
Myelofibrosis: chronic and blast phase

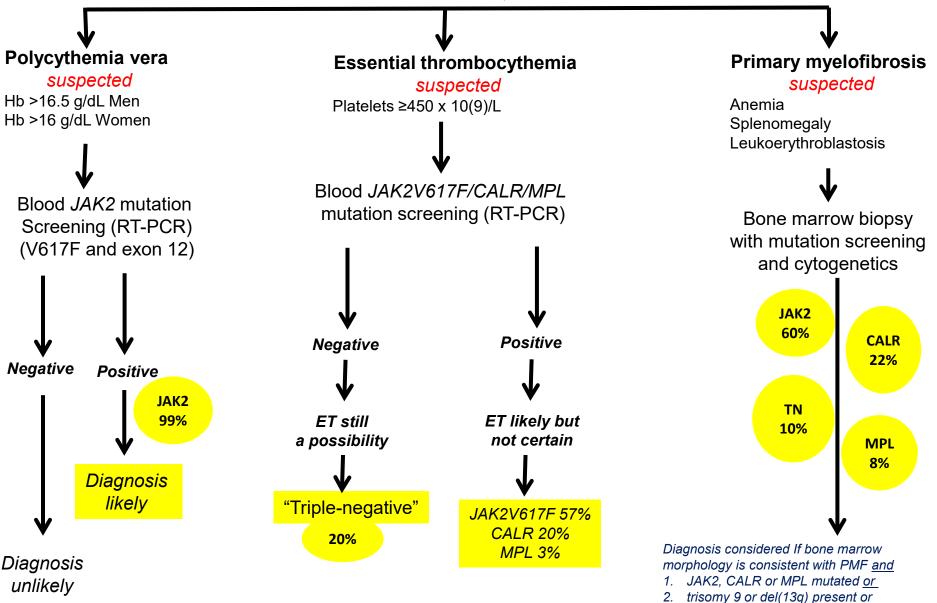
Ayalew Tefferi, MD Barbara Woodward Lips Professor of Medicine Mayo Clinic, Division of Hematology Rochester, MN

I have nothing to disclose

When does one suspect **Myelofibrosis?**

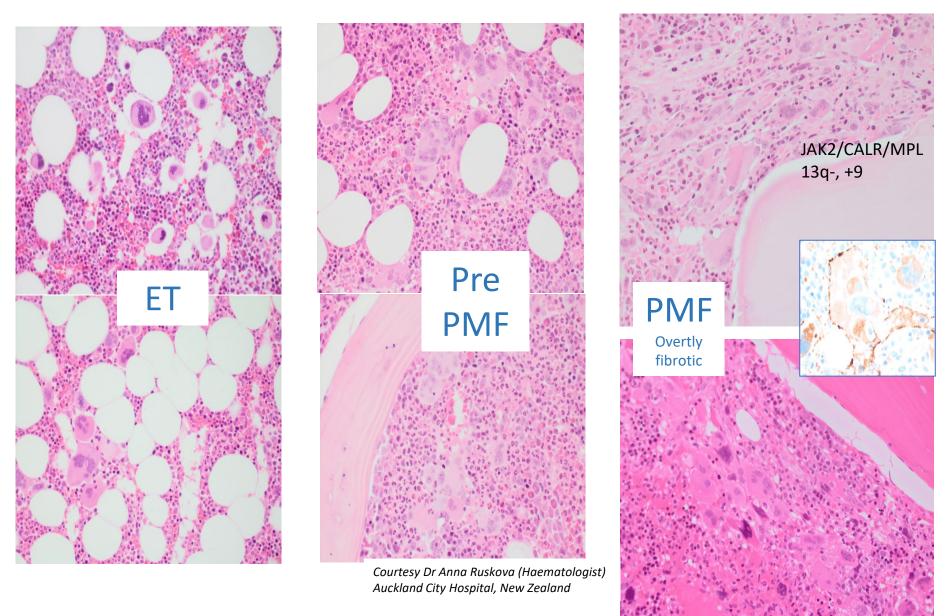
Anemia

erythrocytes

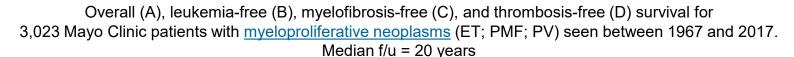

Marked splenomegaly

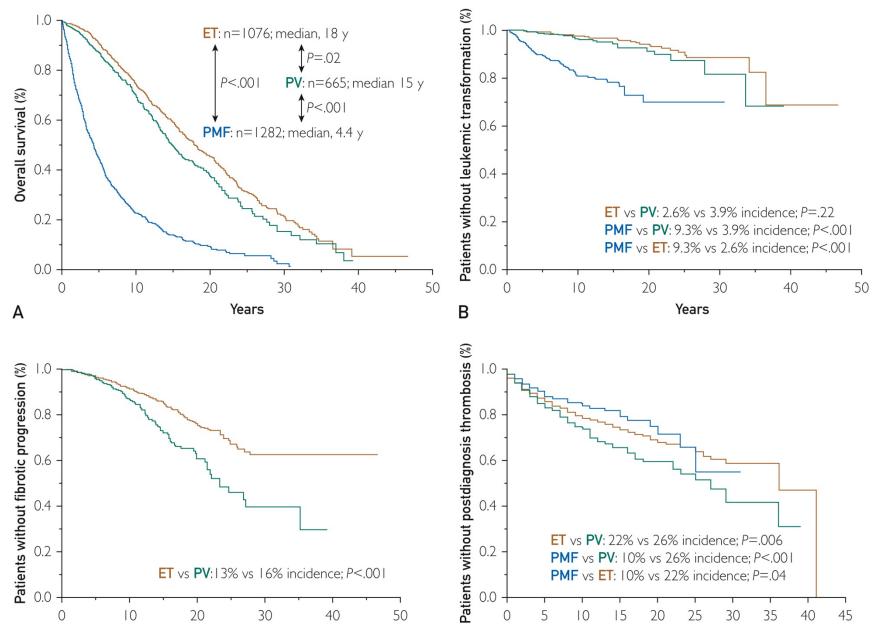
Objectives

- Practical overview
 - Diagnosis
 - Molecular prognostication
 - Risk-adapted treatment approaches
- In context discussion of selected ASH 2022 abstracts

