Improving Outcomes With Current Therapies in Acute Myeloid Leukemia and Acute Promyelocytic Leukemia: What We Recommend in 2023

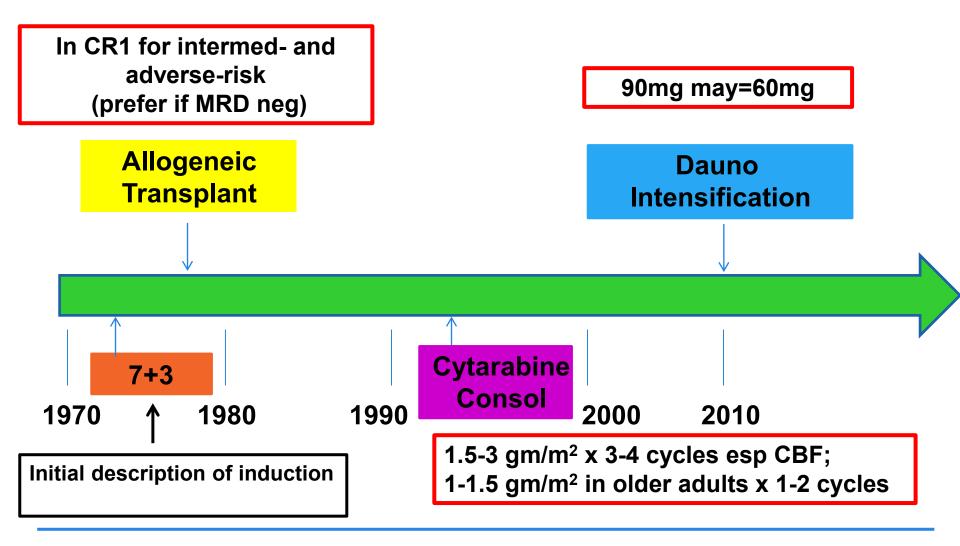
> Martin S. Tallman, M.D. Northwestern University Feinberg School of Medicine Robert H. Lurie Comprehensive Cancer Center Chicago, Illinois

> > 20th Annual Indy Hematology Review Indianapolis, IN

Disclosures

- Research Funding
 - Abbvie
 - Amgen
 - Rafael
 - Biosight
 - Glycomimetics
 - Orsenix
- Royalties
 - UpToDate
- Off label use
 - Gileritinib, quizartinib
 - Enasidenib, ivosidenib
 - Venetoclax
 - Magrolimab
 - Pevonedistat
 - Uproleselan
 - SNDX-5613

- Advisory Boards
 - Abbvie
 - Cellularity
 - Daiichi-Sankyo
 - Innate Pharma
 - Ipsen Biopharma
 - Jazz Pharma
 - KAHR
 - Novartis
 - Orsenix
 - Roche
 - Syros
- DSMB
 - HOVON 156
- Adjudication Committee
 - Foghorn

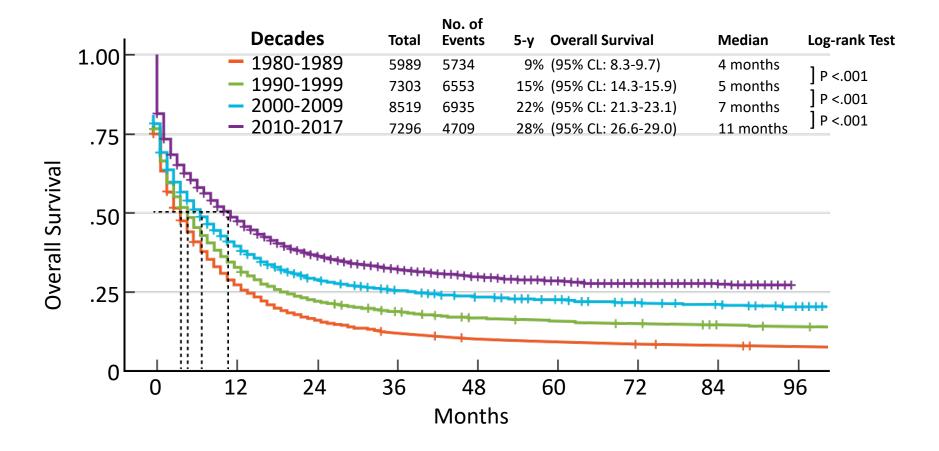

Objectives

 Describe the prevailing therapeutic paradigm in AML and outcomes before 2017

 Discuss selective novel agents for AML, new treatment strategies and changing therapeutic paradigms

