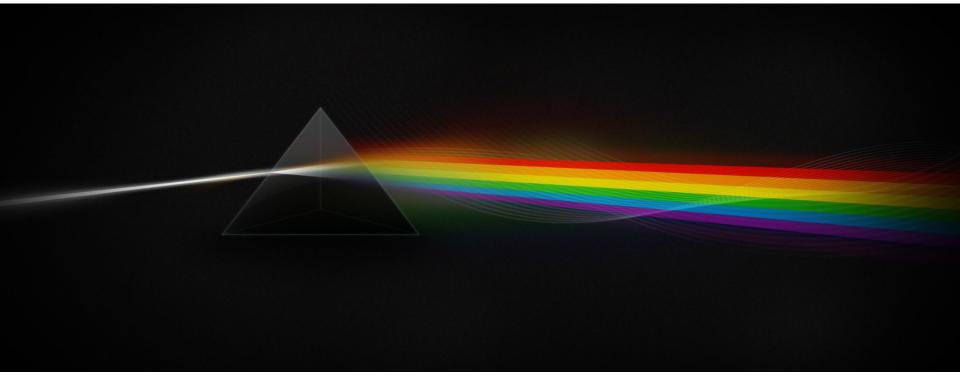


Current and Emerging Therapies for Acute Myeloid Leukemia and Myelodysplastic Syndromes

Richard A Larson, MD University of Chicago


Disclosures – Richard A. Larson, MD

- Research funding to the University of Chicago:
 - Astellas
 - Cellectis
 - Daiichi Sankyo
 - Forty Seven/Gilead
 - Novartis
 - Rafael Pharma
- Equity ownership: none
- Royalties: UpToDate, Inc

- Consultancy/ Honoraria:
 - Ariad/Takeda (DSMB)
 - CVS/Caremark
 - Epizyme (DSMB)
 - Jazz Pharmaceuticals
 - Kling Pharmaceuticals
 - Medpace (DSMB)
 - Novartis
 - Rigel Pharmaceuticals
 - Servier

The syndrome of AML and MDS

Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel

Hartmut Döhner ➡, Andrew H. Wei, Frederick R Appelbaum, Charles Craddock, Courtney D. DiNardo, Hervé Dombret, Benjamin L. Ebert, Pierre Fenaux, Lucy A. Godley, Robert P. Hasserjian, Richard A. Larson, Ross L. Levine, Yasushi Miyazaki, Dietger Niederwieser, Gert J Ossenkoppele, Christoph Röllig, Jorge Sierra, Eytan M. Stein, Martin S. Tallman, Hwei-Fang Tien, Jianxiang Wang, Agnieszka Wierzbowska, Bob Löwenberg

Leukemia

REVIEW ARTICLE OPEN

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/ Dendritic Neoplasms

Joseph D. Khoury ^[1] ^[2], Eric Solary ^[0] ^{2[2]}, Oussama Abla³, Yassmine Akkari ^[0], Rita Alaggio⁵, Jane F. Apperley ^[0], Rafael Bejar ^[0], Emilio Bertl⁸, Lambert Busque ^[0], John K. C. Chan¹⁰, Weina Chen ^[0], Xueyan Chen¹², Wee-Joo Chng¹³, John K. Choi ^[0], Isabel Colmenero ^[0], Sarah E. Coupland¹⁶, Nicholas C. P. Cross ^[0], Daphne De Jong¹⁸, M. Tarek Elghetany¹⁹, Emiko Takahashi ^[0], Jean-Francois Emile ^[0], Judith Ferry²², Linda Fogelstrand²³, Michaela Fontenay²⁴, Ulrich Germing²⁵, Sumeet Gujral²⁶, Torsten Haferlach ^[0], Claire Harrison²⁸, Jennelle C. Hodge²⁹, Shimin Hu ^[0], Joop H. Jansen³⁰, Rashmi Kanagal-Shamanna ^[0], Hagop M. Kantarjian ^[0], Christian P. Kratz ^[0], Ziao-Qiu Li³³, Megan S. Lim³⁴, Keith Loeb³⁵, Sanam Loghavi ^[0], Andrea Marcogliese¹⁹, Soheil Meshinchi³⁶, Phillip Michaels³⁷, Kikkeri N. Naresh ^[0], ³⁵, Yasodha Natkunam ^[0], Reza Nejati³⁹, German Ott⁴⁰, Eric Padron ^[0], Keyur P. Patel¹, Nikhil Patkar ^[0], Jeffrey Tyner ^[0], Srdan Verstovsek ^[0], Wei Wang ^[0], Brent Wood⁵⁰, Wenbin Xiao ^[0], Cecilia Yeung ^[0], and Andreas Hochhaus ^[0], ⁵²

