

Tycel Phillips, MD

Associate Professor

City of Hope

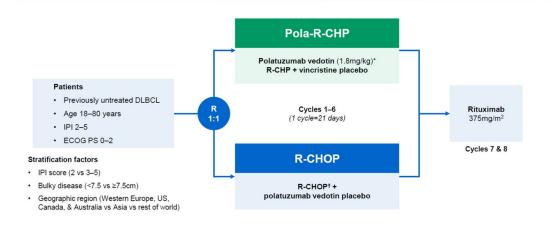
Updates in Lymphoma

Disclosures

- Research Support
 - Abbvie, Bayer, BMS, Genentech, Incyte
- Advisory Board
 - Abbvie, ADC Therapeutics, AstraZeneca, Bayer, Beigene, BMS, Genmab, Genentech, Gilead, Eli Lily, Epizyme, Incyte, Pharmacyclics, TG Therapeutics, Seattle Genetics
- Strategic Counsel
 - Epizyme
- Scientific Board
 - Genentech

Agenda

- Diffuse Large B cell Lymphoma
 - 1L
 - 2L and beyond
- Follicular Lymphoma
 - POD24
 - 2L and beyond
- MCL/CLL
 - New options
- T-cell lymphoma


DLBCL

- Currently the SOC for 1L remains R-CHOP but recent NCCN update places R-CHP + Pola as category 1 recommendation.
- Recently Data from Polarix indicated an PFS benefit from the addition of polatuzumab to the CHOP backbone in place of vincristine.
 - Still without an OS benefit.
- Smart Start
 - Novel regimen from MD Anderson that provides a chemo-free lead in with rituximab-lenalidomide and ibrutinib prior to introduction of CHOP for non-GCB patients
 - Potential utility to safely incorporate these oral regimens in 1L therapy

POLARIX (Study Schema/Racial Breakdown)

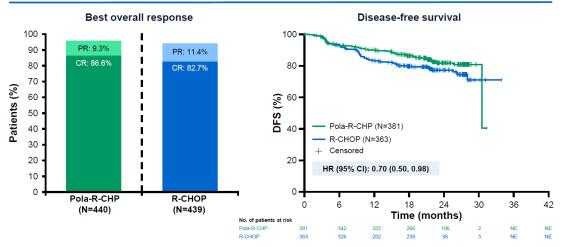
POLARIX: A randomized double-blinded study

*IV on Day 1; 1*R-CHOP: IV fituoimab 375mg/m², cyclophosphamide 750mg/m³, doxorubicin 50mg/m³, and vincristine 1.4mg/m³ (max. 2mg) on Day 1, plus oral prednisone 100mg once daily on Days 1-5 IPI, International prognostic index ECOG PS, Eastern Cooperative Oncology Group performance status: R. randomizer

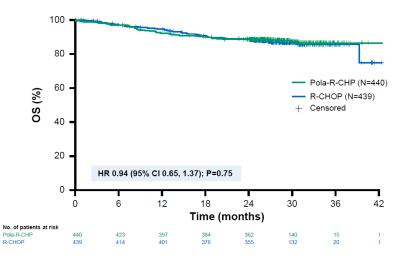
DRIVE Score 0

Table S9. Race and ethnicity of patients enrolled in the US.

	Pola-R-CHP	R-CHOP
	N = 106	N = 128
American Indian or Alaska Native, n (%)	1 (1)	0
Asian, n (%)	3 (3)	3 (2)
Black or African American, n (%)	8 (8)	8 (6)
Native Hawaiian or other Pacific Islander, n (%)	0	0
White, n (%)	79 (75)	98 (77)
Other, n (%)	1 (1)	3 (2)
Unknown, n (%)	14 (13)	16 (13)
Hispanic or Latino, n (%)*	5 (5)	12 (9)
American Indian or Alaska Native, n (%)	1 (1)	0


^{*}Hispanic or Latino patients are also included in applicable race categories.

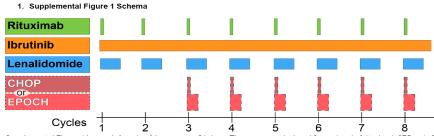
Pola-R-CHP, polatuzumab vedotin + rituximab + cyclophosphamide, doxorubicin, and prednisone; R-CHOP, rituximab + cyclophosphamide, doxorubicin, vincristine and prednisone.


POLARIX (Outcomes)

Response rates and disease-free survival

ITT population. Data cut-off: June 28, 2021; median 28.2 months' follow-up. Disease-free survival (DFS) defined as the time from the date of the first occurrence of a documented complete response to the date of progression, relapse, or death from any cause for the subgroup of patients with a best overall response of CR.

Overall survival



ITT population. Data cut-off: June 28, 2021; median 28.2 months' follow-up.

SMART START

- Enrolled 60 patients at MD Anderson with Non-GCB DLBCL DRIVE (NA)
 - Defined by IHC
- All patients started therapy with rituximab, lenalidomide 25 mg D1-10, ibrutinib 560 mg daily (reduced to 420 with later amendment) in 21-day cycles for 1st two cycles.
- Combined with Chemotherapy for cycles 3-8
 - Originally EPOCH then amended to allow EPOCH or CHOP

Supplemental Figure 1 Legend: A cycle of therapy was 21 days. Therapy on cycle 1 and 2 consisted of rituximab 375mg/m2 IV on day 1, ibrutinib 560mg orally daily (amended to 420mg orally daily if >65 years old), and lenalidomide 25mg orally days 1-10 (RLI). Therapy on cycles 3 – 8 consisted of RLI with either CHOP (cyclophosphamide 750mg/m² IV on day 1, doxorubicin 50mg/m² IV on day 1, Vincristine 2mg IV on day 1, and Prednisone 100mg orally days 1-5) or EPOCH (etoposide 50mg/m²/day IV continuous days 1-4, Prednisone 100mg orally days 1-5, vincristine 0.4mg/m²/day IV continuous days 1-4, cyclophosphamide 750mg/m² IV on day 5, and Doxorubicin 10mg/m²/day IV continuously days 1-4).