• Define the evolving landscape in AML

Prevailing Therapeutic Paradigm in AML 1973-2017



Fernandez et al. New Engl J Med, 2009; Luskin et al. Blood, 2016;

Begna et al. ASH, 2021 (abstr 1267); Rollig et al. ASH, 2022 (abstr 217); Burnett et al. J Clin Oncol, 2013

Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

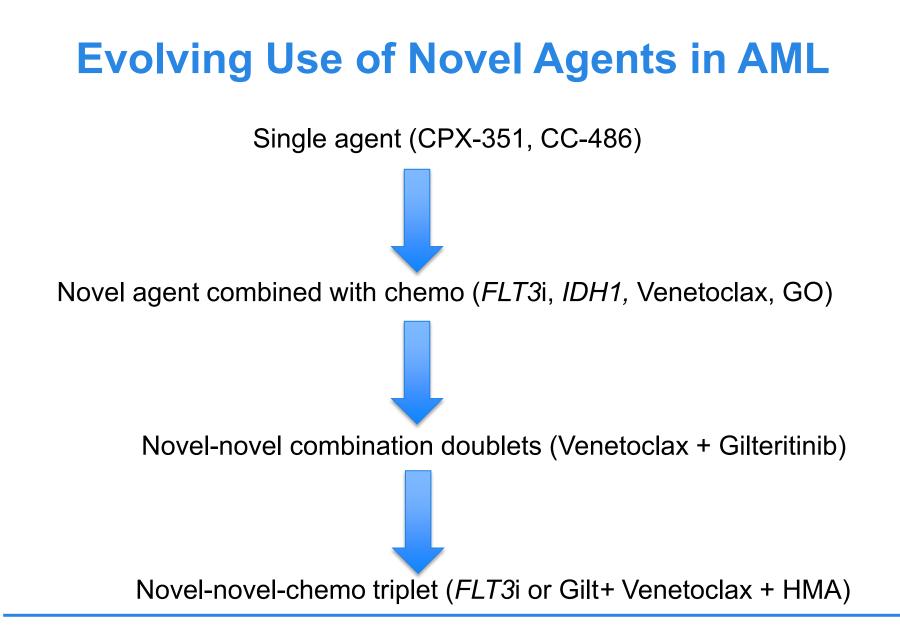
SEER All AML: All Ages

Sasaki et al. Cancer, 2021

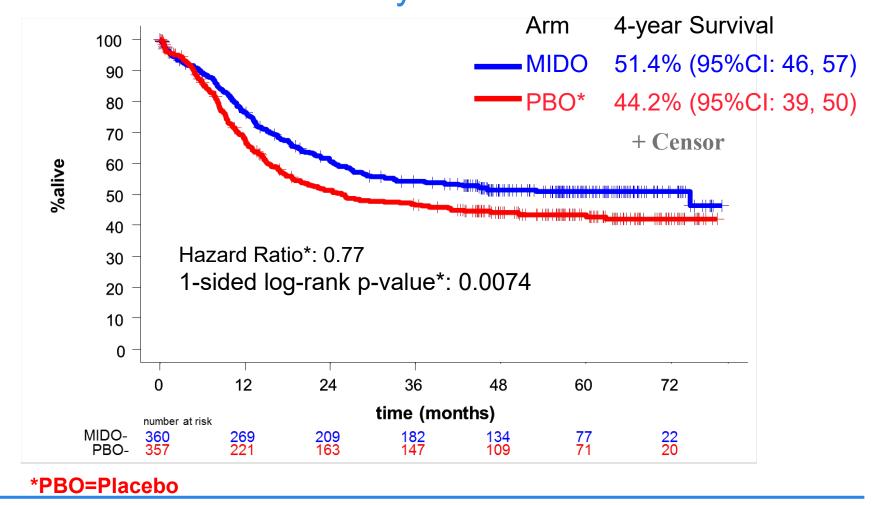
Recent Progress in AML

- Insights into genetic pathogenesis/integrated genetic profiling
- Recognition of inherited familial predisposition syndromes
- Drug discovery/targeted therapy
- Expanded availability and advances in transplantation
- Paradigm shift in approach to older adults
- Increased importance of measurable residual disease

Gene Mutations Important in Everyday Practice


Gene	Incidence	Association	Impact	
FLT3-ITD/TKD	25%	NPM1	Unfavorable	
NPM1	13%	FLT3	Favorable	
bZIP CEBP α	11%	FLT3	Favorable ¹	
C-KIT	15%	CBF	Unfavorable ²	
IDH1/2	22%	NPM1	Favorable	
TP53	7%	t-AML, complex karyotype	Unfavorable	
RUNX1	10%	Mutually exclusive with recurrent genetic abn	Unfavorable	
ASXL1	7-30%	Secondary AML	Unfavorable	