REVIEW ARTICLE | JUNE 29, 2022

International Consensus Classification of Myeloid Neoplasms and Acute Leukemia: Integrating Morphological, Clinical, and Genomic Data

Daniel A, Arber 🚬, Attilio Orazi, Robert P, Hasserijan, Michael J, Borowitz, Katherine R Calvo, Hans Michael Kvasnicka, Sa A, Wang, Adam Bagg, Tiziano Barbui, Susan Branford, Carlos E. Bueso-Ramos, Jorge Cortes, Paola Dal Cin, Courtney D. DiNardo, Hervé Dombret, Eric J Duncavage, Benjamin L. Ebert, Elihu Estey, Fabio Facchetti, Kathryn Foucar, Naseema Gangat, Umberto Gianelli, Lucy A. Godley, Nicola Goekbuget, Jason R. Gotlib, Eva Hellström-Lindberg, Gabriela Hobbs, Ronald Hoffman, Elias J. Jabbour, Jean-Jacques Kiladijan, Richard A. Larson, Michelle M. Le Beau, Mignon L. Loh, Bob Löwenberg, Elizabeth A. Macintyre, Luca Malcovati, Charles G. Mullighan, Charlotte M Niemeyer, Olatoyosi Odenike, Seishi Ogawa, Alberto Orfao, Elli Papaemmanuil, Francesco Passamonti, Kimmo Porkka, Ching-Hong Pui, Jerald P Radich, Andreas Reiter, María Rozman, Martina Rudelius, Michael R Savona, Charles Schiffer, Annette Schmitt-Graeff, Akiko Shimamura, Jorge Sierra, Wendy Stock, Richard M. Stone, Martin S. Tallman, Juergen Thiele, Hwei-Fang Tien, Alexandar Tzankov, Alessandro M. Vannucchi, Paresh Vyas, Andrew H. Wei, Olga K. Weinberg, Agnieszka Wierzbowska, Mario Cazzola, Hartmut Döhner, Avalew Tefferi

www.nature.com/leu

Check for updates

AML (WHO5) is arranged into 2 families

Summary Box:

- AML is arranged into two families: AML with defining genetic abnormalities and AML defined by differentiation. AML, NOS is no longer applicable.
- Most AML with defining genetic abnormalities may be diagnosed with <20% blasts.
- AML-MR replaces the former term AML "with myelodysplasia-related changes", and its diagnostic criteria are updated. AML transformation of MDS and MDS/MPN continues to be defined under AML-MR in view of the broader unifying biologic features.
- AML with rare fusions are incorporated as subtypes under AML with other defined genetic alterations.
- AML with somatic RUNX1 mutation is not recognized as a distinct disease type due to lack of sufficient unifying characteristics.

Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022

Acute myeloid leukemia

Acute myeloid leukaemia with defining genetic abnormalities

Acute promyelocytic leukaemia with PML::RARA fusion Acute myeloid leukaemia with RUNX1::RUNX1T1 fusion Acute myeloid leukaemia with CBFB::MYH11 fusion Acute myeloid leukaemia with DEK::NUP214 fusion Acute myeloid leukaemia with RBM15::MRTFA fusion Acute myeloid leukaemia with BCR::ABL1 fusion Acute myeloid leukaemia with KMT2A rearrangement Acute myeloid leukaemia with MECOM rearrangement Acute myeloid leukaemia with *NUP98* rearrangement Acute myeloid leukaemia with NPM1 mutation Acute myeloid leukaemia with CEBPA mutation Acute myeloid leukaemia, myelodysplasia-related Acute myeloid leukaemia with other defined genetic alterations