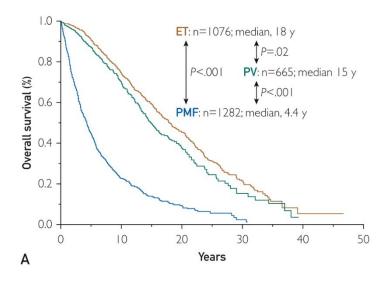

International Consensus Classification

Arber et al. Blood 2022;140:1200




Tefferi, A. AJH; First published: 21 January 2023 https://doi.org/10.1002/aih.26857 3. Other myeloid malignancies are excluded

Bone marrow morphology in overt vs prefibrotic myelofibrosis (PMF) vs essential thrombocythemia (ET)

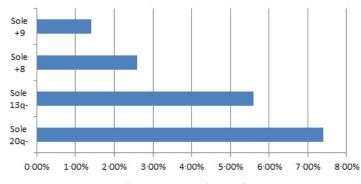

Tefferi, A. AJH; First published: 21 January 2023 https://doi.org/10.1002/ajh.26857

Szuber et al. Mayo Clin Proc. 2019;94:599-610.

Myelofibrosis Disease complications

- Anemia
- Splenomegaly
- Constitutional symptoms
- Cachexia

Therapeutic options in myelofibrosis


Curative or with potential to improve survival

Allogeneic hematopoietic cell transplant (allo-HCT)

Palliative

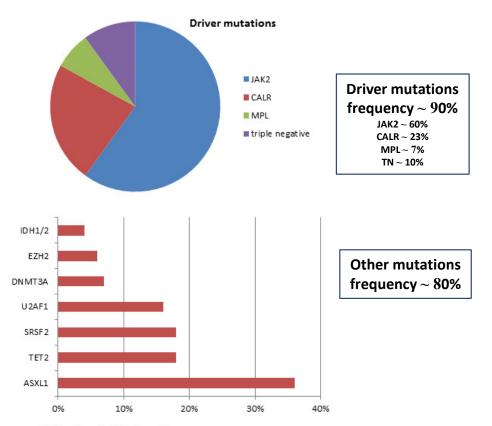
- Observation alone (watch-and-wait)
- Treatment for anemia
 - Thalidomide ± prednisone
 - Androgens
 - Danazol
 - ESAs
 - Lenalidomide/pomalidomide
- Treatment for symptomatic splenomegaly
 - Hydroxyurea
 - JAK2 inhibitors
 - Splenectomy
- Treatment for constitutional symptoms
 - JAK2 inhibitors
- Involved field radiotherapy for extra-medullary hematopoiesis
- Experimental therapy

Recurrent genetic abnormalities in myelofibrosis

Abnormal karyotype at time of diagnosis ~ 30%

Revised cytogenetic risk stratification

Very high risk karyotype

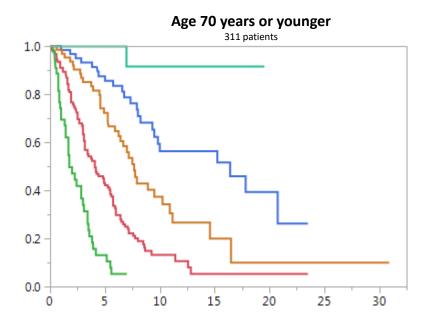

single/multiple abnormalities of -7, i(17q), inv(3)/3q21, 12p-/12p11·2, 11q-/11q23, or other autosomal trisomies

Unfavorable karyotype

all other abnormalities

Favorable karyotype

normal karyotype or sole abnormalities of 13q-, +9, 20q-, chromosome 1 translocation/duplication or sex chromosome abnormality including -Y;

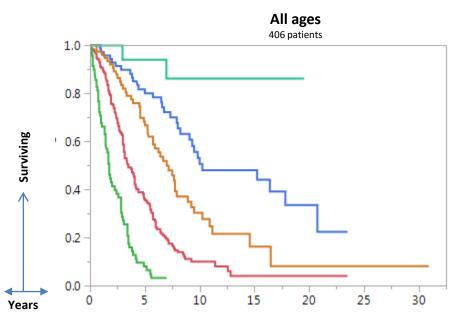


High molecular risk aberrations Absence of type 1 CALR, ASXL1, SRSF2, EZH2, IDH1/2, U2AF1Q157

Gangat and Tefferi; BJH: 20 March 2020; https://doi.org/10.1111/bjh.16576

Survival data on Mayo Clinic patients with primary myelofibrosis stratified by MIPSS70+ version 2.0 (MIPSSv2)

Risk categories: very high risk ≥9 points; high risk 5-8 points; intermediate risk 3-4 points; low risk 1-2 points; and very low risk zero points

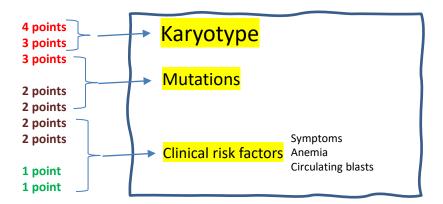


- Very high risk; n=44; median 1.8 years; 10-year survival <5%</p>
- High risk; n=124; median 4.1 years; 10-year survival 13%
- Intermediate risk; n=64; median 7.7 years; 10-year survival 37%
- Low risk; n=61; median 16.4 years; 10-year survival 56%
- Very low risk; n=18; median not reached; 10-year survival 92%