TET2	27%	NPM1, FLT3, JAK2, RUNX1, CEBP α , KRAS, but not IDH	Unfavorable	
² in t(8;21), and maybe inv(16), but less clear		¹ Wakita et al. Blood Adv, 2022; ² Hyak et al. ASH, 2022 (abstr 536)		

ELN 2022 Changes to Risk Classification

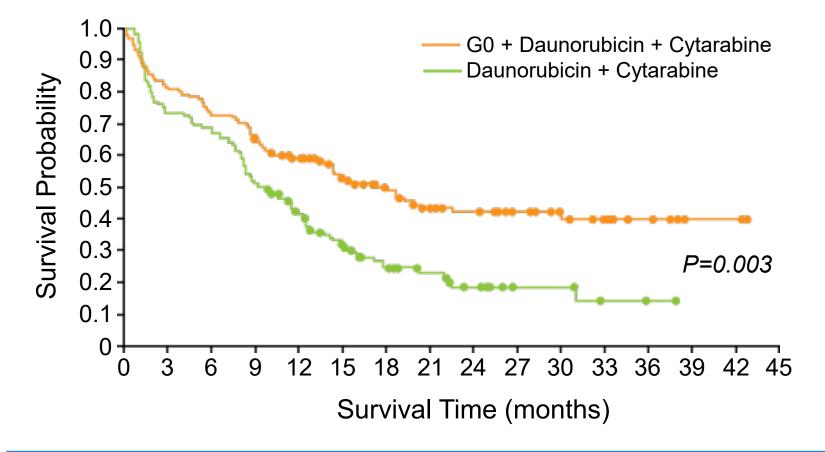

- All recurrent genetic abn (ex BCR::ABL1) define AML if >/=10% blasts including NPM1, bZIP CEBPα
- FLT3-ITD ratio not relevant, all FLT3-ITD are intermediate risk (+/- NPM1)
- AML with myelodysplasia-related gene mutations is adverse-risk
- Adverse cytogenetics in *NPM1*-mutated AML is adverse
- bZIP $CEBP\alpha$ is favorable-risk (either monoallelic or biallelic)

Recently Approved Agents for AML 2017-2023

Agent	Target	Population
Midostaurin	FLT3	Induction, consol, (maint)
Gilteritinib	FLT3	Rel/Refr
Ivosidenib/Enasidenib	IDH1/2	Rel/Refr or de novo (Ivo)
Venetoclax (w HMA or LoDAC)	BCL-2	De novo, >/=75, comorbidities
Glasdegib (w HMA or LoDAC)	Smoothened receptor	De novo, >/=75, comorbidities
Gemtuzumab ozogamicin	CD33	Fav/intermed, rel/refr
CPX-351	Cytotoxic	t-AML, AML-MRC, age 60-75
CC-486	DNA	CR/CRi1, ineligible for curative
	methyltransferase	therapy
Olutasidenib	IDH1	Rel/Refr