SMART START – Response/Toxicity

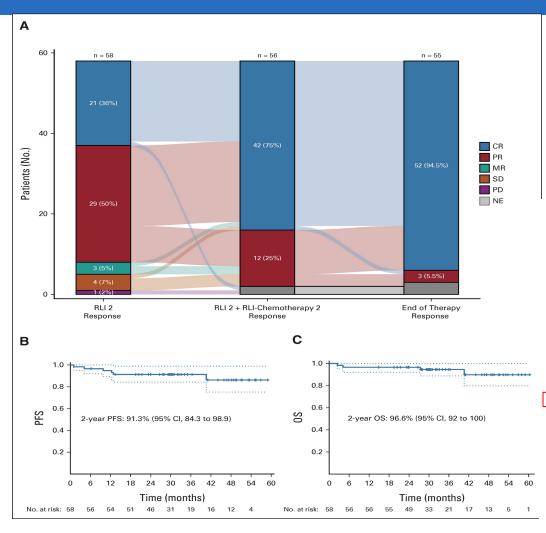


FIG 1. Clinical efficacy. (A) Response to RLI alone and with chemotherapy in a Sankey diagram. After two cycles of RLI, 58 patients were evaluable. Twenty-one (36%) had CR, 29 (50%) had PR, four (7%) had SD, three (5%) had MR, and one (2%) had PD. After two cycles of RLI and two cycles of RLI-chemotherapy, 56 patients were evaluable. Forty-two (75%) had CR and 12 (25%) had PR. At the end of therapy, 55 patients were evaluable. Fifty-two (94.5%) had CR and three (5.5%) had PR. Kaplan-Meier survival curves for (B) PFS and (C) OS. CR, complete response; MR, mixed response; NE, not evaluable; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RLI,

No. (%)

rituximab, lenalidomide, and ibrutinib; SD, stable disease.

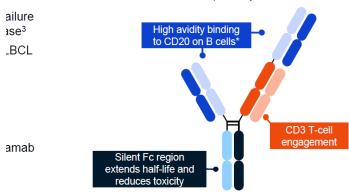
TABLE 2. Adverse Events

	NU. (%)			
AE	Any Grade ($N = 60$)	Grade 3 or Higher ($N = 60$)	Any Grade CHOP (N = 25)	Any Grade EPOCH ($N = 31$)
Nausea	51 (85.0)	2 (3.0)	22 (88)	28 (90)
Peripheral sensory neuropathy	50 (83.0)	5 (8.0)	21 (84)	28 (90)
Diarrhea	47 (78.0)	8 (13.0)	18 (72)	28 (90)
Mucositis	45 (75.0)	2 (3.0)	19 (76)	25 (81)
Thrombocytopenia grade 2-4	35 (58.0)	28 (47.0)	14 (56)	21 (68)
Rash	32 (53.0)	9 (15.0)	13 (52)	17 (55)
Neutropenia grade 3-4	32 (53.0)	32 (53.0)	14 (56)	18 (58)
Anemia grade 2-4	32 (53.0)	23 (38.0)	12 (48)	19 (61)
Dyspnea	26 (43.0)	3 (5.0)	6 (24)	19 (61)
Febrile neutropenia	22 (37.0)	22 (37.0)	6 (24)	16 (52)
Vomiting	20 (33.0)	1 (1.7)	7 (28)	13 (42)
Atrial fibrillation	7 (12.0)	2 (3.0)	4 (16)	3 (10)
Syncope	6 (10.0)	6 (10.0)	3 (12)	3 (10)
Invasive fungal infection	1 (1.7)	1 (1.7)	_	_
Clostridium difficile	1 (1.7)	1 (1.7)	_	1 (3)

Abbreviations: AE, adverse event; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; EPOCH, infusional etoposide, doxorubicin, vincristine, with prednisone and cyclophosphamide.

Published in: Jason Westin; R. Eric Davis; Lei Feng; Fredrick Hagemeister; Raphael Steiner; Hun Ju Lee; Luis Fayad; Loretta Nastoupil; Sairah Ahmed; Alma Rodriguez; Michelle Fanale; Felipe Samaniego; Swaminathan P. Iyer; Ranjit Nair; Yasuhiro Oki; Nathan Fowler; Michael Wang; Man Chun John Ma; Francisco Vega; Timothy McDonnell; Chelsea Pinnix; Donna Griffith; Yang Lu; Sanjit Tewari; Ryan Sun; David W. Scott; Christopher R. Flowers; Sattva Neelapu; Michael R. Green; Journal of Clinical Oncology 2023 41745-755.

DOI: 10.1200/JCO.22.00597


R/R DLBCL

- Outcomes in R/R DLBCL while improved still with room for improvement.
- Primary refractory patients historically with worse outcomes
 - Two CAR-T products approved based on ZUMA-7 and TRANSFORM study
 - Both showed benefit over ASCT in primary refractory DLBCL
 - Still majority of patients don't receive CAR-T either due to access to center or progression prior to receipt of cells
- Bispecific antibodies potential to be options for these patients given ability to be given in community
 - Glofitamab
 - Epcoritamab

Glofitamab

Glofitamab: CD20xCD3 bispecific monoclonal antibody with 2:1 format for increased potency vs 1:1 format⁶

glofitamab in R/R DLBCL and ≥2 prior therapies

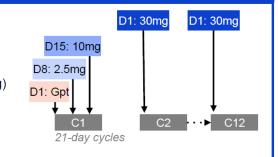
Chien, et al. Future Oncol 2020; 2. Crump, et al. Blood 2017; 3. Sehn and Salles. NEJM 2021;
 Pharmaceuticals 2022; 5. Roschewski, et al. NEJM 2022; 6. Bacac, et al. Clin Cancer Res 2018;
 NCT03075696. Available at: https://clinicaltrials.gov; 8. Hutchings, et al. J Clin Oncol 2021.

Study overview

Pivotal Phase II expansion in patients with R/R DLBCL and ≥2 prior therapies (NP30179)

Key inclusion criteria

- DLBCL NOS, HGBCL, transformed FL or PMBCL
- ECOG PS 0–1
- ≥2 prior therapies, including:
 - anti-CD20 antibody
 - anthracycline


Glofitamab IV administration

Fixed-duration treatment

· max. 12 cycles

CRS mitigation:

- obinutuzumab pretreatment (1 x 1000mg)
- C1 step-up dosing
- monitoring after first dose (2.5mg)