Very high risk karyotype Unfavorable karyotype ≥2 HMR mutations

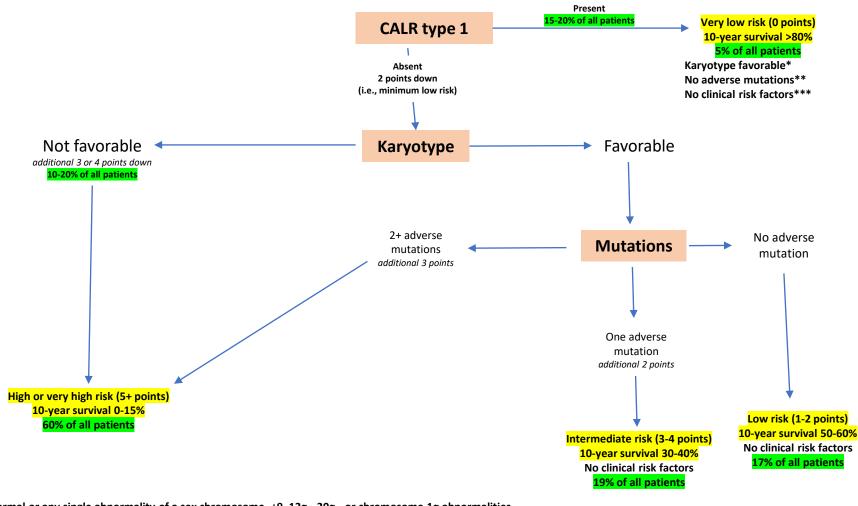
One HMR mutation Type 1/like CALR absent Constitutional symptoms Severe anemia

Moderate anemia ≥2% circulating blasts


Very high risk; n=69; median 1.8 years; 10-year survival <3%</p>

High risk; n=172; median 3.5 years; 10-year survival 10%

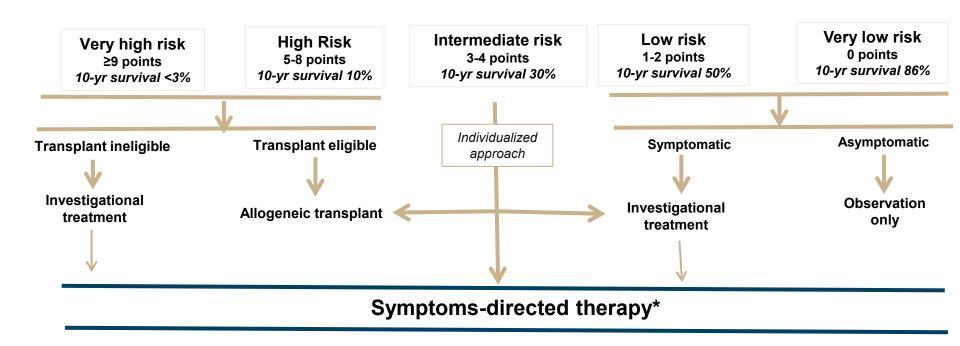
Intermediate risk; n=76; median 7 years; 10-year survival 30%

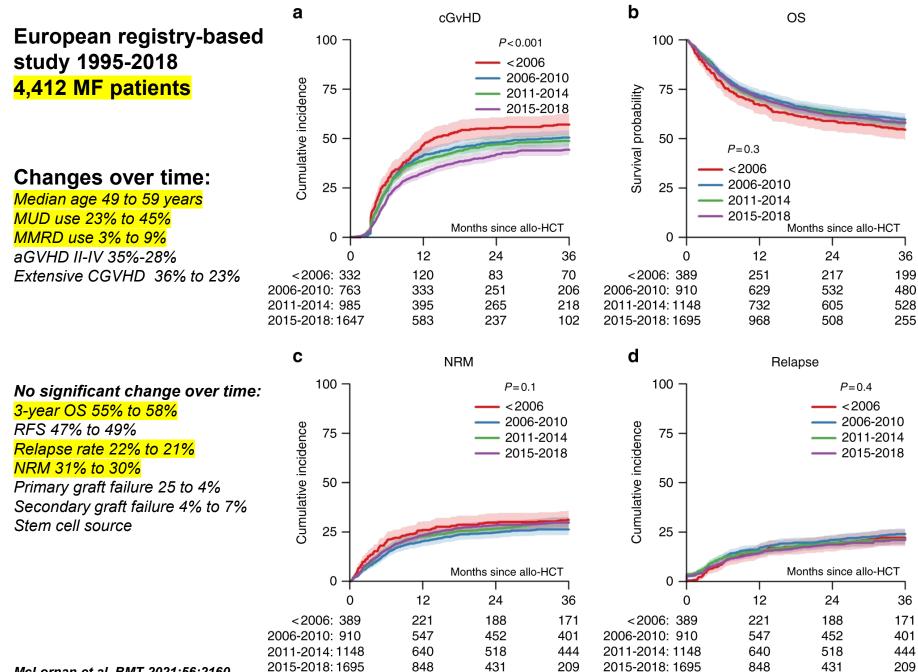

Low risk; n=70; median 10.3 years; 10-year survival 50%

Very low risk; n=19; median not reached; 10-year survival 86%

Tefferi et al. J Clin Oncol. 2018;36:1769

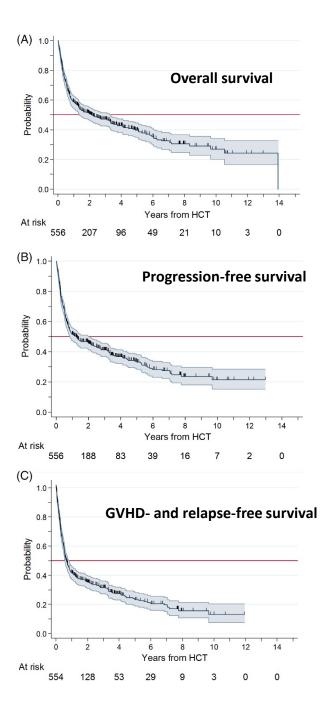
Genetically-guided risk stratification in primary myelofibrosis (MIPSSv2)




