT and RVe/GVe/GIVe.

RAS/RAF mutations were only prognostic with venetoclax therapy.


CIT for PFS								
	HR 95%Cl p							
U-IGHV	3.08	1.55-6.12	0.001					
>65 years	2.26	1.34-3.83	0.002					
NOTCH1mut	2.12	1.16-3.88	0.01					
del(11q)	1.89	1.06-3.36	0.03					
СКТ	1.87	1.06-3.27	0.03					

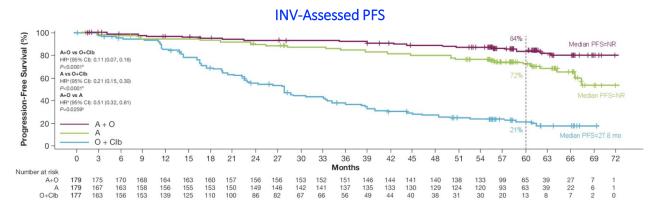
RVe/GVe/GIVe for PFS							
HR 95%CI p							
U-IGHV	1.85	1.20-2.84	0.005				
RAS/RAFmut	1.87	1.14-3.06	0.01				
СКТ	1.66	1.07-2.56	0.02				
b2MG>3.5mg/L	1.56	1.03-2.36	0.04				
NOTCH1mut	1.54	1.02-2.33	0.04				


Tausch et al. ASH 2022, Abstract #345

Differences in Overall Kinase Selectivity Among BTKi¹

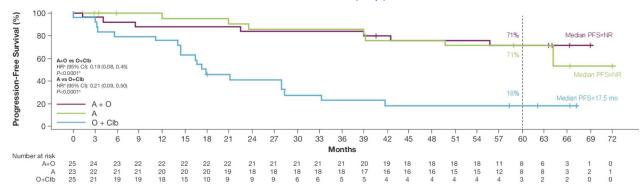
1. Kaptein A et al. 60th American Society of Hematology Annual Meeting & Exposition (ASH 2018). Abstract 1871.

ELEVATE-TN: PFS (Primary Endpoint)

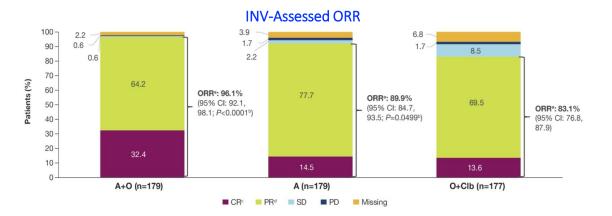

Estimated PFS at 24 months

- 93% with acalabrutinib + obinutuzumab (95% CI, 87%-96%)
- 87% with acalabrutinib monotherapy (95% CI, 81%-92%)
- 47% with obinutuzumab + chlorambucil (95% CI, 39%-55%)

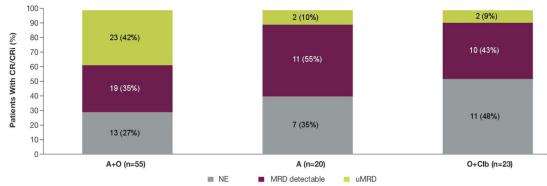
Post-hoc analysis: HR for PFS between acalabrutinib-obinutuzumab and acalabrutinib monotherapy was 0.49 (95% CI, 0.26-0.95)


IRC = independent review committee. Sharman JP, et al. *Lancet*. 2020;395(10232):1278-1291.

ELEVATE-TN Phase 3 Study: 5-Year Follow-Up PFS



Median follow-up: 58.2 months (range, 0.0-72.0)

