

Memorial Sloan Kettering Cancer Center

Transplanting the MRD Negative Myeloma Patients for a Deeper Remission After Initial Therapy

Saad Z. Usmani, MD MBA FACP Chief of Myeloma Service

Disclosures

Memorial Sloan Kettering Cancer Center₁₄

- Research funding: Amgen, Array Biopharma, BMS, Celgene, GSK, Janssen, Merck, Pharmacyclics, Sanofi, Seattle Genetics, SkylineDX, Takeda.
- Consulting: Abbvie, Amgen, BMS, Celgene, EdoPharma, Genentech, Gilead, GSK, Janssen, Oncopeptides, Sanofi, Seattle Genetics, SecuraBio, SkylineDX, Takeda, TeneoBio.
- Speaker: Amgen, BMS, Janssen, Sanofi.

Memorial Sloan Kettering Cancer Center,

History of MM Treatments

CAR, chimeric antigen receptor; HDT, high-dose therapy; OS, overall survival; PD-1, programmed cell death 1; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival; R/R, relapsed/refractory.

Laubach J, et al. Annu Rev Med. 2011;62:249-264.
 Rajkumar SV. Am J Hematol. 2020;95(5):548-567.
 Palumbo A, et al. N Engl J Med. 2014;371(10):895-905.
 Zanwar S, et al. Blood Cancer J. 2020;10(8):84. doi: 10.1038/s41408-020-00350-x.
 S Food and Drug Administration. FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma. https://www.fda.gov/drugs/drug-approval-and-databases/fda-granted-accelerated-approval-belantamab-mafodotin-blmf-multiple-myeloma. Updated August 6, 2020. Accessed May 6, 2021.
 S Food and Drug Administration. FDA approves first cell-based gene therapy for adult patients with multiple myeloma. https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-multiple-myeloma. Updated March 27, 2021. Accessed May 17, 2021.

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

Staging and Cytogenetic Risk-Assessment

		Risk ²	Features
Stage ¹	R-ISS ¹	Standard	Trisomies t(11;14)
I	Serum albumin ≥3.5 g/dL ⁻¹ Serum β2M <3.5 mg/L ⁻¹ No high-risk cytogenetics Normal LDH level		t(6;14)
			t(14;14) t(14;16)
II	Not stage I or III		Del(17n)
	Serum β2M >5.5 mg/L ⁻¹ High-risk cytogenetics: t(4;14), t(4;16), or del(17p) or elevated LDH	High	<i>p53</i> mutation Gain/Amp 1q High plasma cell S-phase
			GEP high-risk signatures Circulating Plasma Cells

1. Palumbo A, et al. J Clin Oncol. 2015;33:2863-2869; 2. Costa LJ, Usmani SZ. J Natl Compr Canc Netw. 2020;18(12):1730-1737.

Treatment Paradigm For Newly Diagnosed Multiple Myeloma

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

₽

Memorial Sloan Kettering Cancer Center

Memorial Sloan Kettering Cancer Center

MRD Negativity and Survival Outcomes

OS

Munshi et al., Blood Adv 2020; 4: 5988-99.

Approach to NDMM

Transplant eligible

- Induction : Dara-RVd, Dara-KRd, Dara-VTd, RVd, KRd, CyBorD
- Maintenance: R, VR, Dara-R, Dara
- Expected PFS/OS:
 - Standard Risk: 80 months/130+ months
 - High Risk: 40 months/80+ months

Transplant Ineligible

- DRd, VRd-lite/RVd-lite
- Expected PFS/OS:
 - Standard Risk: 36-60+ months/90+ months
 - High Risk: 24-30 months/60-72 months

SWOG So777: RVd Versus Rd in Patients Without Immediate Intent for ASCT¹

Initial Therapy RVd for eight 21-d cycles vs Rd for six 28-d cycles in patients not intending to proceed to upfront transplant, followed by Rd in both arms (N = 525)

Durie B et al. Lancet. 2017;389:519-527.