*Normal or any single abnormality of a sex chromosome, +9, 13q-, 20q-, or chromosome 1q abnormalities **ASXL1, SRSF2, U2AF1-Q157

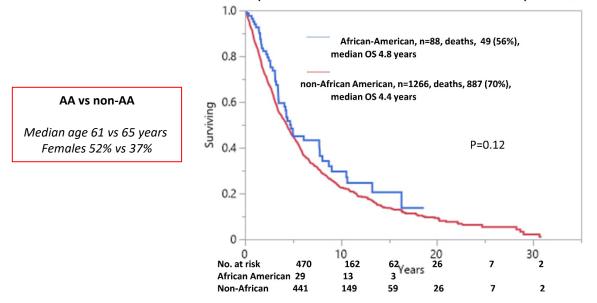
i) Constitutional symptoms
 ii) moderate or severe anemia <10 g/dL in women and <11 g/dL in men
 iii) ≥2% circulating blasts

Myelofibrosis: 2023 treatment algorithm


McLornan et al. BMT 2021;56:2160

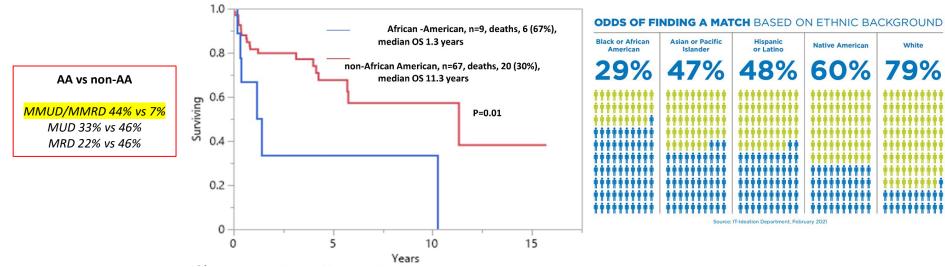
556 patients with myelofibrosis age ≥65 years undergoing allogeneic hematopoietic cell transplantation

Median age 67 years (range, 65–76) 83% DIPSS high or intermediate-2 risk Median f/u 3.4 years Deaths 55% (n=306; GVHD 106; relapse/prog 80; infection 69) **Survival rates at 1, 3, and 5 years were 59%, 49%, and 40%** Relapse/progression at 1, 3, and 5 years was 18%, 22%, and 25%


5-year risk-adjusted survival of non-transplant cohort 33%

Syngeneic	1 (0)		
HLA-matched related	134 (24)		
HLA-mis-matched related	5 (1)		
Haploidentical	22 (4)		
HLA-matched unrelated	<mark>255 (46)</mark>		
HLA-mis-matched unrelated	71 (13)		
Unrelated, HLA-match unknown	61 (11)		
Cord blood	5 (1)		

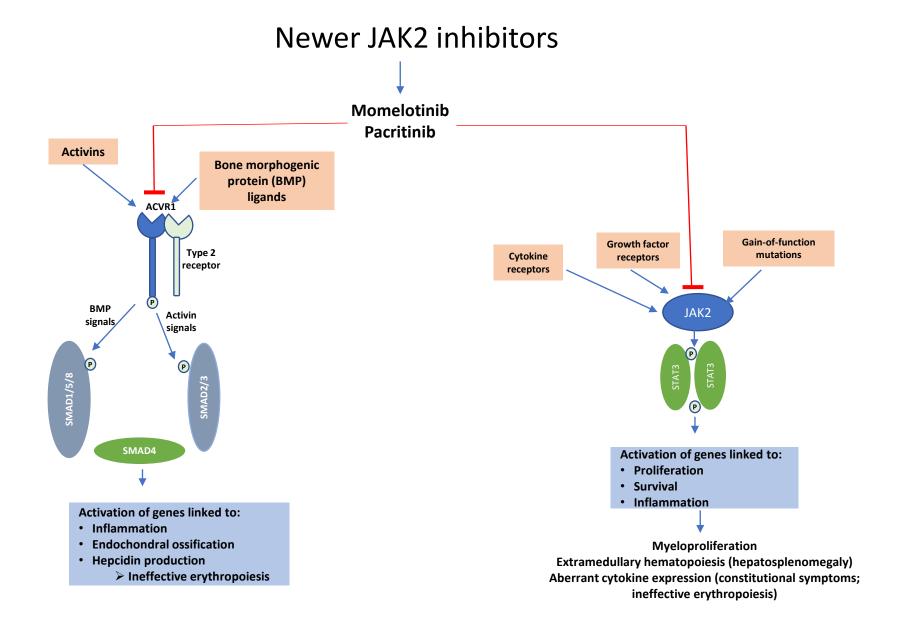
Hernández-Boluda et al. AJH 2021;96:1186


Figure 1a. Overall survival of 1,354 patients with primary myelofibrosis (PMF) stratified by race (Black African-American vs non-African American*) * 95% Caucasian

Multivariate P-values

Race, p=0.73 DIPSS-plus risk, p<0.01 Type 1/like CALR mutation, p<0.01 ASXL1 mutation, p=0.03 SRSF2 mutation, p<0.01

Figure 1b. Post-transplant survival of 76 patients with primary myelofibrosis (PMF) stratified by race (Black African -American vs non-African American*) * 95% Caucasian