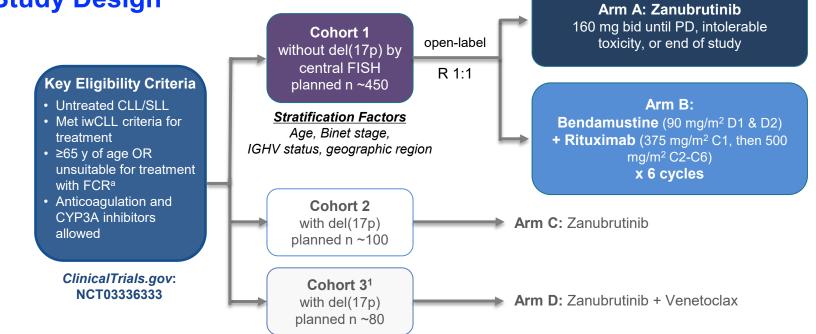

INV-Assessed PFS in Patients With del(17p) and/or Mutated TP53

ELEVATE-TN Phase 3 Study: 5-Year Follow-Up ORR and CR

MRD Status in Patients With CR/CRi

ELEVATE-TN Phase 3 Study: 5-Year Follow-Up AEs of Clinical Interest

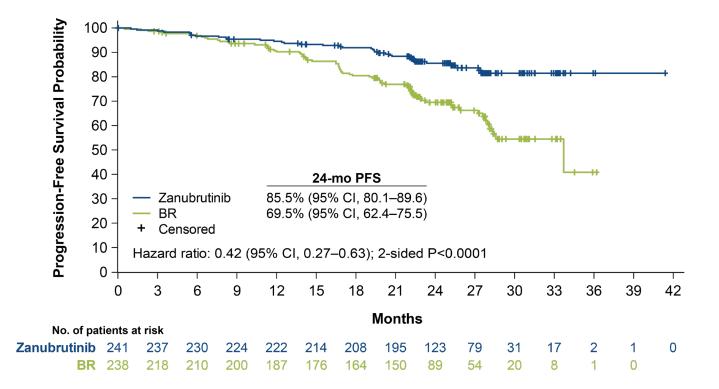
All of Clinical Interact $n/9/$	A+O (r	A+O (n=178)		A (n=179)		O+Clb (n=169)	
AEs of Clinical Interest, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Cardiac events	43 (24.2)	17 (9.6)	39 (21.8)	18 (10.1)	13 (7.7)	3 (1.8)	
AFib	11 (6.2)	2 (1.1)	13 (7.3)	2 (1.1)	1 (0.6)	0	
Bleeding	88 (49.4)	8 (4.5)	78 (43.6)	6 (3.4)	20 (11.8)	0	
Major bleeding	12 (6.7)	8 (4.5)	8 (4.5)	6 (3.4)	2 (1.2)	0	
Hypertension	17 (9.6)	8 (4.5)	16 (8.9)	7 (3.9)	6 (3.6)	5 (3.0)	
Infections	140 (78.7)	50 (28.1)	135 (75.4)	35 (19.6)	75 (44.4)	14 (8.3)	
SPMs	31 (17.4)	14 (7.9)	27 (15.1)	7 (3.9)	7 (4.1)	3 (1.8)	
Excluding non-melanoma skin	17 (9.6)	12 (6.7)	13 (7.3)	5 (2.8)	3 (1.8)	2 (1.2)	


Patient Disposition

- Treatment still ongoing: A+O 64.8% and A 59.8%
- Discontinuation rates: A+O 35.2%, A 40.2%, O+Clb 22.6%
 - Due to AEs: 17.3%, 15.6%, 14.1%
 - Due to PD: 5.6%, 10.1%, 1.7%

Safety

- Most common AEs were similar to prior analyses
- AEs that occurred more frequently in A+O and A vs O+Clb included headache, diarrhea, and arthralgia
- AEs that occurred more frequently with O+Clb included neutropenia, nausea, and IRR


SEQUOIA (BGB-3111-304) Study Design

^aDefined as Cumulative Illness Rating Scale >6, creatinine clearance <70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years. C, cycle; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CYP3A, cytochrome P450, family 3, subfamily A; D, day; del(17p), chromosome 17p deletion; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in-situ hybridization; IRC, independent review committee; IGHV, gene encoding the immunoglobulin heavy chain variable region; iwCLL, International Workshop on CLL; ORR, overall response rate; PD, progressive disease; R, randomized. 1. Tedeschi A, et al. ASH 2021. Abstract 67.

Tam, et al. ASH 2021, Abstract #396

SEQUOIA: Progression-Free Survival Per IRC Assessment

BR, bendamustine + rituximab; IRC, independent review committee; PFS, progression-free survival.