Overall Survival Chemo + Midostaurin or Placebo Ratify Trial

Stone et al. N Engl J Med, 2017


Midostaurin in AML

- First agent with (sustained) regulatory approval in ~50 years
- It changed practice and therapeutic paradigm, but full potential FLT3i not realized
 - OS increase only 7%
 - Benefit more in *FLT3*-TKD than ITD
 - Which phase of treatment important if not all 3?
 - Among least potent FLT3 inhibitors
 - Role in maintenance unclear¹
 - Beneficial effect of Midostaurin most pronounced in NPM1^{wt}/FLT3^{high} group, but also beneficial in NPM1^{pos2}

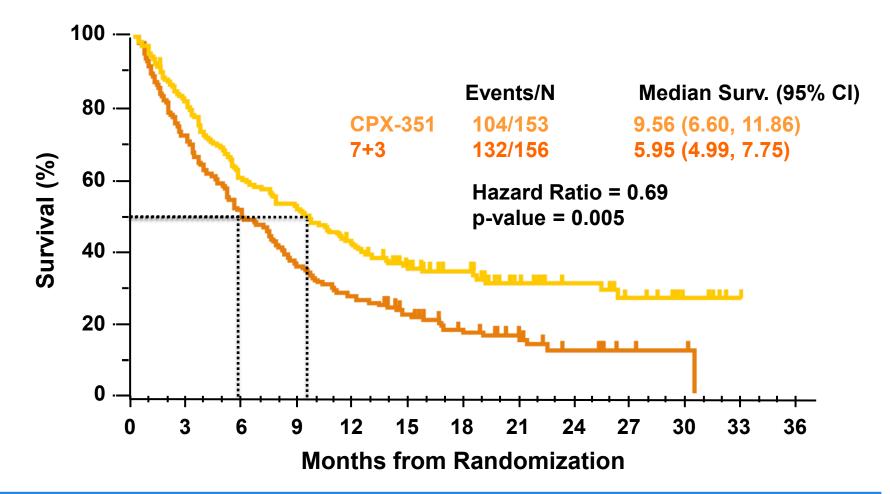
Midostaurin in AML

- All *FLT3*^{mut} pts get 7 + 3 + Midostaurin in induction, consol then allo or maintenance
- Second gen *FLT3*: Quizartinib + chemo vs placebo + chemo and maint Quiz or placebo and/or allo followed by 3 yr Quiz or placebo
 - n=539, new dx, *FLT3*-ITD^{mut}
 - med OS quiz 32 mo vs 15 placebo (p=0.0324)
 - CRc 72% vs 65%.
 - But ? Control arm

Gemtuzumab Ozogamicin (Fractionated) Newly Diagnosed AML Ages 50-70 Kaplan-Meier Plot of Event-Free Survival ALFA-0701 Trial

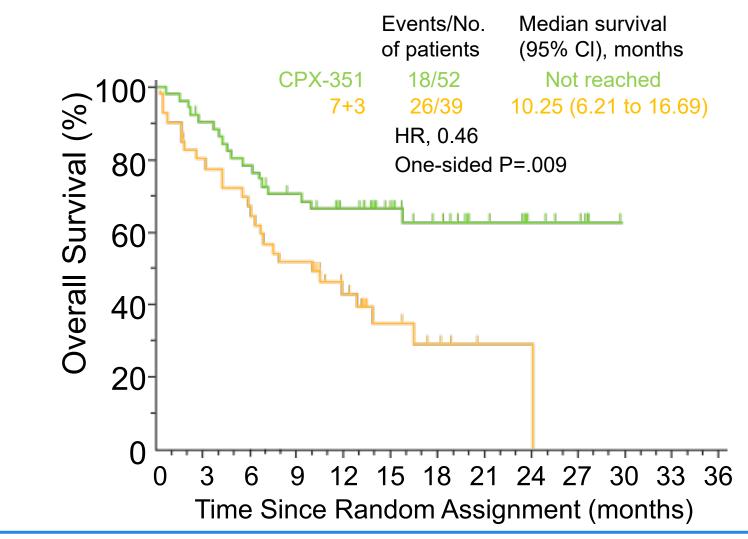
Castaigne et al. Lancet, 2012 and update