Endpoints

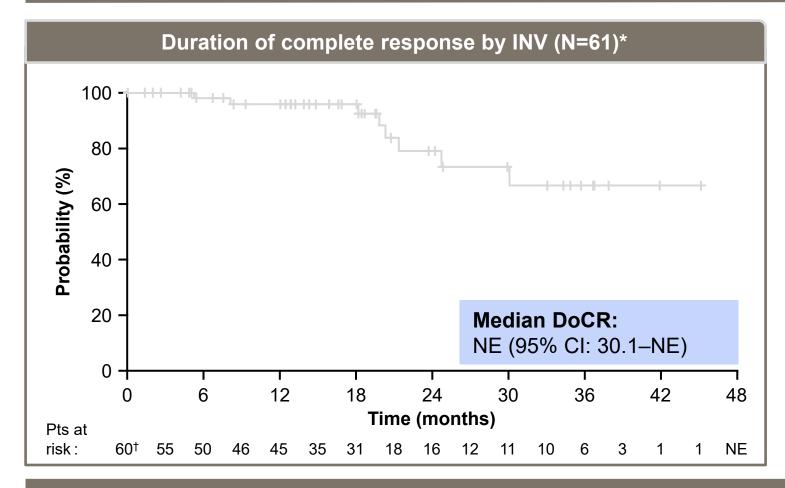
- Primary: CR (best response) rate by IRC*
- Key secondary: ORR rate,† DoR, DoCR,† PFS, and OS

Glofitamab Response Data

Response rates – primary endpoint met

Efficacy endpoint ¹	Glofitamab 2.5/10/30mg (n=155)
CR rate*	61 (39.4%) [95% CI: 31.6%, 47.5%]
ORR*	80 (51.6%) [95% CI: 43.5%, 59.7%]

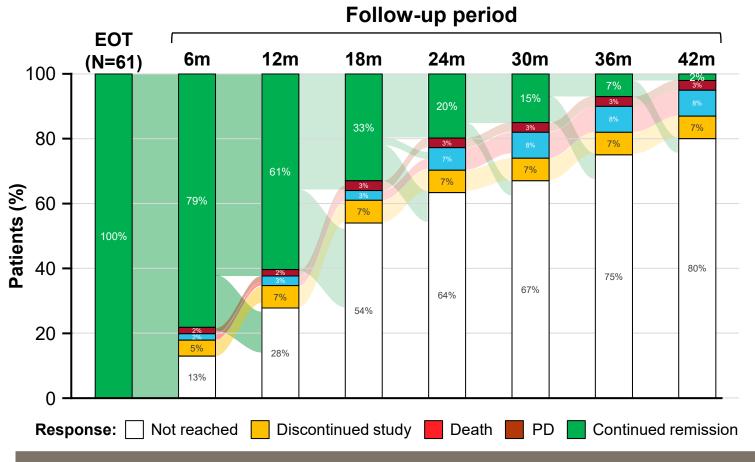
- Median duration of follow-up: 12.6 months (range: 0–22)
- Responses were achieved early: median time to first CR was 42 days (95% CI: 42, 44)
- At time of primary analysis, primary endpoint met in the primary efficacy population (n=108)[†]: 35.2%
 CR rate by IRC significantly greater (p<0.0001) than 20% historical control CR rate[‡]


High CR/ORR rate at RP2D

Complete response rates by IRC in pre-specified subgroups

Subgroups	No. of patients	CR (95% CI) by IRC	
Overall	155 (100%)	39% (32%, 48%)	⊢ •
Age group	• •		<u> </u>
:65	71 (46%)	41% (29%, 53%)	- i•
65	84 (54%)	38% (28%, 49%)	├──
IHL subtype at study entry	()	(,,	i
DLBCL	110 (71%)	40% (31%, 50%)	├──
IGBCL	11 (7%)	0%	
PMBCL	6 (4%)	50% (12%, 88%)	
FL	28 (18%)	50% (31%, 69%)	⊢
Bulky disease >6cm	(/	- 3 / - (, /	
es	64 (41%)	33% (22%, 46%)	├──
lo	90 (58%)	44% (34%, 55%)	<u>⊢ </u>
Jnknown/Missing	1 (1%)	0%	1
Number of prior line of therapies	. ()		!
2	62 (40%)	32% (21%, 45%)	⊢
≥3	93 (60%)	44% (34%, 55%)	-
Prior CAR-T therapy	, ,		i
es · ·	52 (34%)	35% (22%, 49%)	
10	103 (66%)	42% (32%, 52%)	⊢ i• − −
Post ASCT			-
lo	127 (82%)	33% (25%, 42%)	
Refractory	7 (5%)	71% (29%, 96%)	├
Relapsed	21 (14%)	67% (43%, 85%)	i
R/R to last prior therapy			
Refractory	132 (85%)	34% (26%, 43%)	
Relapsed	23 (15%)	70% (47%, 87%)	<u> </u>
		0	25 50 75 10

Durable responses after first CR



	N=61
Median DoCR follow-up from first CR, months (95% CI)	18.1 (14.8–20.7)
Median DoCR follow-up from EOT, months (95% CI)	11.5 (10.5–16.4)
Median DoCR, months (95% CI)	NE (30.1–NE)
24-months DoCR , % (95% CI)	79.1 (63.3–95.0)
CRs ongoing at CCOD, n (%)	52 (85.2)

CRs remain durable with significant follow up (11.5 months) post-EOT

*Time from the initial occurrence of a CR until PD or death due to any cause, whichever occurs first; †One patient had pseudoprogression prior to CR at EOT visit and is by definition excluded from DoCR analysis.

Remission beyond EOT in patients with CR at EOT

- Longer follow-up is needed beyond12 months after EOT
- Of the patients still in remission at 12 months, two patients subsequently had PD
 - Both patients initiated re-treatment
 12–18 months post-EOT and
 achieved a CR

Although longer follow-up is needed, majority of patients remain in remission beyond EOT