Black or African American	Asian or Pacific Islander	Hispanic or Latino	Native American	White
29%	47%	48%	60%	79%
		17-ideation Department, Febr		

JAK2 inhibitors in myelofibrosis: activity in JAKi-naïve patients

	Ruxolitinib (FDA 2011)	Fedratinib (FDA 2019)	Pacritinib (FDA 2022)	Momelotinib (FDA pending)
Dose & Schedule	20 mg BID (Pits >200 x10 ⁹ /l) 15 mg BID (Pits 150-200 x10 ⁹ /l)	400 mg BID (Pits ≥50 x10 ⁹ /l)	200 mg BID (Plts <50 x10 ⁹ /l)	Approval pending (200 mg QD)
SVR ≥35%	29% (SIMPLIFY-1) Ruxo vs mom	36% (JAKARTA-1) Pardanani et al. JAMA Oncology 2015 fed vs placebo	19% (PERSIST-1) Mesa et al. Lancet Hematology 2017 Pac vs BAT	27% (SIMPLIFY-1) Mesa et al. JCO 2017
Transfusion resolution	More likely to cause anemia	More likely to cause anemia	25% (PERSIST-1)	46% (Mayo study) Gangat et al. AJH 2022
Symptom response	42% (SIMPLIFY-1)	36% (JAKARTA-1)	19% (PERSIST-1)	28% (SIMPLIFY-1)
Adverse effects	Anemia Thrombocytopenia Withdrawal Opportunistic COVID vaccines	Anemia Thrombocytopenia GI symptoms ↑LFTs/amylase/lipase Wernicke's (Rare event)	GI symptoms Edema Pneumonia Cardiac failure	Thrombocytopenia ↑LFTs/amylase/lipase Peripheral neuropathy First-dose effect (Dizziness, Hypotension, Flushing, Nausea)

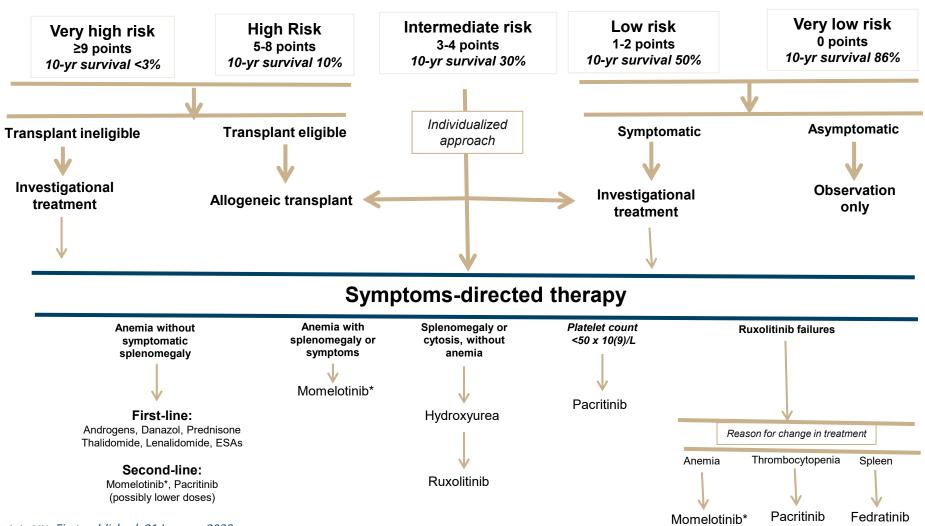
Tefferi et al. Haematologica Early view Mar 2, 2023 <u>https://doi.org/10.3324/haematol.2022.282612</u>

Tefferi et al. Haematologica Early view Mar 2, 2023 <u>https://doi.org/10.3324/haematol.2022.282612</u> *Oh et al. Blood 140:1518-1521, 2022*

MOMENTUM: Phase 3 randomized study of momelotinib (MMB 200 mg QD; n=130) versus danazol (DAN 600 mg QD (n=65) in symptomatic and anemic myelofibrosis patients previously treated with a JAK inhibitor

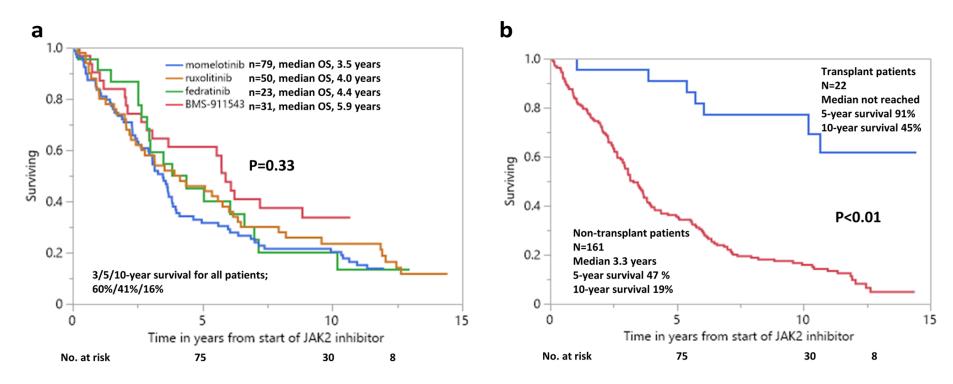
Week 24 Endpoint	Momelotinib	Danazol	p-value
Transfusion independence rate "at baseline" to "at week 24"	13% to 31%	15% to 20%	<0.05
Spleen response rate ≥35% "at week 24"	23%	3%	<0.05
Symptoms score response rate "at week 24"	25%	9%	<0.05

Fedratinib in myelofibrosis patients meeting stringent criteria for ruxolitinib failure