Gemtuzumab Ozogamicin


- Reduced and fractionated schedule reduces toxicity (4.6% SOS in ALFA 0701) but no benefit in OS¹
- OS benefit in fav-risk and trend in intermed-risk, but <u>not</u> adverse-risk²
- OS no benefit in younger pts³
- OS benefit in older adults (25% vs 20%, P=0.05)⁴
- Risk of SOS/VOD 8% after allograft; higher if allo <3 mo from GO exposure⁵

¹Lambert et al. Haematologica, 2019; ²Burnett et al. J Clin Oncol, 2011; ³Petersdorf et al. Blood, 2013; ⁴Burnett et al. J Clin Oncol, 2012; ⁵Battipaglia et al. BMT, 2017

Gemtuzumab Ozogamicin


- 5 Randomized trials in AML (UK MRC AML15, UK NCRI AML 16, SWOG 0106, GOELAMS AML 2006IR, ALFA 0107)
- CR not improved
- OS benefit in 2 of the 5 (marginal in 1)
- UK studies complicated with multiple randomizations
- Has role in 2 small subsets of AML: high-risk APL and CBF, but not clearly otherwise

Overall Survival Greater in the CPX-351 Arm Compared to the 7+3 Arm High-risk and Secondary AML

Lancet et al. J Clin Oncol, 2018; Lancet et al. Lancet Haematol, 2021

Impact of CPX-351 on Transplant Outcome Overall Survival

Lancet et al. J Clin Oncol, 2018

CPX-351

- Why is CPX-351 more effective in t-AML and AML with MRC?
- Not better in pts with hx prior MDS and HMA exposure
- Why is outcome after allo-HCT better with CPX-351 than with with 7 + 3?
 - Deeper remission?
 - Less toxicity pre-transplant?
- Will CPX-351 be effective either alone or when combined with other agents in adverse subtypes?¹⁻³ TP53 → poor outcome with chemo and CPX-35²
- Approved for t-AML and AML –MRC and has changed SOC

¹Chiche et al. ASH, 2019 (abstr 1355); ²Lindsley et al. ASH, 2019 (abstr 15); ³Goldberg et al. ASH, 2018 (abstr 1433)

Ivosidenib or Enasidenib Plus Chemotherapy Phase I Trial

Best Overall Response Summary

	Ivosidenib + CT			Enasidenib + CT		
Response, (%)	All (n=60)	De novo (n=42)	sAML (n=18)	All (n=91)	De novo (n=56)	sAML (n=35)
CR+CRi/CRp	77	88	50	74	80	63
CR	68	76	50	55	64	40
CRi/CRp	8	12	-	19	16	23
MLFS	7	7	6	11	9	14
PR	3	-	11	2	2	3
Treatment failure	13	5	33	13	9	20

Need randomized trials of chemo w or wo lvo or Ena

Stein et al. Blood, 2020

Ivosidenib and Enasidenib In AML

- Approved and readily used in relapsed/refractory *IDH1/2*-mutated AML
- In de novo *IDH1*-mut AML prefer Azacitidine + Venetoclax since *IDH*mut AML responds well¹ or possibly Aza + Ivo²
- I don't add Ivo or Ena to HMA + Ven outside a clinical trial
- I don't combine Ivo or Ena with induction chemo outside a trial