Tam, et al. ASH 2021, Abstract #396

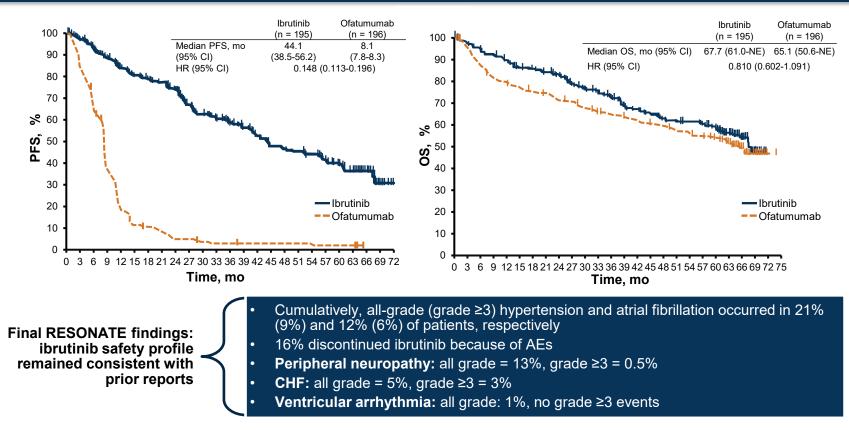
SEQUOIA: Adverse Events of Interest

	<u>Arn</u> Zanub (n=2	rutinib	<u>Arm B</u> Bendamustine + Rituximab (n=227ª)		
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Anemia	11 (4.6)	1 (0.4)	44 (19.4)	4 (1.8)	
Neutropenia ^b	38 (15.8)	28 (11.7)	129 (56.8)	116 (51.1)	
Thrombocytopenia ^c	11 (4.6)	5 (2.1)	40 (17.6)	18 (7.9)	
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)	
Atrial fibrillation	8 (3.3)	1 (0.4)	6 (2.6)	3 (1.3)	
Bleeding ^d	108 (45.0)	9 (3.8)	25 (11.0)	4 (1.8)	
Major bleeding ^e	12 (5.0)	9 (3.8)	4 (1.8)	4 (1.8)	
Diarrhea	33 (13.8)	2 (0.8)	31 (13.7)	5 (2.2)	
Hypertension ^f	34 (14.2)	15 (6.3)	24 (10.6)	11 (4.8)	
Infections ^g	149 (62.1)	39 (16.3)	127 (55.9)	43 (18.9)	
Myalgia	9 (3.8)	0 (0.0)	3 (1.3)	0 (0.0)	
Other cancers	31 (12.9)	17 (7.1)	20 (8.8)	7 (3.1)	
Dermatologic other cancers	16 (6.7)	2 (0.8)	10 (4.4)	2 (0.9)	

^aSafety was assessed in patients who received ≥1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment. ^bNeutropenia, neutrophil count decreased, or febrile neutropenia. CThrombocytopenia or platelet count decreased. Pooled term of all-cause bleeding including bruising, petechiae, purpura, and contusion. Major bleeding included all grade ≥3, serious, and any-grade central nervous system hemorrhage. ^fHypertension, blood pressure increased, or hypertensive crisis. ^gAll infection terms pooled. AE, adverse event.

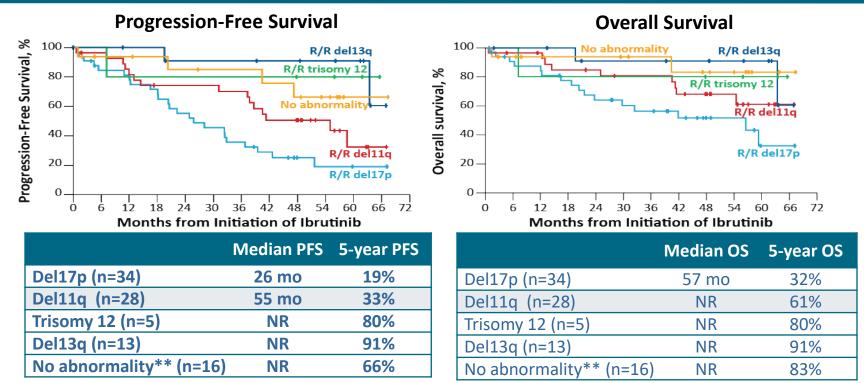
Select Ongoing First-line Phase III Clinical Trials

Trial	Subgroup	Ν	Status*	MRD	Treatment Arms			
GAIA/CLL13 (NCT02950051)	Fit pts	926	Enrolled	Co-Primary	lbrVenOb	VenOb	VenR	FCR/BR
EA9161 (NCT03701282)	Fit, 18-69 yo	720	Enrolled	Secondary	lbrVenOb	lbrOb		
A041702 (NCT03737981)	≥70 yo	454	Enrolled	Secondary	lbrVenOb	lbrOb		
ACE-CL-311 (NCT03836261)	All pts	780	Enrolling	Secondary	AcaVenOb	AcaVen		FCR/BR
CRISTALLO (NCT04285567)	Fit pts [no del(17p)]	165	Enrolling	Primary	VenOb			FCR/BR
CLL17 (NCT04608318)	All pts	897	Enrolling	Secondary	lbrVen	VenOb	lbr	
GCLLSG (NCT05197192)	High-risk	650	Enrolling	Secondary	AcaVenOb	VenOb		
MAJIC (NCT05057494)	All	600	Enrolling	Secondary	AcaVen	VenOb		


Standard Treatments for Rel / Ref CLL by Disease Characteristics

- Relapsed / Refractory CLL Durable disease control
 - Del(17p) / m-TP53
 - Age / comorbidities
 - Prior CIT
 - Prior BTK-inhibitor ± CIT
 - Fludarabine-refractory (CIT)
 - Ibrutinib-refractory
 - Idelalisib-refractory

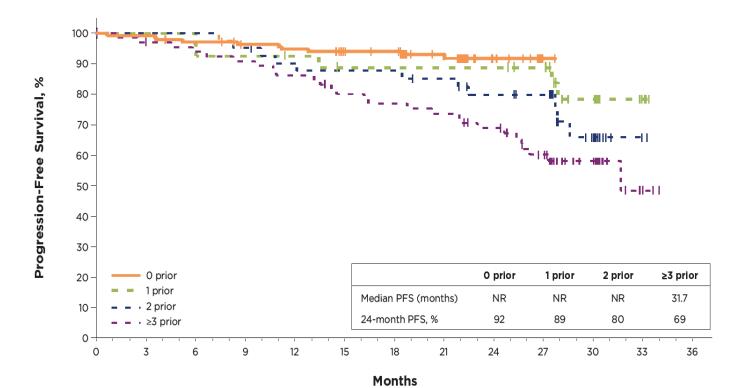
Treatment Options:


- BTK-inhibitor
- BCL-2-inhibitor ± rituximab
- PI3K-inhibitor + rituximab
- Lenalidomide \pm CD20 mAb
- ----CIT
- Allo-SCT
- Clinical Trial

Phase 3 RESONATE Study in Relapsed CLL: Ibrutinib vs Ofatumumab—Outcomes¹⁻³

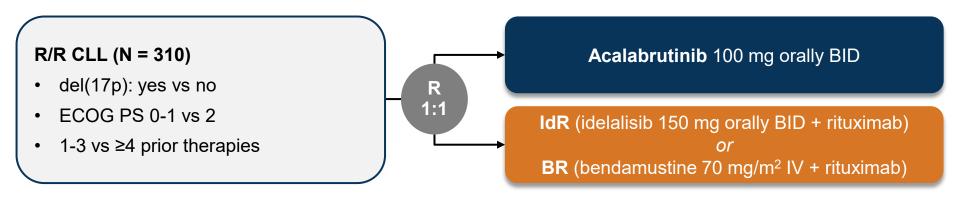
1. Byrd JC et al. N Engl J Med. 2014;371:213-223. 2. Byrd JC et al. J Clin Oncol. 2017;35:7510. 3. Munir T et al. Am J Hematol. 2019;94:1353-1363.

5-Year Experience With Ibrutinib Monotherapy Survival by FISH in R/R Patients*

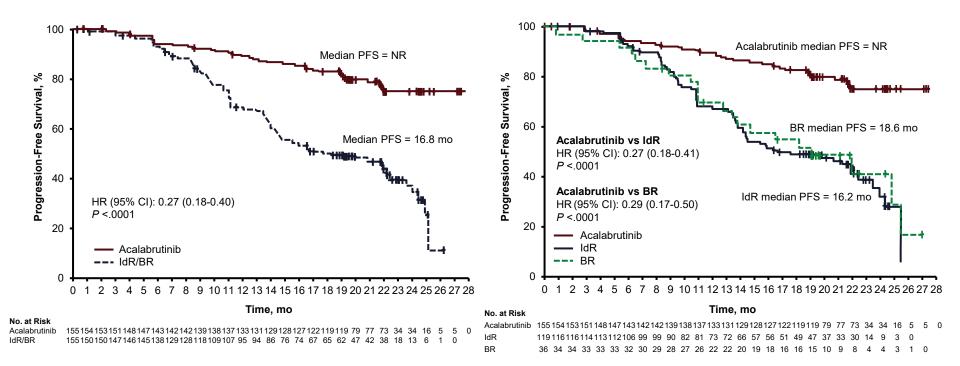


*Only 2 patients in the TN group showed PD or death. Subgroup analyses, therefore, focused on the R/R population.

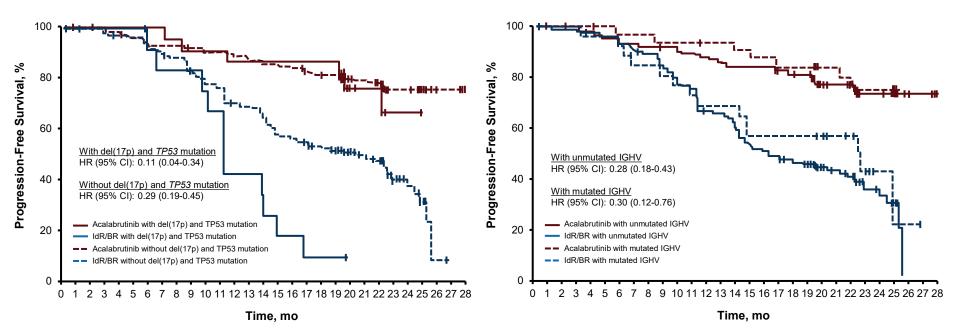
**No del17p, del11q, del13q, or trisomy 12; in hierarchical order for del17p, and then del11q.


O'Brien et al. ASH 2016, Abstract 233

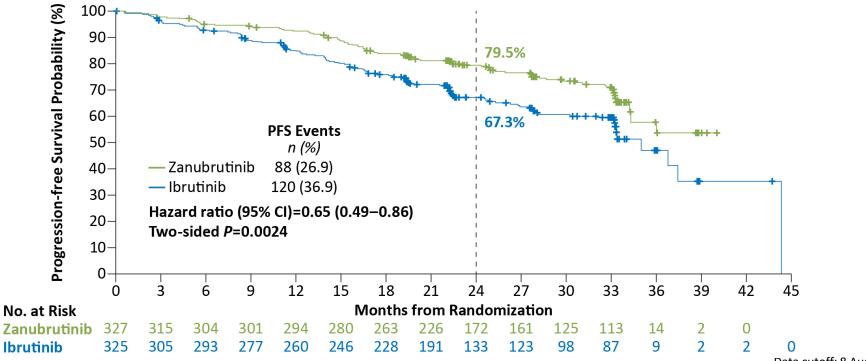
PFS by Prior Lines of Therapy: RESONATE and RESONATE-2