Study	Treatment	Spleen volume response ≥35%	Grade ¾ Toxicity
Retrospective analysis	Fedratinib		Anemia
of JAKARTA-2	400 mg/day		44% (rux-relapsed),
	(initial dose 400 mg/d)		49% (rux-refractory),
High/intermediate risk MF			29% (rux-intolerant)
with platelets ≥50k	Median duration 24 weeks		
			Thrombocytopenia
N=79 patients meeting			28% (rux-relapsed),
stringent criteria of resistance			19% (rux-refractory),
or intolerance to ruxolitinib		↓	14% (rux-intolerant)
Relapsed = 18;		<mark>28%</mark>	
Refractory = 47;		<mark>32%</mark>	Fedratinib discontinuation
Intolerant = 14		<mark>29%</mark>	22% (rux-relapsed),
			17% (rux-refractory),
			29% (rux-intolerant)

Harrison et al. AJH 2020;95:594

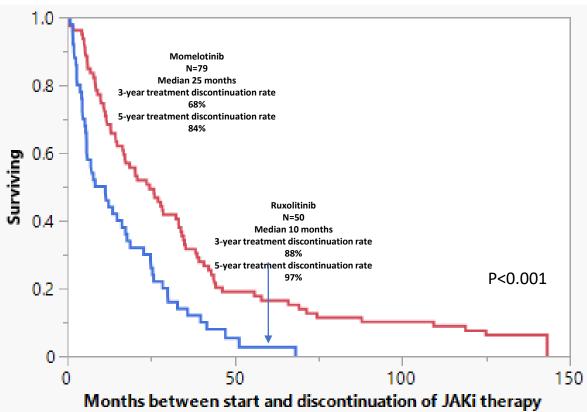
Clinical characteristics at time of fedratinib initiation and outcomes for 28 patients with myelofibrosis relapsed/refractory to ruxolitinib; retrospective review of real-world experience


Variables	All patients (n=28)	Patients switched from ruxolitinib ≥20 mg twice daily (n=11)	Patients switched from ruxolitinib <20 mg twice daily (n=17)	P- value	
Age in years, median (range)	73 (52-85)	72 (53-85)	74 (52-84)	0.68	
Splenomegaly, n (%)	24 (86)	8(73)	16(94)	0.12	
Spleen size in cm (median, range) (based on imaging, US/CT/MRI)	22 (46 6 24)	20.7(47.5.24)	22.4/46.6.22.5	0.05	
Dose of fedratinib (median, range)	23 (16.6-34) 400 (100-400)	29.7 (17.5-34) 400 (100-400)	22.1 (16.6-33.5) 400 (300-400)	0.05	
Duration of therapy in months, (median, range)	8.0 (1.0- 29.2)	4.2 (1.0-29.2)	9.0 (1-24.1)	0.88	
Response*, n (%)				<mark>0.08</mark>	
 Spleen, n evaluable =24 Symptom, n evaluable =25 	→ 3 (13%) 8 (32%)	<mark>0/9(0%)</mark> <mark>1/9 (11%)</mark>	<mark>3/16(19%)</mark> 7/16 (44%)	0.07 0.01	
Duration of response in months, (median, range)	7.8 (0-25.8)	6.0 (0-25.8)	8.5 (1.4-12.6)	0.16	
Treatment discontinuation, n (%)	15 (54)	6(55)	9(53)	0.93	
Allogeneic transplant, n (%)	4 (14)	3(27)	1(6)	0.12	
Toxicity, n (%)					
 Gastrointestinal Anemia, Grade 3 Thrombocytopenia, Grade 3/4 Renal insufficiency Increased lipase 	6 (21) 7 (25) 6 (21) 4 (14) 1 (4)	3(27) 1(9) 3(27) 2(18) 1(9)	3(18) 6(35) 3(18) 2(12) 0(0)	0.55 0.10 0.55 0.64 0.16	

Myelofibrosis: 2023 treatment algorithm

Tefferi, A. AJH; First published: 21 January 2023 https://doi.org/10.1002/ajh.26857

Determinants of survival and retrospective comparisons of 183 clinical trial patients with JAKi-naïve myelofibrosis treated with momelotinib, ruxolitinib, fedratinib or BMS- 911543 JAK2 inhibitor



Predictors of inferior survival

Age > 65 years Transfusion-dependent anemia Unfavorable karyotype Absence of Type 1/like CALR mutation Presence of ASXL1/SRSF2 mutation Absence of Spleen response Absence of Anemia response

Bold font represents variables retaining significance on multivariable analysis

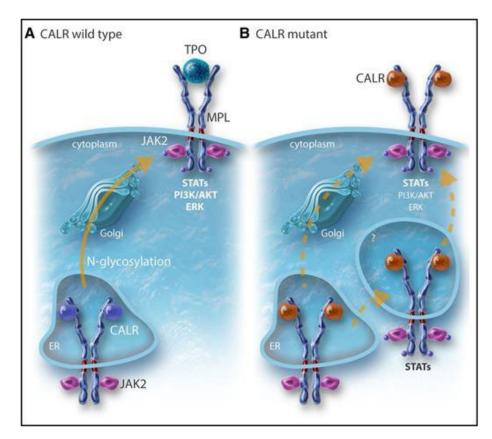
Gangat et al. <u>Blood Cancer Journal</u> volume 13, Article number: 3 (2023)

Figure 2: On-treatment survival among 129 patients with high/intermediate risk myelofibrosis treated with either momelotinib or ruxolitinib

Tefferi et al. AJH. First published: 03 September 2022 <u>https://doi.org/10.1002/ajh.26714</u>