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

Memorial Sloan Kettering

Cancer Center

ŧ

IFM 2009 Study: Early vs Late ASCT

RVd 21-day Cycles R: 25 mg d 1 – 14 V: 1.3 mg/m² d 1, 4, 8, 11 d: 20 mg d 1, 2, 4, 5, 8, 9, 11, 12 <u>R Maintenance</u> R: 10-15 mg/d for 13 cycles

Primary endpoint: PFS Secondary endpoints: ORR, MRD, TTP, OS, safety

Attal M, et al. N Engl J Med. 2017;376:1311-1320.

ŧ

Superior PFS With ASCT vs RVd Alone

RVd + transplant was superior to RVd alone, even with undetectable MRD at 10⁻⁶

MRD, minimal residual disease. Perrot A. Presented at: 62nd ASH Annual Meeting and Exposition; December 5-8, 2020; Abstract 143.

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

DETERMINATION: study design and patient disposition

Richardson PG, et al. N Engl J Med. 2022 Jun 5. doi: 10.1056/NEJM0a2204925

DETERMINATION: Endpoint Readouts (Median follow-up 70 months)

Second primary malignancies

5-year cumulative incidence of SPMs (RVd-alone vs RVd+ASCT):		SPMs	RVd-alone (N=357)	RVd+ASC (N=365)
		Any, %	10.4	10.7
 All : 9.7% vs 10.8% Invasive: 4.9% vs 6.5% 		Any invasive SPM, %	5.3	6.8
• Hematologic: 1.59% vs 3.52%		Any hematologic SPM, %	2.5	3.6
		ALL, n	7	3
At time of data cutoff, among patients on the RVd-alone and RVd+ASCT arms who had hematologic SPMs, respectively: • 6/7 vs 2/3 patients with ALL alive • 6/10 patients with AML/MDS alive • 1/2 patients with CLL/CML alive • Overall, 7/9 RVd-alone vs 8/13 RVd+ASCT alive		AML/MDS, n	0	10
		CLL/CML, n	2	0
		Any solid tumor SPM, %	3.4	3.3
		Any non-invasive solid tumor SPM, %	0	0.5
		Any non-melanoma skin cancer, %	5.9	4.1

€

Memorial Sloan Kettering Cancer Center₁₄

DETERMINATION Trial: PFS by Risk

Median PFS, months	RVd-alone	RVd+ASCT
High-risk	17.1	55.5
	HR 1.99 (95% Cl 1.21–3.26)	

Median PFS, months	RVd-alone	RVd+ASCT
Standard-risk	53.2	82.3
	HR 1.38 (95% Cl 1.07–1.79)	

Richardson PG, et al. N Engl J Med. 2022 Jun 5. doi: 10.1056/NEJM0a2204925

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

GRIFFIN: Daratumumab Plus Lenalidomide, Bortezomib, and Dexamethasone in Transplant-Eligible NDMM – 24 Months of Maintenance

Study design

Memorial Sloan Kettering Cancer Center

ŧ

Key eligibility criteria: TE NDMM; 18–70 years; ECOG PS 0–2; CrCl ≥30 mL/min²

- Primary endpoint: sCR by end of consolidation
- **Secondary endpoints:** MRD negativity (NGS 10⁻ ⁵), ORR, ≥VGPR, CR, PFS, OS

^aConsolidation initiated 60—100 days post transplant; ^bPatients who complete maintenance cycles 7—32 may continue single-agent lenalidomide thereafter; ^cProtocol amendment allowed q4w dosing option. Phase 2 trial — patient enrollment between December 2016 and April 2018 Laubach JP, et al. ASH 2021, Virtual Meeting. Abstract 79

Patient disposition

n (%)	D-RVd (n=104)	RVd (n=103)
Treated with maintenance therapy	90 (87)	70 (68)
Completed maintenance therapy	67 (64)	44 (43)
Discontinued treatment during maintenance therapy	21 (20)	21 (20)
Adverse event	8 (8)	7 (7)
Progressive disease	3 (3)	7 (7)
Patient withdrawal	2 (2)	4 (4)
Lost to follow-up	2 (2)	0
Death	1(1)	1(1)
Other	5 (5)	2 (2)