Acute myeloid leukaemia, defined by differentiation

Acute myeloid leukaemia with minimal differentiation
Acute myeloid leukaemia without maturation
Acute myeloid leukaemia with maturation
Acute basophilic leukaemia
Acute myelomonocytic leukaemia
Acute monocytic leukaemia
Acute erythroid leukaemia
Acute megakaryoblastic leukaemia

Khoury et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022

International Consensus Classification (ICC) of AML

AML with recurrent genetic abnormalities (requiring ≥10% blasts in BM or PB)^a

- APL with t(15;17)(q24.1;q21.2)/PML::RARA^b
- AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1
- AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11
- AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A^b
- AML with t(6;9)(p22.3;q34.1)/DEK::NUP214
- AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2::MECOM(EVI1)^b
- AML with other rare recurring translocations
- AML with mutated *NPM1*
- AML with in-frame bZIP mutated CEBPA^c
- AML with t(9;22)(q34.1;q11.2)/BCR::ABL1^a

Categories designated AML (if ≥20% blasts in BM or PB) or MDS/AML (if 10-19% blasts in BM or PB)

- AML with mutated TP53^d
- AML with myelodysplasia-related gene mutations

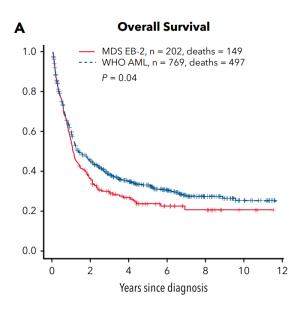
Defined by mutations in ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2

- AML with myelodysplasia-related cytogenetic abnormalities^e
- AML not otherwise specified (NOS)

Döhner et al. BLOOD 2022

^a Bone marrow or peripheral blood blast count of ≥10% required, except for AML with t(9;22)(q34.1;q11.2); BCR::ABL1.

^b Variant rearrangements involving *RARA*, *KMT2A*, or *MECOM* should be recorded accordingly.


^c AML with in-frame mutation in the bZIP domain of the CEBPA gene, either monoallelic or biallelic.

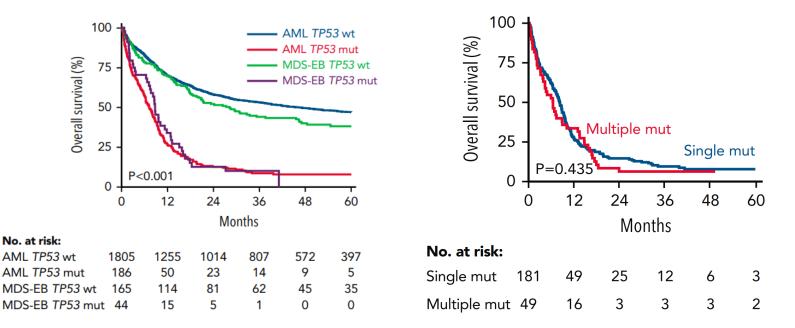
- e Cytogenetic abnormalities sufficient for the diagnosis of AML with MDS-related cytogenetic abnormalities and the absence of other AML-defining disease categories.
- o Complex karyotype: ≥3 unrelated chromosome abnormalities in the absence of other class-defining recurring genetic abnormalities.
- o Unbalanced clonal abnormalities: del(5q)/t(5q)/add(5q); -7/del(7q); +8; del(12p)/t(12p)/(add(12p); i(17q), -17/add(17p) or del(17p); del(20q); and/or idic(X)(q13)

^d The presence of a pathogenic somatic *TP53* mutation (at a variant allele fraction of at least 10%, with or without loss of the wild-type TP53 allele) defines the entity AML with mutated *TP53*.