EPCORE NHL-1: LBCL Expansion Cohort

Dose escalation

Dose expansion data cutoff: January 31, 2022 Median follow-up: 10.7 mo

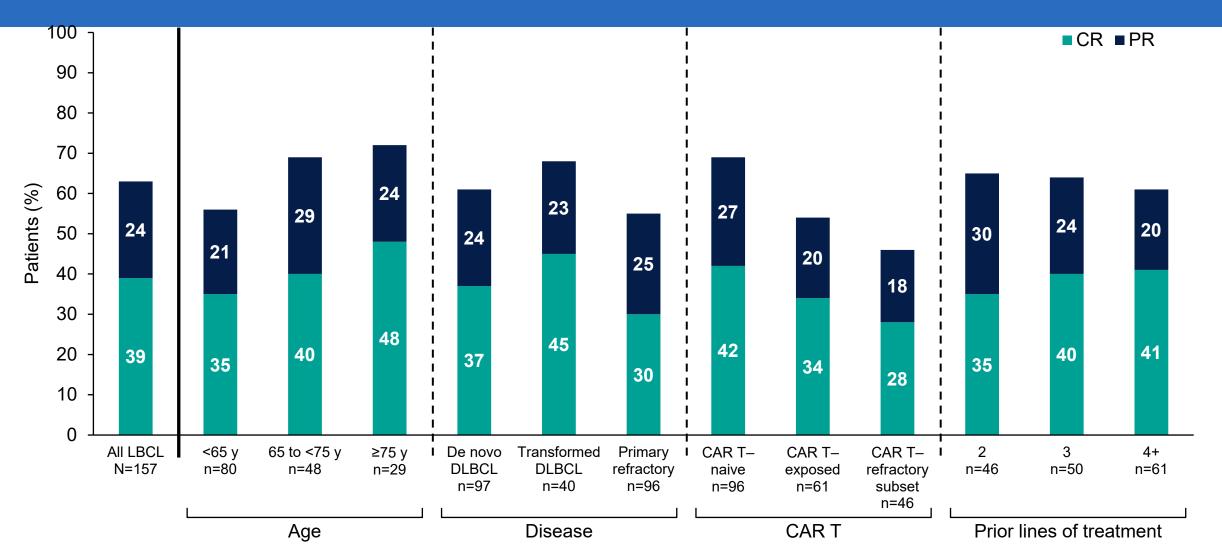
B-NHL:

- √ No DLTs
- ✓ MTD not reached
- ✓ RP2D identified
- Manageable safety profile
- ✓ Encouraging antitumor activity

Key inclusion criteria:

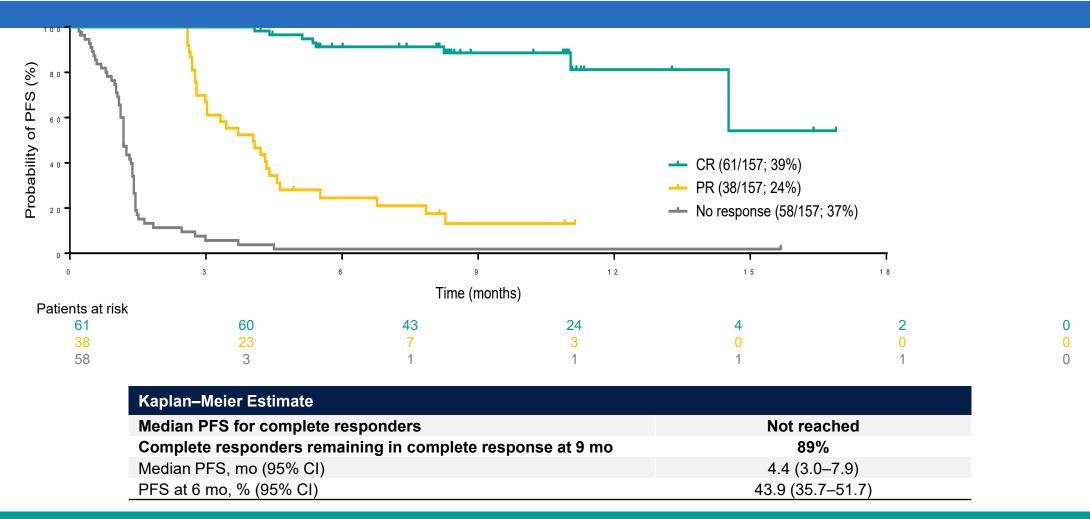
- R/R CD20⁺ mature B-cell neoplasm
- ECOG PS 0-2
- ≥2 prior lines of antineoplastic therapy, including
 ≥1 anti-CD20 mAb
- FDG PET-avid and measurable disease by CT/MRI
- Prior CAR T allowed

Epcoritamab SC
RP2D 48 mg
QW C1-3,
Q2W C4-9,
Q4W C10+


Treatment until PD^{b,c} or unacceptable toxicity

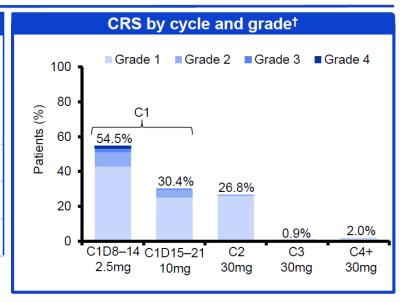
LBCL Cohort
N=157
DLBCL, HGBCL,
PMBCL, and
FL Gr3B

- To ensure patient safety and better characterize CRS, inpatient monitoring was required at first full dose for 24 h in this part of the study
- Primary endpoint: ORR by independent review committee (IRC)
- Key secondary endpoints: DOR, TTR, PFS, OS, CR rate, and safety/tolerability


aStep-up dosing (priming 0.16 mg and intermediate 0.8 mg dosing before first full dose) and corticosteroid prophylaxis were used to mitigate CRS. bRadiographic disease evaluation was performed every 6 wk for the first 24 wk (6, 12, 18, and 24 wk), then every 12 wk (36 and 48 wk), and every 6 mo thereafter. bReasurable disease with CT or MRI scan with involvement of ≥2 lesions/nodes with a long axis >1.5 cm and short axis >1.0 cm (or 1 lesion/node with a long axis >2.0 cm and short axis ≥1.0 cm) and FDG PET scan that demonstrates positive lesion(s) compatible with CT-defined (or MRI-defined) anatomical tumor sites for FDG-avid lymphomas. ClinicalTrials.gov: NCT03625037. EudraCT: 2017-001748-36.

Deep Responses Consistent Across Key Subgroups

PFS by Best Response per IRC


A correlation between depth of response and PFS was observed

CRS

Cytokine release syndrome

n (%)	N=154
CRS (any grade)*	97 (63.0)
Grade 1 (fever)	73 (47.4)
Grade 2	18 (11.7)
Grade 3	4 (2.6)
Grade 4	2 (1.3)
Median time to CRS onset from C1D8 dose, hours (range)	13.6 (6.2–51.8)
Corticosteroids for CRS management	27/97 (27.8)
Tocilizumab for CRS management	31/97 (32.0)