≜ GRIFFIN: Daratumumab Plus Lenalidomide, Bortezomib, and Dexamethasone in Transplant-Eligible NDMM – 24 Months of Maintenance

Clinical response

Laubach JP, et al. ASH 2021, Virtual Meeting. Abstract 79

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

Memorial Sloan Kettering Cancer Center

GRIFFIN Update: MRD and PFS Data

Memorial Sloan Kettering

Cancer Center

ŧ

- Median follow-up: 38.6 months
- Median PFS was not reached in either group
- There is a positive trend toward improved PFS for D-RVd/DR versus RVd/R
- The separation of the PFS curves begins beyond 1 year of maintenance and suggests a benefit of prolonged DR therapy

^aThe threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status was based on BM aspirates by NGS per IMWG. ^bP values calculated by Fisher's exact test Laubach et al. ASH 2021. Abstract 79.

PERSEUS: Study Design

Phase 3 trial, n=690

https://www.clinicaltrials.gov/ct2/show/NCT03710603

Key Questions Towards Curing Myeloma

- Combine the molecular and immunobiology of disease evolution and progression in MM
 - Recognize patients at precursor state and intervene early.
 - Pick different strategies for different disease biology and immune status.
- Use MRD as guide for treatment strategy and duration.
 - Marrow: Sustained MRD-ve at 10⁻⁵ vs 10⁻⁶, 12 months apart to de-escalate.
 - Imaging: Incoporate PET-CT (functional imaging) response in addition to the sustained MRD-ve status
- Optimal sequencing of existing therapies and incorporation of select novel MoAs based on disease biology.
 - Pay attention to supportive care, short-term and long-term sequelae of treatments.

Memorial Sloan Kettering Cancer Center

Conclusions & Future Directions

- Recognize MM is not one disease, need small enrichment design clinical trials for high-risk disease.
- Achieving and sustaining MRD negativity matters.
- Daratumumab-based quadruplets have become accepted standard of care
 - Higher MRD-ve rates
 - Safe, but attention to infection risk
- New studies are starting to focus on sustained MRD negativity-based duration of therapy for NDMM.
 - Achieving functional cure appears very promising in the next decade.

ŧ Cancer Center **MSKCC Myeloma Service**

Memorial Sloan Kettering

Saad Z. Usmani (Chief) **High-Risk Disease**, **Disparities** TCE, CAR T Cells **Checkpoint Inhibitors Developmental Therapeutics**

Carlyn Tan MM Precursor diseases Supportive Care **Bone Health**

Urvi Shah **MM Precursor Disease Nutrition & Modifiable Risk Factors** Early Relapse

Kylee Maclachlan MM Precursor Disease, NDMM Trials **Genomics**, Immune Profiling

Neha Korde NDMM Clinical Trials **Digital Wearables Supportive Care**

Alex Lesokhin **RRMM** Immunotherapy **TCE, Checkpoints Inhibitors** Neoantigens Microbiota, Immune Profiling

Hani Hassoun **MM Supportive Care** Alliance Liaison NDMM/RRMM Trials **Elderly and Frail**

Sham Mailankody **RRMM** Trials with **CAR T Cells High-Risk Disease**

Malin Hultcrantz RRMM Trials in TCR Antibody drug conjugates Epidemiology

MSKCC Myeloma TCT Program

Memorial Sloan Kettering

Cancer Center

ŧ

Sergio Giralt Allo/Auto HCT for MM New Regimens CAR T Cells

David Chung T Cell exhaustion Auto HCT + Vaccines MM Immunotherapies

Gunjan Shah HCT Toxicities Precision Drug Dosing CAR T Cells Salvage Auto and Allo HCT

Saad Z. Usmani High-Risk Disease Biology/Trials CAR T Cells Auto HCT for MM

Michael Scordo HCT Toxicities Precision Drug Dosing CAR T Cells

Heather Landau Amyloidosis HCT Toxicities Homebound HCT Precision Drug Dosing Novel Regimens for Salvage Auto

Oscar Lahoud Auto HCT and CAR T Cells Post HCT Therapies