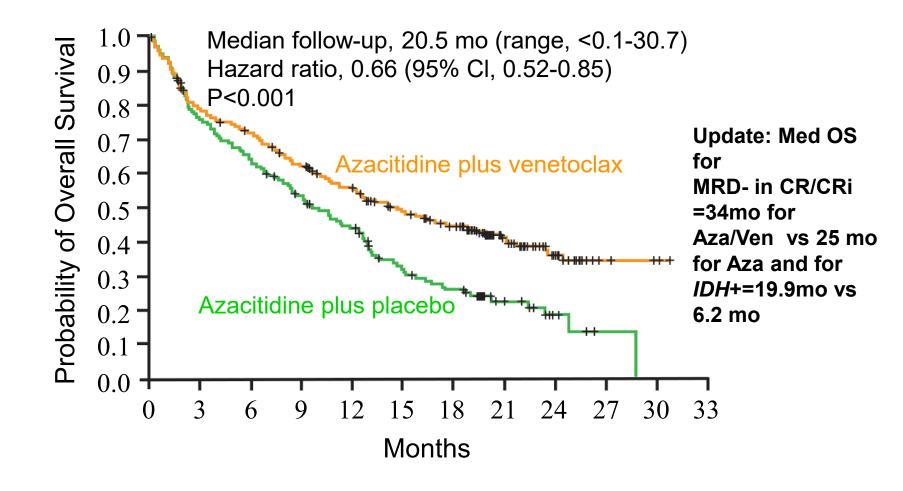

Venetoclax + HMA in Newly Dx "Unfit" AML

Table 5. Efficacy outcomes by subgroups

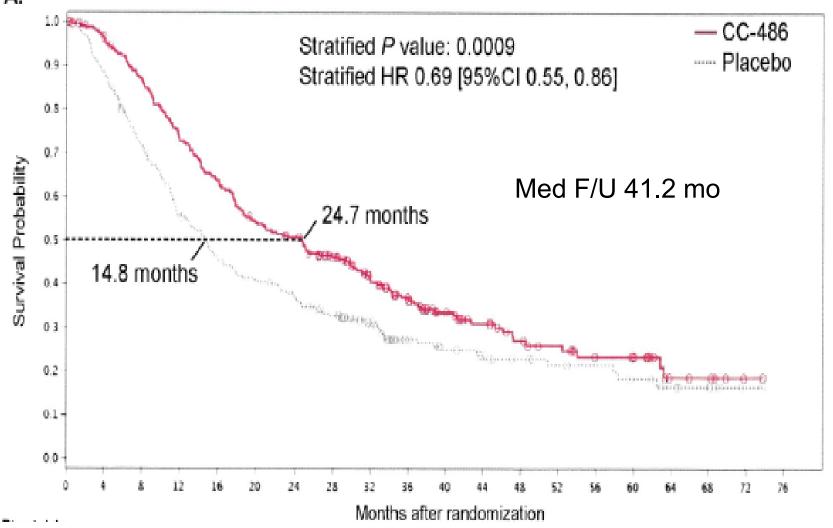
Subgroup	Evaluable for response/OS, n (%)	CR + CRi, n (%)	n for Median duration of CR + CRi	Median duration of CR + CRi, mo (95%CI)	Median OS, mo (95%CI)
All patients	145	97 (67)	97	11.3 (8.9, NR)	17.5 (12.3-NR)
Cytogenetic risk Intermediate Poor	74 (51) 71 (49)	55 (74) 42 (60)	55 42	12.9 (11, NR) 6.7 (4.1, 9.4)	NR (17.5-NR) 9.6 (7.2-12.4)
Age ≥75 y <75 y	62 (43) 83 (57)	40 (65) 57 (69)	40 57	9.2 (6.4, 12.5) 12.9 (9.2, NR)	11 (9.3-NR) 17.7 (14.2-NR)
AML De novo Secondary	109 (75) 36 (25)	73 (67) 24 (67)	73 24	9.4 (7.2, 11.7) NR (12.5, NR)	12.5 (10.3-24.4) NR (14.6-NR)
Mutations* FLT3† IDH1 or 2‡ NPM1 TP53	18 (12) 35 (24) 23 (16) 36 (25)	13 (72) 25 (71) 21 (91) 17 (47)	13 25 21 17	11 (6.5, NR) NR (6.8, NR) NR (6.8, NR) 5.6 (1.2, 9.4)	NR (8-NR) 24.4 (12.3-NR) NR (11-NR) 7.2 (3.7-NR)