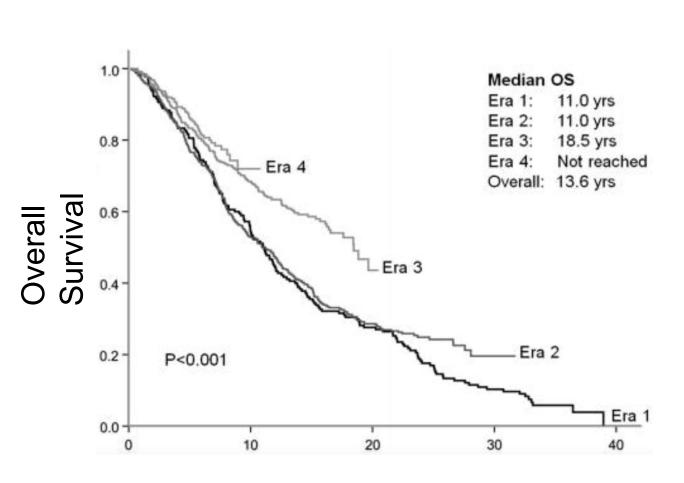
CRS was mostly low grade, time of onset was predictable, and most events occurred during C1

SC Administration and Step-up Dosing May Mitigate CRS

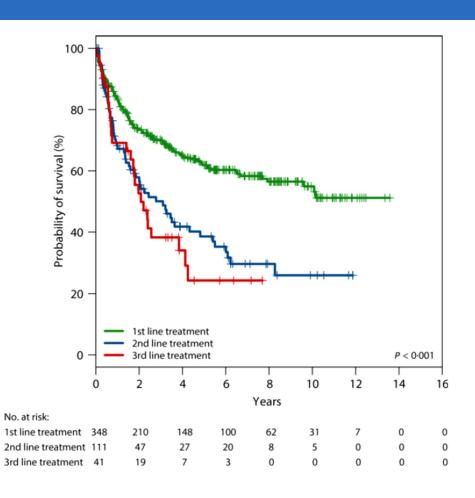
	LBCL N=157
CRS events, n (%) ^a	78 (49.7)
Grade 1	50 (31.8)
Grade 2	24 (15.3)
Grade 3	4 (2.5)
Median time to onset from first full dose, d	0.8 (20 h)
CRS resolution, n (%)	77 (98.7)
Median time to resolution from first full dose, d	2 (48 h)
Treated with tocilizumab, n (%)	22 (14.0)
Treated with corticosteroids, n (%)	16 (10.2)
Leading to treatment discontinuation, n (%)	1 (0.6)

^aGraded by Lee et al. 2019 criteria.

CRS was primarily low grade and predictable: most events occurred following the first full dose



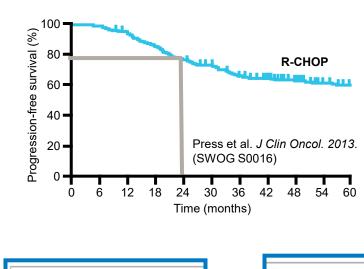
Follicular Lymphoma

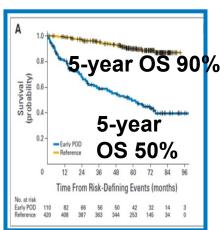

- Follicular lymphoma is the most common indolent lymphoma in US and Western Europe accounting for approximately 22% of all cases of Non-Hodgkin Lymphoma
- Currently the disease is incurable with variable patient disease course and outcomes
- Several viable frontline options but currently no clear standard of care.
- Pattern of diminishing returns with successive lines of therapy
 - Worse outcomes in patients who relapse within 24 months of chemoimmunotherapy
- Novel agents have moved to the forefront of options in relapsed/refractory (R/R) disease

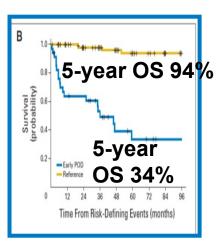
Treatment by Era and by Line of Therapy

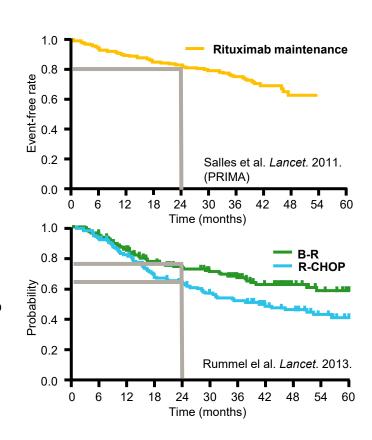
Era 1: Pre-Antracycline (1960-1975) Era 2: Antracycine. (1976-1986) Era 3: Agg. Chemo/Purine Analogs (1987-1996) Era 4: Rituximab (1996-2003)

Link et al. *BJH*, 2018; 184: 660-63 Rivas-Delgado et al. *BJH* 2018; 184: 753-59




POD24/Transformation


- Despite worsening outcomes with subsequent therapy most patients with FL will live a considerable amount of time with disease.
- This does not appear to be the case with those who relapse early (within 24 months of receipt of chemo-immunotherapy for 1L treatment)
- Patients who fall into the POD24 category tend to have poor outcomes to subsequent therapy and shortened overall survival
 - Appears to be irrespective of regimen received in the frontline setting.



20% of Patients With FL Experience Disease Progression Within 2 years of Chemo-immunotherapy

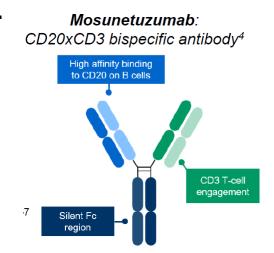
This suggests a high-risk group of patients who will relapse early despite different treatment approaches; maintenance

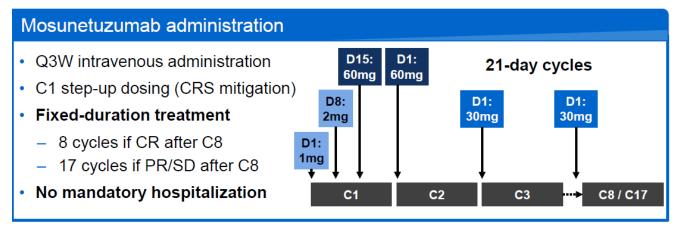
Casulo et al. JCO 2015

POD24/Transformation (Continued)

- Data suggests that a portion of early relapsing patients have transformed DLBCL (tDLBCL).
- Highlights the need to biopsy early relapsing patients to confirm/rule out transformation
- Patients with transformed disease have historically had poor survival outcomes but more contemporary data suggests outcomes are more promising¹⁻³.
- If transformation noted, then patients should be treated like de novo DLBCL
 - Treatment should depend on receipt of chemotherapy prior to transformation.
 - Amount of prior anthracycline exposure
 - Most advocate consolidation with ASCT if response to chemotherapy used to treat tDLBCL
 - Yuen AR, Kamel OW, Halpern J, Horning SJ. Long-term survival after histologic
 Transformation of low-grade follicular lymphoma. *J Clin Oncol*. 1995;13(7):1726-1733.
 Al-Tourah AJ, Gill KK, Chhanabhai M, et al. Population-based analysis of incidence
 and outcome of transformed non-Hodgkin's lymphoma. *J Clin Oncol*. 2008;26(32):5165-5169.
 Link BK, Maurer MJ, Nowakowski GS, et al. Rates and outcomes of follicular lymphoma transformation in the
 immunochemotherapy era: a report from the University of Iowa/Mayo Clinic Specialized Program of Research Excellence Molecular
 Epidemiology Resource. *J Clin Oncol*. 2013;31(26):3272-3278.