O'Brien et al ASCO 2016

Phase 3 ACE-CL-309/ASCEND: Acalabrutinib vs IdR or BR in R/R CLL¹


- Crossover from IdR/BR arm allowed after confirmed disease progression
- Interim analysis was planned after occurrence of ~79 PFS events (2/3 of primary event goal)
- Primary endpoint: PFS (assessed by IRC)
- Key secondary endpoints: ORR (assessed by IRC and investigator), duration of response, PFS (assessed by investigator), OS

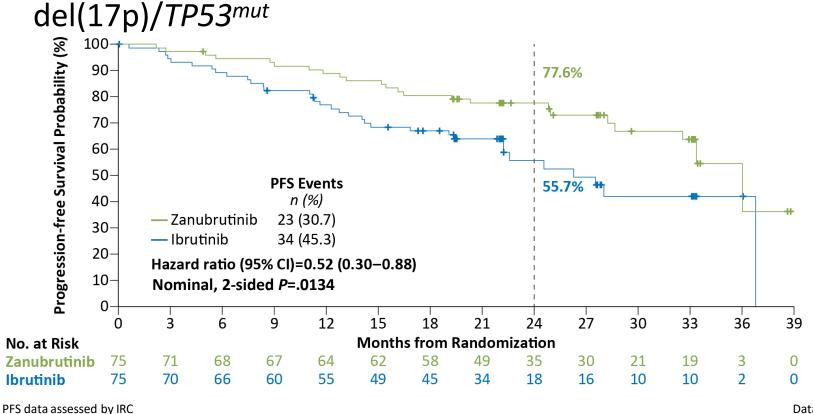
Phase 3 ACE-CL-309/ASCEND: Acalabrutinib Improves PFS in R/R CLL¹


1. Ghia P et al. ASCO 2020. Abstract 8015.

Phase 3 ACE-CL-309/ASCEND: PFS in Del(17p) and IGHV Subgroups¹

ALPINE: Zanubrutinib PFS by IRC Superior to Ibrutinib

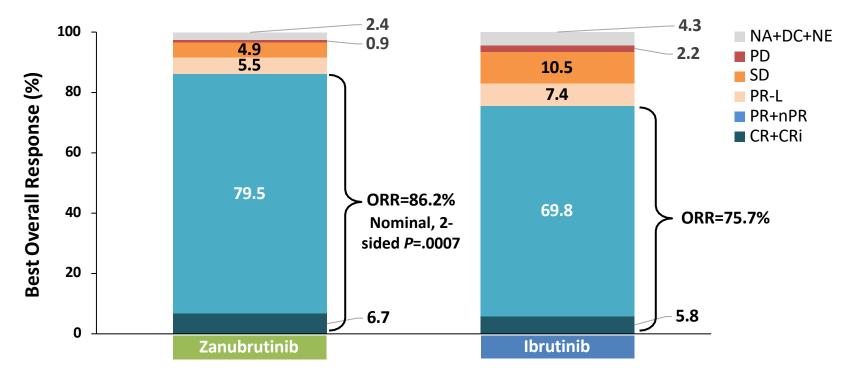
Median study follow-up of 29.6 months



Data cutoff: 8 Aug 2022

American Society of Hematology

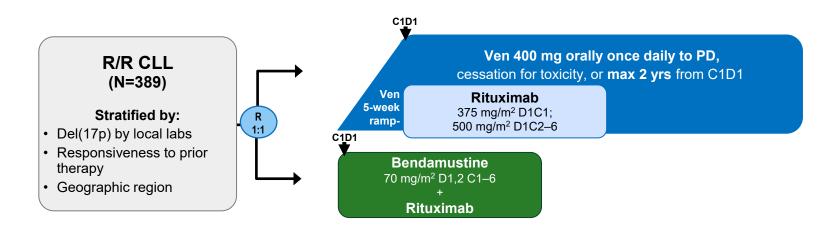
Brown et al. ASH 2022, LBA-6


ALPINE: Zanubrutinib Improved PFS in Patients with

Data cutoff: 8 Aug 2022

Brown et al. ASH 2022, LBA-6

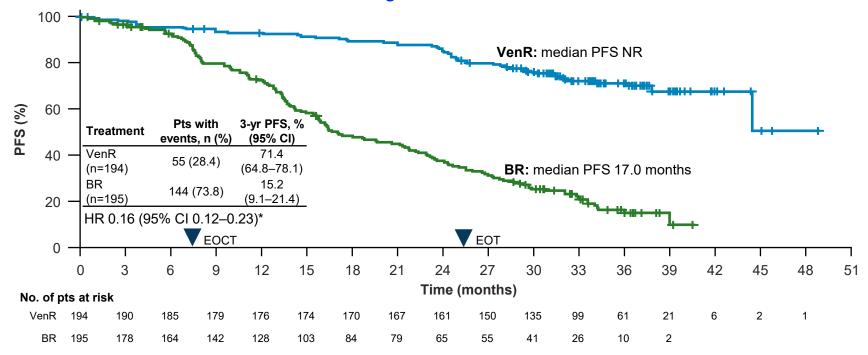
ALPINE: Zanubrutinib Showed Higher ORR Assessed by IRC


CR, complete response; CRi, complete response with incomplete bone marrow recovery; nPR, nodular partial response; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable response; PD, progressive disease; NA, not assessed; DC, discontinued prior to first assessment; NE, not evaluable.