DiNardo et al. Blood, 2019

Overall Survival Aza + Venetoclax vs Aza + Placebo

DiNardo et al. N Engl J Med, 2020; Pratz et al. ASH, 2022 (abstr 219)

HMA + Venetoclax in AML Tricks of the Trade


- Tumor lysis very uncommon in AML, but some admit to initiate C1
- With concomitant azoles Ven dose reduced from 400mg qd
 - Per FDA 100mg for vori and 70mg for posa
- Continue Ven for 28 days in C1 without interruption for cytopenias
- Bone marrow biopsy day 14-21 C1. If no decrease in blasts, consider alternative therapy; if marrow aplasia hold C2 until recovery
- Once in remission, Ven often decreased to 7 or 14 days of subsequent 28day cycles to avoid prolonged cytopenias
- Consider GCSF if CR and ANC <500/uL for >42 days
- If no CR after 1-2 cycles, consider abandoning

HMA + Venetoclax Research Directions at ASH2022

- Aza/Ven + novel agents
 - Gilteritinib (FLT3 inhibitor)
 - Pevonedistat (NEDD8 inhibitor)
 - Magrolimab (Anti-CD47 ab)
 - Uproleselan (E-selectin antagonist)
 - SNDX-5613 (Menin-MLL binding inhibitor)
- Aza/Ven + or vs or as maintenance after induction chemotherapy
- Aza/Ven in high-risk younger pts
- Aza/Ven as a bridge to allo for molecular persistence of *NPM1*
- Aza/Ven as maintenance after allo

Short abstr 831; Ong #2161; Daver #61; Jonas #2764; Zeidner #4085; Wang #1450; Matthews #426; Basinet #4059; Xie #601; Sartor #4071; Ionescu #538; Oran # 4738

QUAZAR AML-001 Maintenance Trial of CC-486 Oral Azacitidine For AML in CR1

Wei et. al. N Engl J Med, 2020

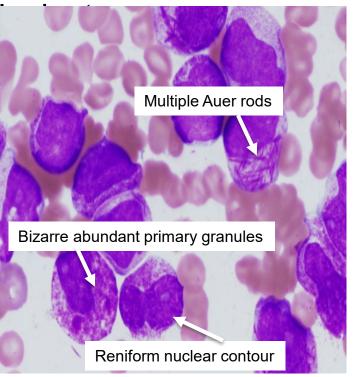
QUAZAR AML-001 Maintenance Trial Oral Aza CC-486

- Phase III placebo controlled trial, age >/=55
- AML in CR1, intermediate- or high-risk, not candidates for allograft
- Prolonged OS and RFS, indep of *NPM1* and *FLT3* status and MRD
- It's oral
- But, pretreatment not prescribed and varied (~20% no consol)
- Pts in relapse with 5-15% blasts could continue CC-486 until >15% blasts or HSCT
- Myelosuppression and other toxicities
- I generally do not use it

Wei al. N Engl J Med, 2020; Dohner et al. Blood, 2022; Roboz et al. Blood, 2022

MRD in **AML**

- FC, PCR (for *NPM1* and CBF), NGS
- Measure after 2 cycles of intensive treatment
- Sensitivity increased with combined FC and NGS
- 30% MRD- relapse and 30% MRD+ (esp *NPM1* and CBF) do not re
- When is optimal time to measure? After 2 cycles of intensive therapy
- MRD eval must be integrated with other parameters


Getta et al. BBMT, 2017Jongen-Lavrencic et al. N Engl J Med, 2018; Willekens et al. Haematologica, 2016

The Transplant Conundrum

- Poor responders to induction or relapsed pts, (N=272)
- Randomized to remission induction with HAM (N=143) or Watch and Wait (N=138), then HCT
- To HCT: W and W 98% HAM 96%
- CR@d56 after HCT: W and W 84.1%, HAM 81.3%
- OS by IIT: 3-yr W and W 51%, HAM 54.2%
- Concl: Intensive reinduction did not confer an OS advantage
 Data support HCT wo prior remission induction when a donor is readily available
- Likelihood of achieving MRD⁻ is mutation dependent, rely less on intensive chemo beyond C1 consolidation, need MRD "erasers"

Why Talk About APL Separately from Other AMLs?