Options 2L and Beyond


- Chemotherapy
 - Pending what was received in 1L setting and duration of remission.
- R2
 - AUGMENT and MAGNIFY Studies highlight benefit of agents in 2L+
 - MAGNIFY with higher risk patient population as compared to AUGMENT but ORR similar
- CAR-T (Axi-cel and Tisa-cel)
 - Access issues similar to DLBCL
- Tazemetostat
 - ORR higher in EZH2 mutant patients but PFS similar in both groups



Mosunetuzumab

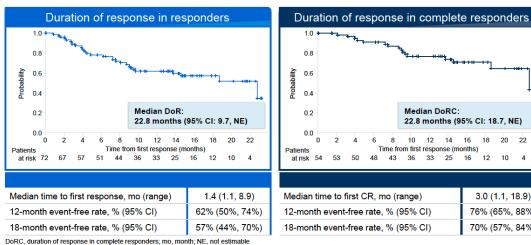
- Recent approval for 3L beyond FL based on study by Budde et al.
 - CD20/CD3 bispecific antibody
- Drive Score 0

		N=90
Median number o	3 (2–10)	
Prior systemic Anti-CD20 therapy therapy Alkylator therapy PI3K inhibitor IMiD CAR-T		90 (100%) 90 (100%) 17 (18.9%) 13 (14.4%) 3 (3.3%)
Prior ASCT	19 (21.1%)	
Refractory to last	62 (68.9%)	
Refractory to any	71 (78.9%)	
Refractory to any and alkylator ther	48 (53.3%)	
POD24	47 (52.2%)	

Bispecific Antibodies (Mosunetuzumab)

Primary endpoint met: CR rate greater than historical control

Efficacy endpoint ¹	IRF N (%) [95% CI]	Investigator N (%) [95% CI]	Concordance IRF vs investigator
CR	54 (60%) [49%, 70%]	54 (60%) [49%, 70%]	93%
ORR	72 (80%) [70%, 88%]	70 (78%) [68%, 86%]	96%

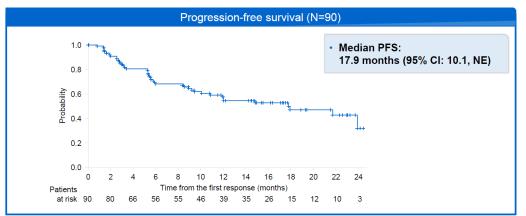

60% CR rate significantly greater (p<0.0001)* than 14% historical control CR rate²

*exact binomial test with two-sided alpha level of 5%: Cl. confidence interval

1. Cheson et al. J. Clin Oncol 2007:25:579_86 Drevling et al. J Clin Oncol 2017;35:3898–905

CR rate (95% CI) by IRF ORR (95% CI) by IRF All patients 60% (49%, 70%) 80% (70%, 88%) <65 years (n=60) 55% (42%, 68%) 77% (64%, 87%) ≥65 years (n=30) 70% (51%, 85%) 87% (69%, 96%) Number of prior therapies 85% (69%, 95%) 2 (n=34) 74% (56%, 87%) ≥3 (n=56) 52% (38%, 65%) 77% (64%, 87%) R/R to last prior therapy Yes (n=62) 52% (39%, 65%) 77% (65%, 87%) No (n=28) 79% (59%, 92%) 86% (67%, 96%) Double refractory Yes (n=48) 50% (35%, 65%) 71% (56%, 83%) No (n=42) 71% (55%, 84%) 90% (77%, 97%) POD24 Yes (n=47) 57% (42%, 72%) 85% (72%, 94%) No (n=43) 63% (47%, 77%) 74% (59%, 86%) 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

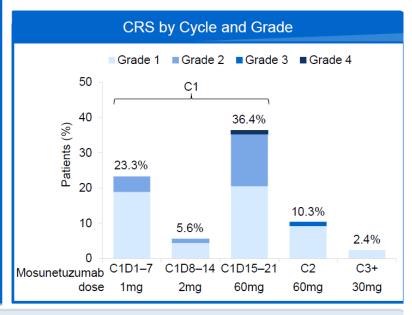
Duration of response

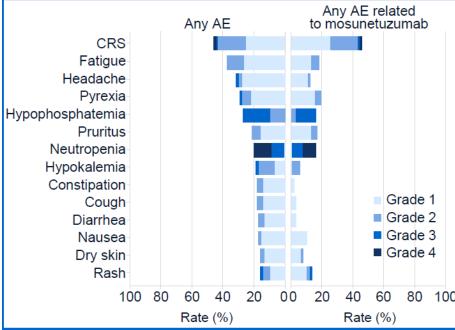


Median DoRC:

22.8 months (95% CI: 18.7, NE)

Progression-free survival




Mosunetuzumab AE profile

Cytokine release syndrome

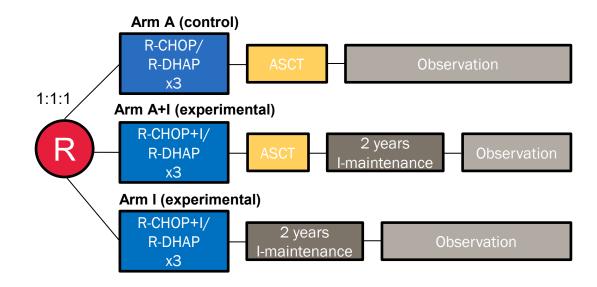
N (%)	N=90
CRS (any Grade)* Grade 1 Grade 2 Grade 3 Grade 4	40 (44.4%) 23 (25.6%) 15 (16.7%) 1 (1.1%) 1 (1.1%) [†]
Median time to CRS onset, hours (range) C1D1 C1D15	5.2 (1.2–23.7) 26.6 (0.1–390.9)
Median CRS duration, days (range)	3 (1–29)
Corticosteroids for CRS management	10 (11.1%)
Tocilizumab for CRS management	7 (7.8%)

CRS was predominately low Grade and in Cycle 1. All events resolved.