Distinguishing AML from MDS: a fixed blast percentage at 20% may no longer be optimal

Table 2. Multivariable models

Variable	OS	EFS	CR or CRi	RFS if CR/CRi
	HR (95% CI)	HR (95% CI)	OR (95% CI)	HR (95%CI)
WHO AML (ref MDS-EB2)	0.89 (0.74-1.07)	0.89 (0.75-1.06)	1.06 (0.99-1.13)	0.66 (0.53-0.83)
P	.21	.2	.11	<.001
Age (per 10 y)	1.3 (1.22-1.38)	1.19 (1.13-1.26)	0.98 (0.96-1)	1.13 (1.05-1.2)
P	<.001	<.001	.02	<.001
PS 2-4 (ref PS 0-1)	2 (1.68-2.37)	1.68 (1.42-1.99)	0.87 (0.82-0.93)	1.21 (0.96-1.51)
P	<.001	<.001	<.001	.11
ELN 2017 intermediate risk (ref favorable risk) P	1.7 (1.34-2.15) <.001	1.72 (1.38-2.14) <.001	0.86 (0.8-0.93)	2.15 (1.67-2.76)
ELN 2017 adverse risk (ref favorable risk) P	2.28 (1.8-2.88)	2.29 (1.84-2.85) <.001	0.78 (0.73-0.84)	3.07 (2.35-4) <.001
Secondary (ref de novo)	1.3 (1.1-1.55)	1.28 (1.08-1.5)	0.93 (0.87-0.99)	1.16 (0.93-1.43)
	P = 0.002	P = 0.004	P = 0.02	P = 0.18
	.002	.004	.02	.18
Low-intensity induction (ref high intensity) P	1.3 (1.08-1.55) .004	1.62 (1.36-1.93) <.001	0.7 (0.66-0.75)	1.07 (0.82-1.38) .63
Allogeneic HCT (ref no allogeneic HCT) P	0.48 (0.39-0.6) <.001	0.39 (0.31-0.47)	Not applicable	0.29 (0.23-0.36)


After accounting for age, performance status, genetic risk, and allogeneic HCT, patients with MDS-EB2 (10-19% blasts) and AML have similar rates of survival and response to therapy, challenging the arbitrary 20% blast threshold.

> Cases with 10-19% blasts lie on the border between MDS and AML in terms of their prognosis, but also their biology

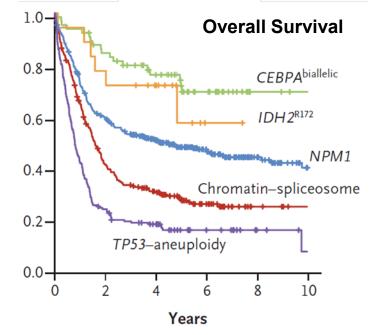
Estey E, Hasserjian RP, Döhner H. Blood 2022;139(3):323-332.

TP53 mutation in AML and MDS with excess blasts

Accumulating evidence from both a clinical and molecular perspective that AML and MDS with **mutated** *TP53* represent a distinct molecular disease entity

Grob T, et al. Blood. 2022;139(15):2347-2354.

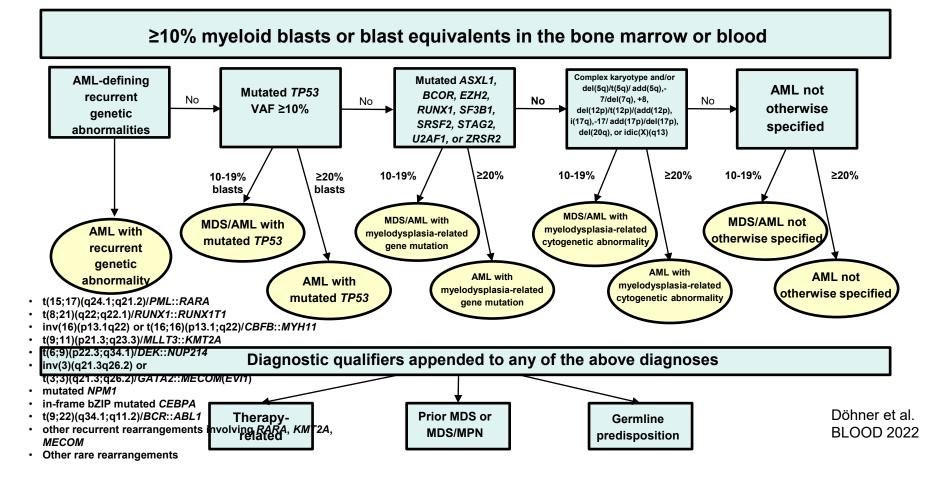
Antecedent history: genetic basis for secondary AML