- Cells are attractive and intriguing to
- Molecular pathogenesis has been de
- Clinical manifestations are unique
- Treatment is different from all other s
- Disease is highly curable (almost evidence)
- This is the one AML that every hem
 Reniform nuclear contour
 (such pts are notoriously admitted on Friday nights)

Important Concepts in Induction in APL

- No modification based on additional cyto abn (? if complex¹), therapy-related, *FLT3* mutations (treated with ATO²), *PML* isoform, morphology (M3V), or CD56^{pos}
- Bone marrow not needed on day 14 and not at CR
 - <u>No primary resistance</u>
 - <u>No prognostic importance of cyto/molecular genetics in CR1 at end of induction</u>
 - EVERY pt achieves CR (if no early death)
- Maybe no marrow needed at presentation for some pts if diagnosis unequivocal (provocative concept)

¹Epstein-Peterson et al. Blood Adv, 2022; ²Poire et al. Leuk Lymph, 2014

Induction in APL

- ATRA + ATO for low-risk (Lo Coco regimen or Burnett), optimize electrolytes
- ATRA + ATO + ida (or GO) for high-risk (lland or Estey/Ravandi/Abaza regimen)

OR (if ATO unavailable)

- ATRA + ida
- CNS prophylaxis for high-risk (no data, NCCN notes "consider")
- Prophylactic steroids for DS (no rando data, but commonly given for all, if not, maintain suspicion and give dex at first sign or sx)
- ATRA 45 mg/m², 25 mg/m² for peds pts or toxicity (oral ATO coming)
- High-risk: give 12-24 hrs of ATRA first to stabilize coagulopathy

Lo Coco et al. New Engl J Med, 2013; Burnett et al. Lancet Oncol, 2015; Abaza et al. Blood, 2017; NCCN AML Guidelines 2023; Castaigne et al. Blood, 1993

Consolidation in APL

- ATRA + ATO
 - Low-risk: 4 courses (Lo Coco)
 - High-risk: 2 courses with ida in induction (lland)

OR (if unable or ATO not available)

- 3 cycles anthracycline-based chemo (leads to molec CR in 95%)
 - ATRA for 2 weeks with each cycle, based on historical comparisons of consecutive series
- High-risk patients require either
 - ATO in induction or consolidation
 - IDAC in consolidation

Lo Coco et al. New Engl J Med, 2013; Iland et al. Blood, 2012; Mandelli et al. Blood, 1997; Diverio et al. Blood, 1999; Sanz et al. Blood, 2009; Powell et al. Blood, 2010

Conclusions

- 10 new drugs recently approved for AML
- Mido <u>new SOC</u>, second gen more potent *FLT3*i avail, in randomized trials
- CPX-351 <u>new SOC</u> for t-AML, AML-MRC, prior MDS/CMML
- Venetoclax + HMA
 - highly effective <u>new SOC</u> for older adults, unfit adults and maybe even younger adults with poor-risk disease (await studies)
 - Serves as a backbone for combinations with novel agents
- Therapeutic paradigms are changing
- Just how large the pot of gold at the end of the rainbow is requires more study

Changing Landscape in AML 2023

- Move towards less chemo and in fact, away from chemo with targeted strategies
- New-found ability to effectively treat older adults, poor-risk pts and those with comorbidities
- Revisiting maintenance
- Shift to oral therapies, future may be doublets, triplets and beyond
- Increased burden on outpatient care delivery