ICANS* 4 (4.4%)
Grade 3 0

- Confusional state (3.3%; all Grade 1–2†), disturbance in attention and cognitive disorder (1.1% each; all Grade 1†); all resolved
- No cases of aphasia, seizures, encephalopathy, or cerebral edema

MCL


- Rare NHL that is currently incurable.
 - Several 1L options but no true SOC
 - Clinical trials preferred for most if available
- Several exciting studies at ASH
 - Triangle
 - BRUIN recent approval

TRIANGLE Phase 3 Study of Ibrutinib + SOC as a Substitute for ASCT in Younger Patients With MCL: Study Design and Patients

Key Eligibility Criteria

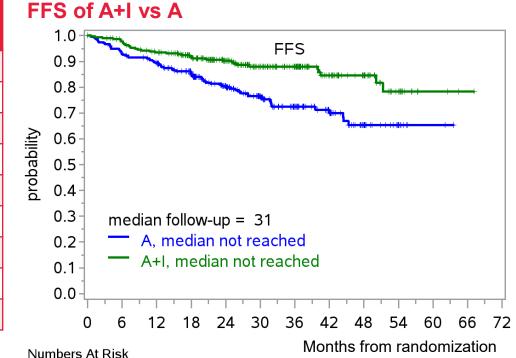
- Previously untreated stage II-IV MCL
- Age <66 years
- Suitable for HA and ASCT
- ECOG PS 0-2

Primary endpoint: FFS

Secondary endpoints: Response rates, PFS, RD, OS, safety

Patient Characteristics		A (n=288)	A+I (n=292)	l (n=290)
Median age (range), years		57 (31-65)	57 (36-68) ^a	58 (27-65)
Male, %		76	74	79
No MCL, i	n	2 ^b	4 ^c	2 ^d
	I	0	0	0
Ann Arbor	II	4	4	6
Stage, % (n=864)	III	8	7	10
(11 00 1)	IV	88	89	84
ECOG >1	%	2	1	2
	Low	58	58	58
MIPI, %	Intermediate	27	27	27
	High	14	15	16

R maintenance (± I) was added in all 3 trial arms, following national guidelines. It was initiated in 168 (58%) patients in Arm A; 165 (57%) patients in Arm A+I; and 158 (54%) patients in Arm I



^a2 patients aged 66 & 68 years were randomized. ^b1 CLL, 1 FL. ^c1 NHL NOS, 1 HD, 2 MZL. ^d1 HCL, 1 DLBCL. Dreyling M, et al. ASH 2022. Abstract 1.

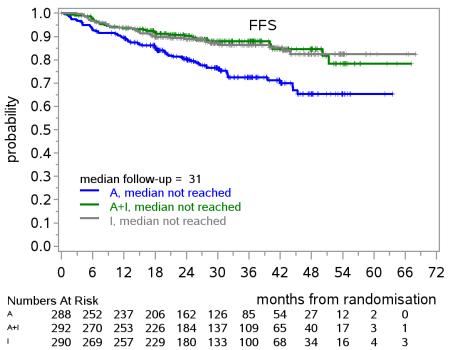
TRIANGLE Phase 3 Study of Ibrutinib + SOC as a Substitute for ASCT in Younger Patients With MCL: Efficacy

Responses at End of Induction, n (%)	Overall	Α	A+I/I	A+I	1.0
ED	2 (0.2)	1 (0.4)	1 (0.2)	1 (0.4)	0
PD	17 (2)	11 (4)	6 (1)	3 (1)	3 (1)
SD	7 (1)	4 (1)	3 (0.5)	1 (0.4)	2 (0.7)
PR	458 (55)	158 (58)	300 (54)	152 (54)	148 (53)
CR	347 (42)	98 (36)	249 (45)	124 (44)	125 (45)
CR + PR	805 (97)	256 (94)	549 (98)	276 (98)	273 (98)
Total	831	272	559	281	278
NE	29	11	18	8	10
ND	10	5	5	3	2

CR and OR rates were significantly higher for combined I induction (A+I/I) vs control (A): CR P=0.0203; OR P=0.0025

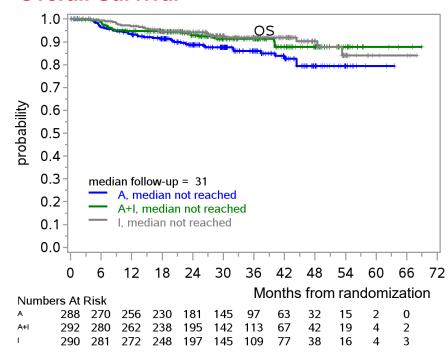
3-year FFS: A+I 88% vs A 72%;
 HR 0.52; P=0.0008

292 270 253 226 184 137 109


TRIANGLE Phase 3 Study of Ibrutinib + SOC as a Substitute for ASCT in Younger Patients With MCL: Efficacy (cont'd)

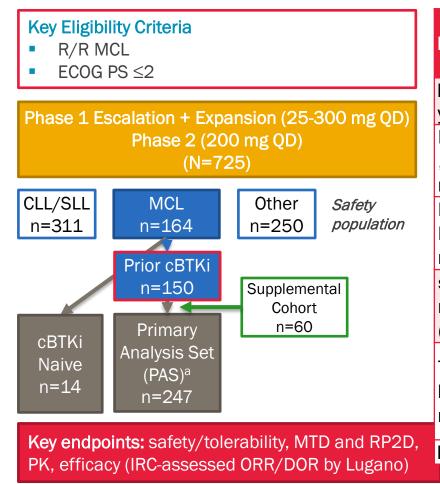
Test for A+I vs

I FFS is


ongoing

FFS of A vs A+I vs I

Next Lymphoma Treatment After 1st Treatment Failure, n (%)	A (n=68)	A+I (n=35)	l (n=37)
With ibrutinib	34 (79)	4 (24)	3 (11)
Without ibrutinib	9 (21)	13 (76)	24 (89)
No treatment	25	18	10


Overall Survival

- 3-year OS: A 86%; A+I 91%; I 92%
- Too early to determine statistical significance

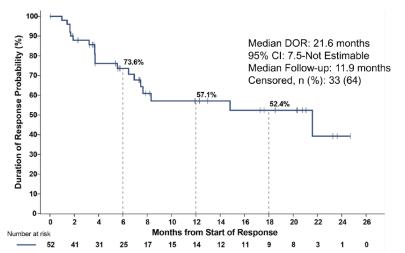
Extended Follow-Up From the BRUIN Phase 1/2 Study of Pirtobrutinib in Patients With Covalent BTKi Pretreated R/R MCL: Study Design and Patients