Data cutoff: 8 Aug 2022

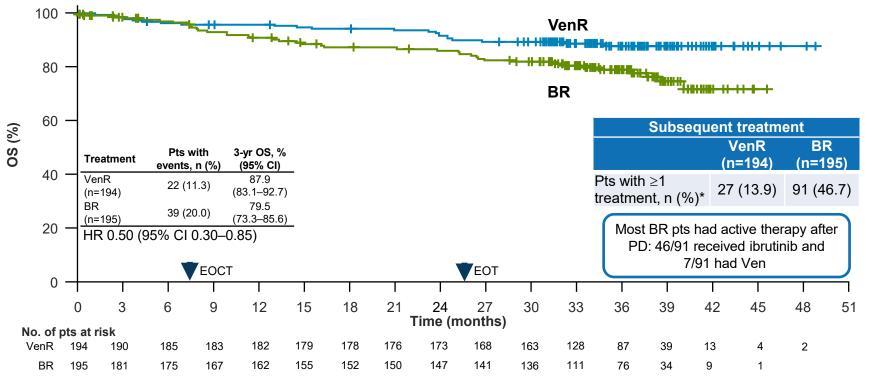
American Society of Hematology

Brown et al. ASH 2022, LBA-6


MURANO study design

- Primary endpoint: investigator-assessed PFS; secondary endpoints include rate of undetectable MRD (uMRD)
- Clinical response and MRD in PB/BM during Ven single-agent and at follow-up visits were assessed every 3 months for 3 yrs, then every 6 months thereafter, or until PD
- Primary analysis was pre-planned at 140 PFS events; this follow-up analysis was conducted 1 yr later

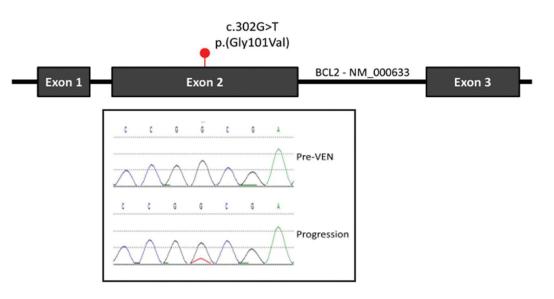
MURANO: Superior PFS with VenR vs BR maintained with 1 additional year of follow-up: update


Investigator-assessed PFS

 Median follow-up 36.0 months (range 0.0–48.6); VenR 36.1 months, BR 35.9 months *Stratified HR

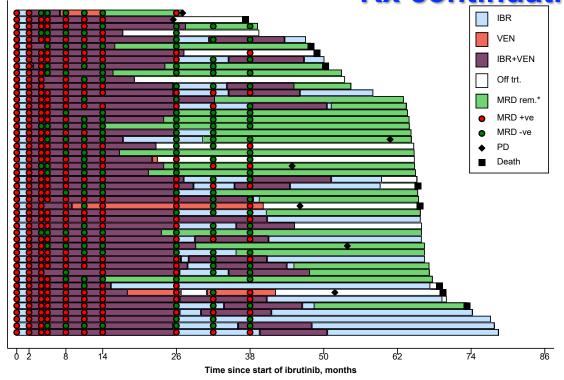
Seymour et al; ASH2018, Abstract 184

Clinically meaningful improvement in OS with VenR vs BR maintained after 3 years


*Unstratified HR 0.51 (95% CI 0.30-0.86)

Median follow-up: 36.0 months (range 0.0-48.6). Median per arm: VenR 36.1 months; BR 35.9 months

Seymour et al; ASH2018, Abstract 184


BCL2 coding mutation detected in four patients with CLL-type progression on venetoclax

BCL2 c.302G>T, p.(Gly101Val) detected in samples from
7/15 patients sequenced at CLL-type progression on venetoclax

Blombery et al; ASH2018, Abstract LBA-7

IBR + VEN for R/R CLL Change in MRD after Rx discontinuation and Rx continuation

- 9 patients continued on ibrutinib after 60 months
- 11 disease progression
- 9 Deaths
- 17 patients continue in uMRD (<10⁻⁴) after discontinuation at any time point