				. De Nov		
		м		ases, n (%)	P value
SRSF2 -		19	(20)	1	(1)	< 0.0001
ZRSR2 -		7	(8)	0	(0)	0.0005
SF3B1 =		10	(11)	1	(1)	0.0001
ASXL1 -	→→→	30	(32)	5	(3)	< 0.0001
BCOR -		7	(8)	2	(2)	0.035
EZH2 -	→ →→	8	(9)	3	(2)	0.009
U2AF1 =	H	15	(16)	8	(4)	0.002
STAG2 -	→→→	13	(14)	3	(2)	0.07
NF1 -	⊢→→→	6	(6)	7	(4)	0.005
RUNX1 -	⊢ ⊷•	29	(31)	19	(11)	< 0.0001
CBL -	⊢ →→→1	5	(5)	3	(2)	0.13
NRAS -	H++	21	(23)	15	(8)	0.002
TET2	H	19	(20)	17	(9)	0.014
GATA2 -	↓ → → → ↓	2	(2)	2	(1)	0.6
TP53 -	→	14	(15)	16	(9)	0.15
KRAS -	► ••••	7	(8)	8	(4)	0.4
PTPN11	→→→→	5	(5)	9	(5)	1
IDH1 -	⊨	10	(11)	20	(11)	1
IDH2 -	H	10	(11)	19	(11)	1
SMC1A -	→→→→	3	(3)	7	(4)	1
RAD21 -		2	(2)	5	(3)	1
FLT3	<u>←</u>	18	(19)	50	(28)	0.14
DNMT3A -	÷++	18	(19)	51	(28)	0.14
SMC3 -		2	(2)	7	(4)	0.7
CEBPA -	→ →→	3	(3)	13	(7)	0.28
NPM1 -		5	(5)	54	(30)	< 0.0001
11q23-rearranged -		0	(0)	11	(6)	0.002
CBF-rearranged -	· · · · · · · · · · · · · · · · · · ·	0	(0)	19	(9)	< 0.0001
0.0	01 0.01 0.1 1 10 100 1	000				
	Odds Ratio					

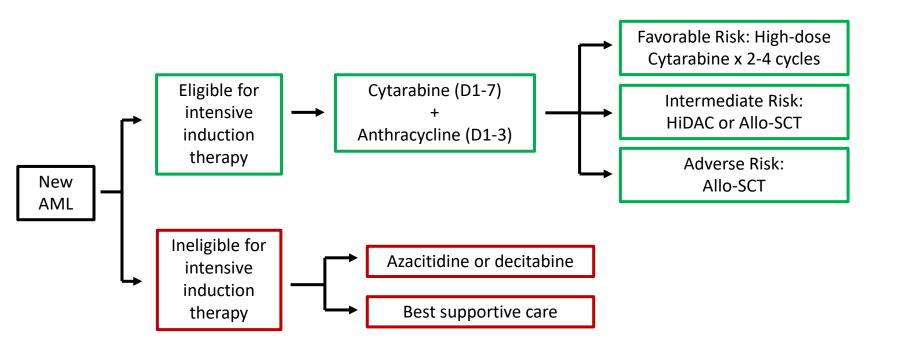
Comparison of mutational profile of 194 clinically defined s-AML or t- AML *versus* 180 *de novo* AML from the Cancer Genome Atlas

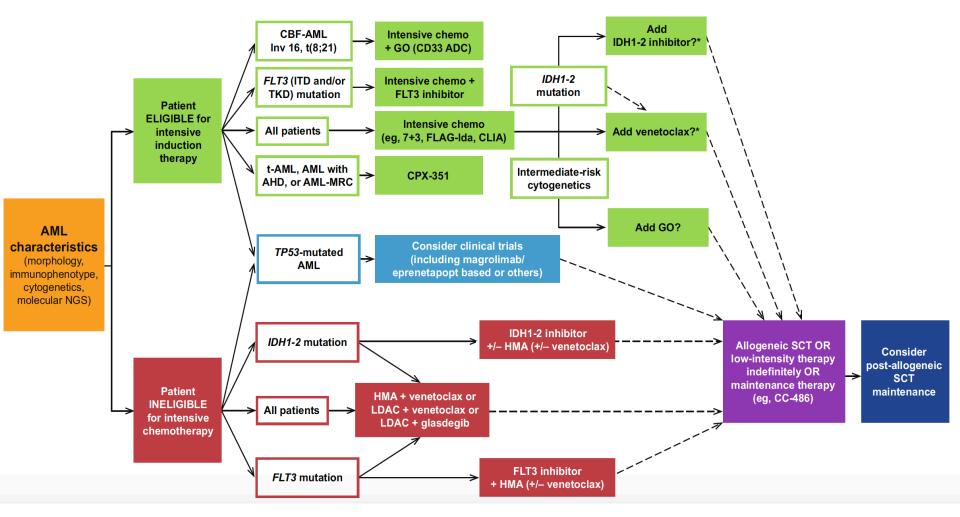
Gene mutation signature with >95% specificity for secondary type AML:

ASXL1, BCOR, EZH2, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2


Lindsley RC, et al. Blood. 2015;125(9):1367-1376.

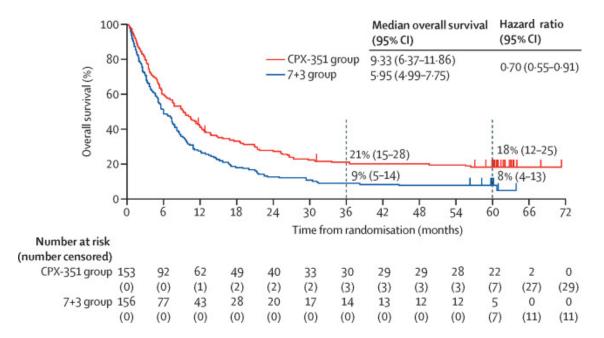
Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2


Papaemmanuil E, Gerstung M, et al. N Engl J Med. 2016; 374(23):2209-2221.


International Consensus Classification of AML - Hierarchy

Conventional AML Treatment (pre-2020)

2022 ELN risk categorization


Risk Category	Genetic Abnormality
Favorable Do not transplant	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 Mutated NPM1^a without FLT3-ITD bZIP in-frame mutated CEBPA
Intermediate Consider transplantation	 Mutated NPM1^a with FLT3-ITD Wild-type NPM1 with FLT3-ITD t(9;11)(p21.3;q23.3)/MLLT3::KMT2A Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse Do transplant	 t(6;9)(p23;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11;p13)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2,MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype, monosomal karyotype Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2 Mutated TP53

The ELN AML risk classification has been developed <u>based on data from intensively treated patients</u> and may need modifications for patients receiving less intensive therapies

Döhner et al. BLOOD 2022

> Initial risk assignment may change during the treatment course based on the results from MRD analyses

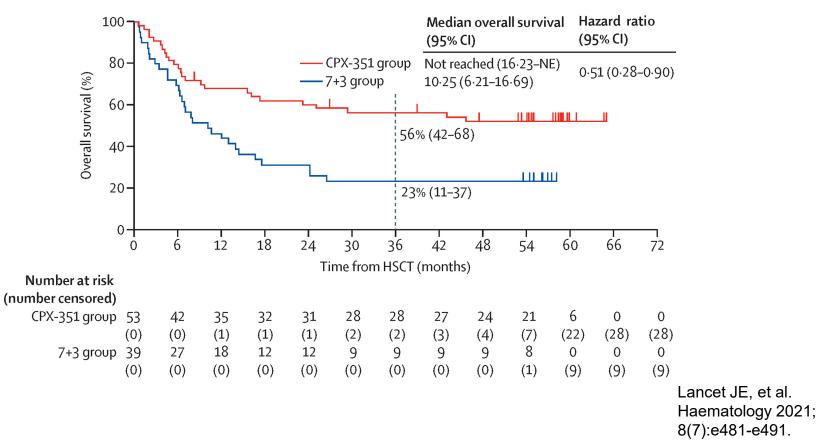
CPX-351* vs '7+3' in older patients with secondary AML

Approved for "AML with myelodysplasia-related changes and therapy-related AML"

Randomized data are lacking for patients under 60 years and for AML following prior MPN.