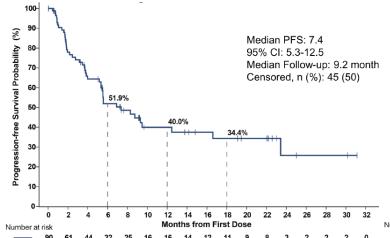
Patient C	haracteristics	Prior cBTKi (n=90)	cBTKi Naïve (n=14)
Median ag years	ge (range),	70 (46-87)	67 (60-86)
Histology	Classic	70 (78)	11 (79)
, n (%)	Blastoid	20 (22)	3 (21)
ECOG PS, n (%)	0	61 (68)	5 (36)
	1	28 (31)	8 (57)
	2	1 (1)	1(7)
sMIPI risk, n (%)	Low (0-3)	20 (22)	3 (21)
	Intermed. (4-5)	50 (56)	5 (36)
	High (6-11)	20 (22)	6 (43)
Tumor bulk, n (%)	<5 cm	66 (73)	9 (64)
	≥5 cm	24 (27)	5 (36)
	<10 cm	87 (97)	12 (86)
	≥10 cm	3 (3)	2 (14)
BM involvement, n (%)		46 (51)	4 (29)

Prior Treatment	Prior cBTKi (n=90)	cBTKi Naïve (n=14)
Median prior lines of therapy (range), n	3 (1-8)	2 (1-3)
Prior therapy, n (%)		
BTKi	90 (100)	0 (0)
Anti-CD20 mAb	86 (96)	14 (100)
Chemotherapy	79 (88)	14 (100)
Immunomodulator	19 (21)	1 (7)
SCT	19 (21)	7 (50)
BCL2i	14 (16)	0 (0)
CAR T	4 (4)	0 (0)
-Pl3Keasons for pri	or ểB∜Ki	1 (7)
discontinuation		

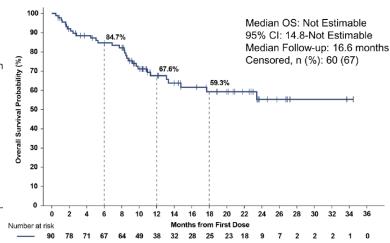
discontinuation

- PD: 74 (82%)


Toxicity/other: 16 (18%)

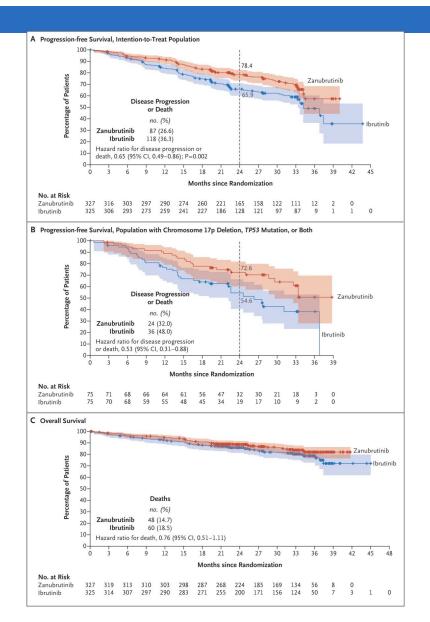

^aTo ensure adequate follow-up, a cutoff of January 31, 2022, was used, which allowed the vast majority (>90%) of responders in the PAS to be followed for ≥9 months from onset of initial response to the data cutoff date. Wang ML, et al. ASH 2022. Abstract 4218.

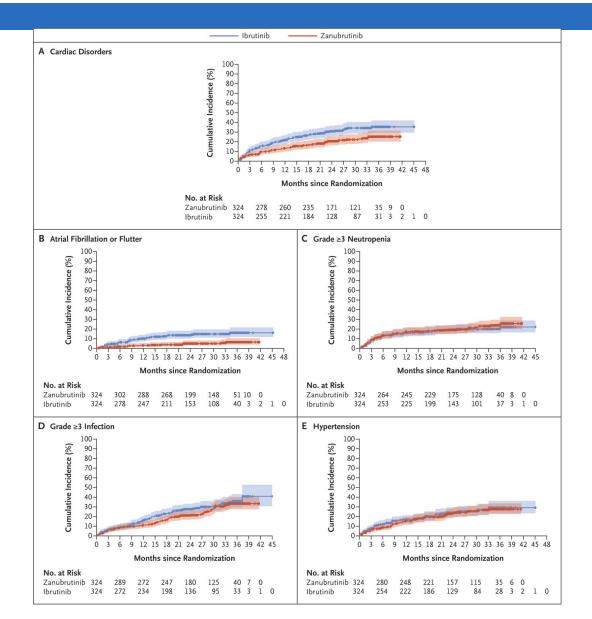
Extended Follow-Up From the BRUIN Phase 1/2 Study of Pirtobrutinib in Patients With Covalent BTKi Pretreated R/R MCL: Efficacy (cont'd)


DOR in Prior cBTKi Patients

PFS in Prior cBTKi Patients

OS in Prior cBTKi Patients




CLL- ALPINE STUDY

- Most Common Leukemia
 - BTKi have revolutionized treatment landscape and are 1L option for most.
 - Currently two approved ibrutinib and acalabrutinib
 - Study evaluated ibrutinib vs. zanubrutinib (2nd gen covalent BTKi)
 - DRIVE SCORE 0

ALPINE –Results/Tox of interest

T-Cell

- Rare in US
 - For ALCL reasonable to consider BV-CHP SOC from Echelon-2
 - ALK with DUSP22 and TP63 mutations with favorable outcomes
 - Data for other subtypes less clear with respect to Echelon-2 especially those with low/no CD30 expression
 - CHOP/CHOEP + ASCT still reasonable options for these patients.
 - Limited options for R/R disease but some newer options include
 - PTCL
 - Duvelisib (while still available)
 - CTCL
 - Mogamulizumab

Summary

- DLBCL
 - R-CHOP still on 1L option approved for DLBCL in US.
 - Await further follow up of POLARIX
 - R/R disease
 - Bispecifics soon to be available and alternative to those who can't get to or relapse after CAR
- FL
 - POD remains troublesome
 - Mosunetuzumab now available
- MCL/CLL
 - Triangle encouraging but need for long term data
 - Zanubrutinib now an option for 1L CLL
- T-Cell
 - No major changes on horizon