Summary of Novel Agents in clinical trials in myelofibrosis

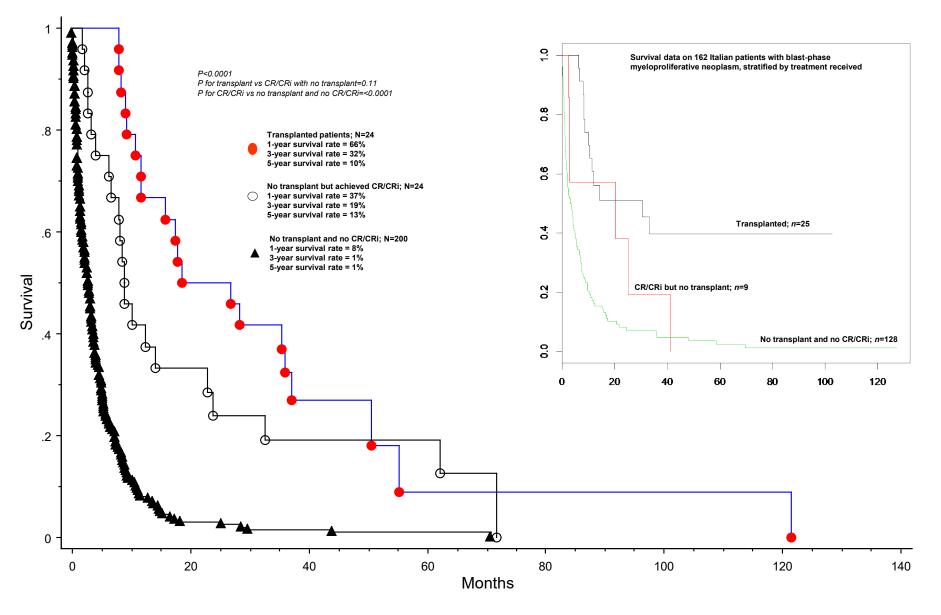
Novel agent	Mechanism	SVR/TSS	Anemia response	Reduction in fibrosis	Status
Navitoclax + Ruxolitinib Abstract 237 (JAKi naïve) JCO 2022 (JAKi exposed)	bcl-2/bcl-X inhibitor	+/NR	NR	+	Phase 3 TRANSFORM 1/2
Pelabresib (CPI-0610) + Ruxolitinib Abstract 238 (JAKi naïve) Abstract 4344 (JAKi exposed)	Nuclear factor kappa B (NFкB) signaling	++	+	+	Phase 3 MANIFEST
Parsaclisib + Ruxolitinib Abstract 236 (JAKi exposed)	PI3Kδ inhibitor	++	NR	NR	Phase 3
Pegylated IFN-α + Ruxolitinib Abstract 235	Immunotherapy	+/NR	NR	-	Ongoing
Luspatercept +/- Ruxolitinib Blood 2019	TGF-β/SMAD signalling	NR	+	NR	Phase 3 Independence
Bomedemstat (Img-7289) Abstract 139	LSD1 inhibitor	++	+	+	Completed
Imetelstat JCO 2021	Telomerase inhibitor	Minimal/+	-	+	Phase 3 MYF3001 MYF1001

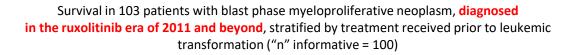

SVR, spleen volume reduction; TSS, total symptom score; NR, not reported

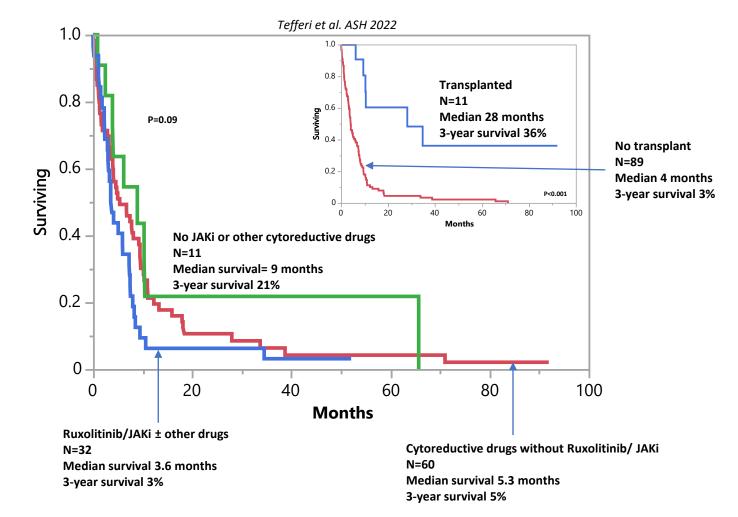
Discovery of INCA033989, A Mutant Calreticulin