Date of data lock: 6-Nov-2020

* Stopped treatment due to MRD negative remission

Munir et al. ASH 2022, Abstract #91

Date of data lock: 01-Nov-2022

Differentiated Kinase Inhibition Profile

		TEC Family Kinases					Inhibition of Other Kinases	
Irreversible (covalent)	IC ₅₀ (nM)	BTK	ITK	Tec [#]	TXK [*]	BMX*	Notable Target Kinases	
	lbrutinib ²	0.5	10.7	78	2.0 ³	0.8	>10 more: EGFR family	
	Acalabrutinib ³	5.1	>1000	93	368	46	Selective	
	Zanubrutinib ⁴	0.22	30	1.9	n/a	n/a	N/A (not published)	
e int)	Vecabrutinib ¹	3	14	14	474	224	Selective -4 non-Tec family kinases: SRC family, NEK11	
Reversible on-covalent)	ARQ 531 ⁵	4.23	>10000	5.8	36.4	5.23	>20 more: SRC & TRK families, RAF1, MEK1	
e Ve	LOXO-305 ⁶	3.15	>5000	1234	209	1155	Very Selective	
R(nor	CG-806 ⁷ (Aptose)	8.4	4.3	>1000	n/a	14.5	18 w/ IC ₅₀ <10 nM: FLT3 (wt, ITD) c-MET, TRK family & Aurora kinases	

n/a=not available

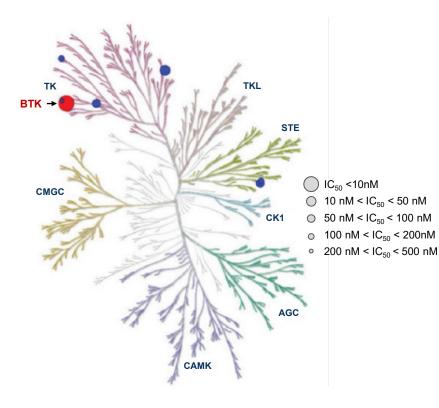
* Determined with vecabrutinib free base (also relevant for SRC and EGFR)

Activated (also relevant for LCK)

¹ Neuman et al., ASH 2016

² Honigberg et al., PNAS 2010

³ Byrd et al., NEJM 2016


⁴ Tam et al., ASH 2016

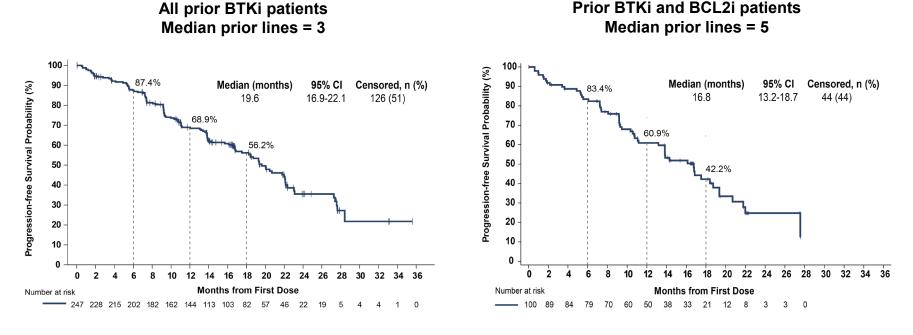
⁵ Eathiraj et al., Pan Pacific Lymphoma Conference 2016

⁶ Brandhuber et al., SOHO 2018

⁷ Zhang et al, EHA 2018

LOXO-305 Potently and Selectively Inhibits BTK and *BTK* C481S Kinase Activity¹

Kinase	Percent of Control at 1 μΜ LOXO-305, [ATP] = Κ _Μ , %	IC₅₀ [ATP] = K _M , nM	Fold Selectivity Over BTK
BTK C481S	ND	1.42	0.5
BTK	1.8	3.15	1.0
ERBB4	2.6	13.3	4.2
BRK	10.3	54.3	17
MEK2	7.6	82.7	26
MEK1	12.2	147	47
YES1	38.6	157	50
ТХК	19.6	209	66
BMX	70.2	1,155	367
TEC	64.6	1,234	392
BLK	72.8	4,100	1,302
EGFR	60.6	>1,000	>317
ІТК	103	>5,000	>1,587
SRC	90.5	>5,000	>1,587
JAK1	96.4	>30,000	>9,524
JAK2	94.5	ND	ND
JAK3	97	ND	ND