The standard arm of the registrational trial included only '7+3' induction and consolidation, but no intensive intermediate-dose cytarabinebased consolidation therapy. Lancet JE, et al. J Clin Oncol. 2018;36(26):2684-2692.

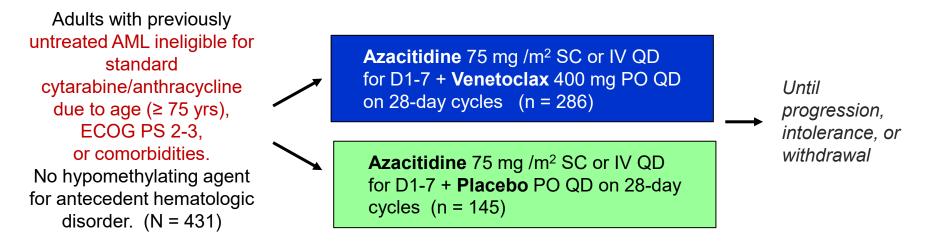
Lancet JE, et al. Haematol. 2021;8(7):e481-e491. [5-year follow-up]


Forest plot of overall survival by baseline patient characteristics

	CPX-351 group		7+3 group			Hazard ratio
	n/N	Median overall survival, (95% CI) months	n/N	Median overall survival, (95% CI) months		(95% CI) for death
Age						
60-69 years	76/96	9.59 (6.01-12.62)	91/102	6-87 (4-63-8-84)		0.73 (0.54-0.99)
70–75 years	48/57	8.87 (4.73-12.19)	54/54	5.62 (3.29-7.52)		0.52 (0.34-0.77)
AML subtype						
Therapy-related AML	23/30	12-17 (7-43-27-37)	30/33	5-95 (2-92-8-48)		0.54 (0.31-0.94)
AML with antecedent CMML	9/11	9-33 (1-94-23-98)	11/12	2-28 (0-72-3-98) -		0.40 (0.16-1.01)
AML with antecedent MDS						
With previous HMA	43/50	5.65 (3.55-7.75)	52/55	7-43 (5-55-9-40)		0.96 (0.64–1.45)
Without previous HMA	16/21	15.74 (5.55-26.32)	19/19	5.13 (1.74-11.07)		0.45 (0.23-0.88)
De novo AML with MDS karyotype	33/41	9.66 (5.32-25.23)	33/37	7-36 (2-89-13-77)		0.72 (0.44-1.17)
ECOG PS						
0	26/37	14-72 (7-00-33-58)	41/45	8-41 (5-13-11-07)		0.55 (0.33-0.90)
1	84/101	9.33 (6.37-11.60)	82/89	5.55 (3.58-7.36)		0.67 (0.49-0.91)
2	14/15	3.98 (1.61-6.24)	22/22	5.13 (2.53-9.40)		1.09 (0.55-2.13)
Karyotype						
Favourable or intermediate	52/71	14.72 (9.07-20.96)	55/63	8-41 (5-13-11-07)		0.65 (0.45-0.96)
Poor	63/72	6-42 (4-96-9-66)	81/83	5.16 (3.19-7.33)		0.66 (0.47-0.92)
White blood cells						
<20×10 ⁹ cells per L	103/131	10.61 (7.69-13.01)	120/131	6.64 (5.13-8.18)		0.64 (0.49-0.83)
≥20×10° cells per L	21/22	3.60 (1.48-7.49)	24/24	3.42 (1.41-7.26)		0.83 (0.46-1.52)
Platelets						
≤50×10 ⁹ cells per L	85/95	7.43 (4.96-9.66)	85/91	5.55 (3.35-7.33)		0.77 (0.57-1.04)
>50×10 ⁹ cells per L	39/58	14.72 (9.33-26.71)	58/63	7.43 (4.99-10.87)		0-49 (0-33-0-75)
FLT3 mutation status						
FLT3 wild type	92/115	8-87 (5-65-12-35)	109/118	5-82 (4-04-7-82)		0-65 (0-49-0-87)
FLT3 mutation	18/22	10.25 (5.62-14.95)	21/21	4.60 (1.61-10.32)		0.51 (0.27-0.96)
Previous HMA treatment						
Yes	53/62	5.65 (3.55-7.75)	67/70	5-98 (4-63-7-75)		0.82 (0.57-1.18)
No	71/91	11-33 (9-17-18-69)	78/86	5.62 (3.88-8.80)		0-60 (0-43-0-83)
Overall study population	124/153	9-33 (6-37-11-86)	145/156	5-95 (4-99-7-75)	-#-	0-70 (0-55-0-91)
				0-1	1.0	10.0