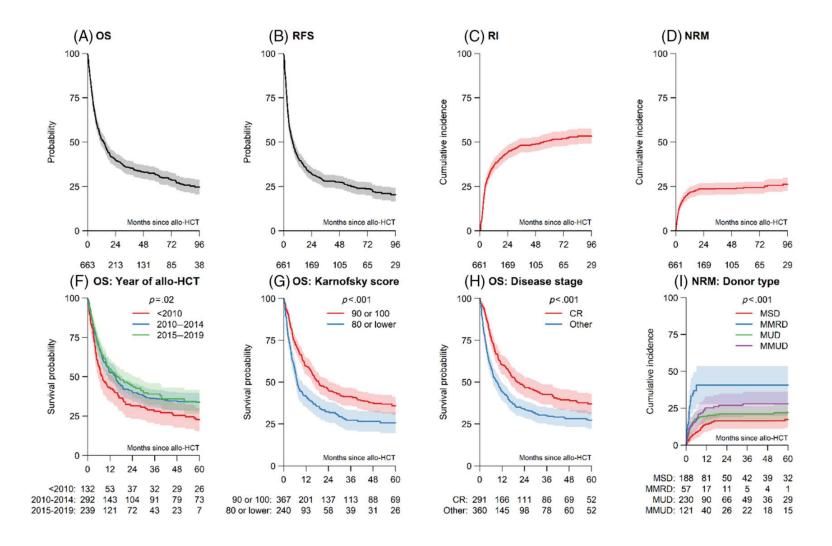
(CALR)-specific monoclonal antibody

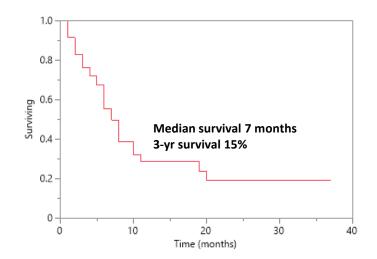
- Fully human IgG1
- Selective binding to mutant CALR
- Inhibited CALR induced signaling
- Inhibited pSTAT5 in CD34+ mut CALR cells not wild type
- Inhibited proliferation of mut CALR HSPC/megakaryocytes
- Murine model of ET: reduction in mut CALR platelets
- Restored normal megakaryopoiesis
- Phase 1 study is planned in mut CALR MF and ET in 2023

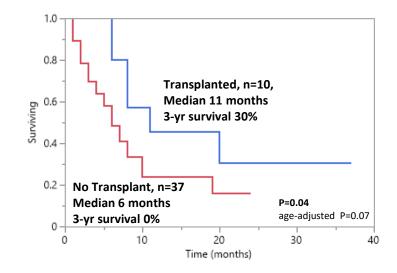

What can we expect?

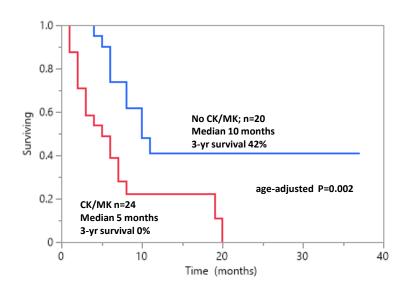



Vainchenker and Kralovics. Blood (2017) 129 (6): 667–679.

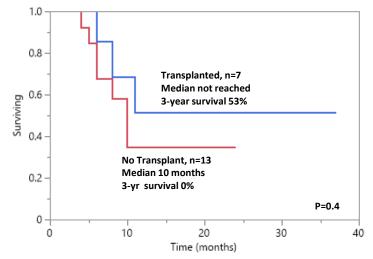

Survival data on 248 Mayo Clinic patients with blast-phase myeloproliferative neoplasm, stratified by specific treatment strategies

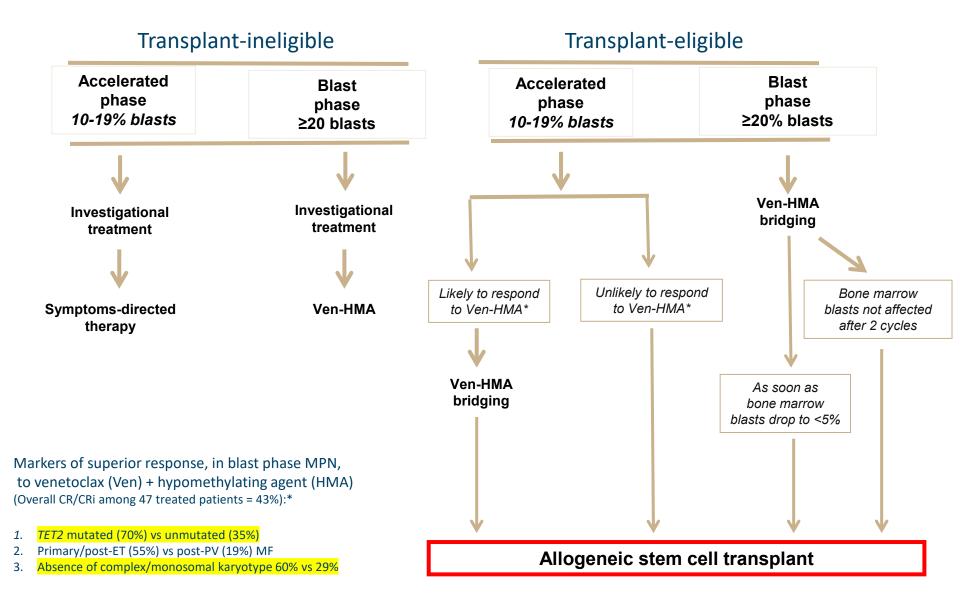



663 patients with MPN-BP allo-transplanted (2005-2019) with median f/u 62 months: 3-year survival 36%...increased to 60% if transplanted in CR and good performance status



Survival in 47 patients with blast phase myeloproliferative neoplasm receiving venetoclax + hypomethylating agent


- Predictors of response: TET2 mutations (70% vs 35%); absence of CK/MK (60% vs 29%); PMF/post-ET vs post-PV MF (55% vs 19%)
- Predictors of superior survival: CR/CRi; Transplant; IDH mutations, absence of CK/MK or N/KRAS mutations



20 patients with MPN-BP without CK/MK treated with venetoclax plus hypomethylating agent stratified by allogeneic transplantation

Current management approach in accelerated or blast phase myeloproliferative neoplasms

**Gangat et al.* Haematologica Early view Dec 15, 2022 https://doi.org/10.3324 *Tefferi et al. Manuscript in preparation*

Concluding remarks – thank God for transplant

- Allogeneic transplant is the only treatment modality that can secure long-term survival in both chronic and blast phase myelofibrosis; <u>bone marrow registry needs more diverse</u> <u>donors</u>
- Newer JAK2 inhibitors target the triad of QoL offenders in myelofibrosis: anemia, splenomegaly and constitutional symptoms/cachexia but, have not yet shown diseasemodifying activity
- Regarding investigational new drugs for myelofibrosis, I see clouds but no smoke[©]

"Clouds do not always mean rain, but smoke is a sure sign of fire" African Proverb BeAfricarProverbsPage