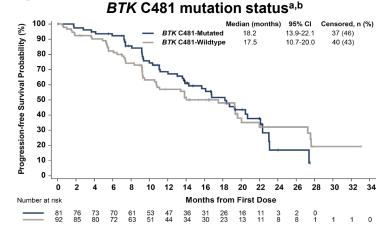

1. Brandhuber B et al. Society of Hematologic Oncology Sixth Annual Meeting (SOHO 2018). Abstract CLL-200.

Pirtobrutinib: Overall Response Rate in CLL/SLL Subgroups

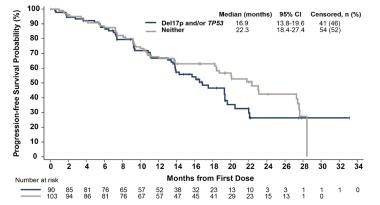
ran Kespt	Responders/Patients		ORR°, % (95% CI)	Re	esponders/Patients		ORRº, % (95%
All Patients	203/247	⊢ ∳ I	82.2 (76.8-86.7)	BTK C481 Mutation Status ^b			
Age (years)				Mutated	72/81	¦	88.9 (80.0-94.8)
<75	162/199	⊢∙	81.4 (75.3-86.6)	Unmutated	68/92		73.9 (63.7-82.5)
≥75	41/48	 ● _	85.4 (72.2-93.9)		00/32		13.8 (03.1-02.3)
ECOG PS at Baseline				PLCg2 Mutation Status ^b			
0	110/133	⊢♦ -1	82.7 (75.2-88.7)	Mutated	10/18	⊢ − −1	55.6 (30.8-78.5)
1	79/97	⊢● -1	81.4 (72.3-88.6)	Unmuted	130/155	⊢ ⊢ ⊣	83.9 (77.1-89.3)
2 Rai Staging	14/17	⊢ • • • • • • • • • • • • • • • • • • •	82.4 (56.6-96.2)	IGHV Mutation			
Stage 0 - II	106/131	⊢•́⊣	80.9 (73.1-87.3)	Mutated	23/30	⊢ ● ¦	76.7 (57.7-90.1)
Stage III - IV	84/102	⊢∳-1	82.4 (73.6-89.2)	Unmutated	139/168	⊢∳⊣	82.7 (76.2-88.1)
Prior Lines of Systemic Th	erapies			Complex Karyotype			
≤3	111/131	⊢¦e⊣	84.7 (77.4-90.4)	Yes	22/24		91.7 (73.0-99.0)
>3	92/116	⊢•¦-1	79.3 (70.8-86.3)	No	25/33		75.8 (57.7-88.9
Prior BTKi and BCL2i ^a		1		del(11q)			
Yes	79/100	⊢•¦-	79.0 (69.7-86.5)	Yes	41/44		93.2 (81.3-98.6)
No	124/147	⊢ <mark>•</mark> -1	84.4 (77.5-89.8)	No	102/132		77.3 (69.2-84.1)
Prior BTKi and Stem Cell T	Fransplant ^a	1					
Yes	5/6	⊢	83.3 (35.9-99.6)	del(17p) and/or <i>TP53</i> Mutation			
No	198/241	н ф н	82.2 (76.7-86.8)	Yes	78/90	⊢¦●-	86.7 (77.9-92.9)
Prior BTKi and CIT ^a			_	No	81/103	⊢•H I	78.6 (69.5-86.1)
Yes	155/188	⊢∳⊣	82.4 (76.2-87.6)	Reason for any BTKi Discontinuation	on		
No	48/59	⊢ – ♦ –1	81.4 (69.1-90.3)	Disease Progression	153/190	⊢ ∳ ⊣	80.5 (74.2-85.9)
Prior BTKi, CIT, and BCL2i	а			Toxicity/Other	50/57	⊢+•●-1	87.7 (76.3-94.9
Yes	66/84	⊢-●¦-1	78.6 (68.3-86.8)				
No	137/163	⊢ ● -I	84.0 (77.5-89.3)		0 25	50 75 100	
Prior BTKi, CIT, BCL2, and	l PI3Ki ^a	1					
Yes	21/27		77.8 (57.7-91.4)				
No	182/220	⊢●┥	82.7 (77.1-87.5)				

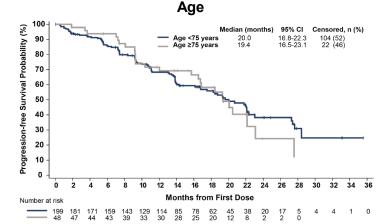
Data cutoff date of 29 July 2022. ^aPrior therapy labels indicate that patients received at least the prior therapy, rows are not mutually exclusive. ^bPatients with available mutation data who progressed on any prior BTKi. ^cResponse includes partial response with lymphocytosis. Response status per iwCLL 2018 according to independent review committee assessment. **Mato et al. ASH 2022, Abstract**

Pirtobrutinib: Progression-Free Survival in CLL/SLL Patients who Received Prior BTKi Treatment

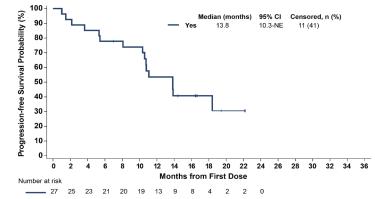


Median follow-up of 19.4 months for patients who received prior BTKi


 Median follow-up of 18.2 months for patients who received prior BTKi and BCL2i


Mato et al. ASH 2022, Abstract

Pirtobrutinib: Progression-Free Survival in CLL/SLL Subgroups



del(17p) and/or TP53 mutation^a

Prior BTKi, CIT, BCL2i, and PI3Ki therapy

Data cutoff date of 29 July 2022. Response status per iwCLL 2018 according to independent review committee assessment. *BTK C481 mutation status, del(17p), and TP53 mutation status were centrally determined and based on pre-treatment samples. *Patients with available mutation data who progressed on any prior BTKi.

Idelalisib

- FDA approved for relapsed CLL appropriate for rituximab monotherapy
- Twice daily dosing, continuous + rituximab
- Toxicities: elevated LFTs, GI / diarrhea; less common colitis and pulmonary
- Most responses are partial, residual disease
- Median PFS was 19.4 months
- Efficacy in relapsed CLL with del(17p) & del(11q)
- Improved OS vs. rituximab + placebo
- Infection concerns in first-line

THANK YOU!

wwierda@mdanderson.org