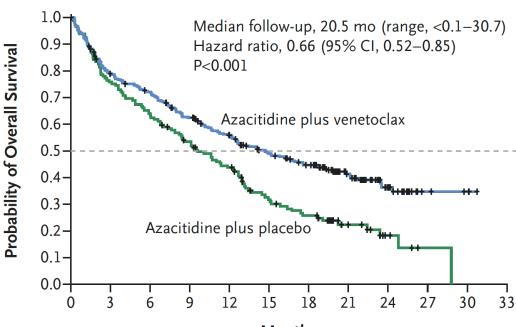
Favours CPX-351 Favours 7+3

Lancet JE, et al. Haematology 2021; 8(7):e481-e491.


Overall survival from date of allogeneic transplantation

VIALE-A: Azacitidine + Venetoclax

• Multicenter, double-blind, placebo-controlled, randomized phase III trial for "unfit" patients


- Primary endpoints: OS, rate of CR + CRi
- Other endpoints: EFS, OS by molecular subtype, QoL, transfusion independence

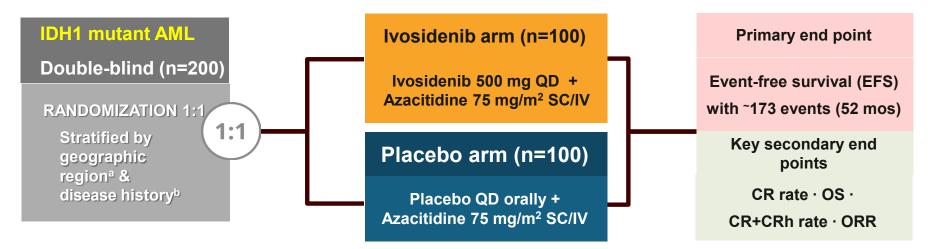
DiNardo. N Engl J Med. 2020;383:617.

VIALE-A: Azacitidine + Venetoclax

Outcome	Aza-Ven (n = 286)	Aza-Pbo (n = 145)	P-value
CR	36.7%	17.9%	<0.001
CR + CRi	66.4%	28.3%	<0.001
Median duration of response	17.5 months	13.4 months	-
Median overall survival	14.7 months	9.6 months	<0.001

Adverse event (≥ G3)	Aza-Ven (n = 286)	Aza-Pbo (n = 145)
Thrombo- cytopenia	45%	38%
Neutropenia	42%	28%
Febrile neutropenia	42%	19%
Infections	64%	51%

Months

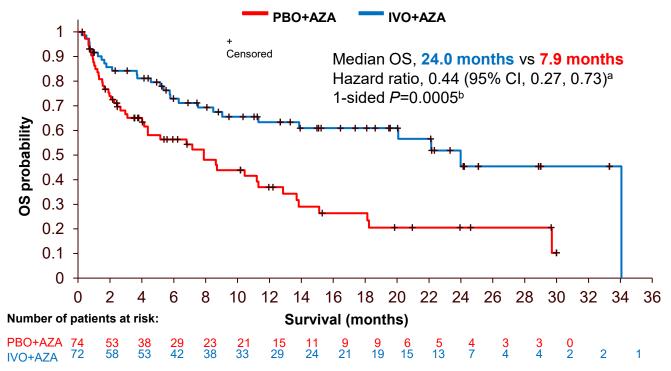

Median time to response: 1.3 months. No differences in quality of life

DiNardo. N Engl J Med. 2020; 383: 617.

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for Dea (95% CI)	th
	no. of events	/total no. (%)		
All patients	161/286 (56.3)	109/145 (75.2)	F-#-1	0.64 (0.50-0.82)
Sex				
Male	61/114 (53.5)	41/58 (70.7)	⊢_∎_	0.68 (0.46-1.02)
Female	100/172 (58.1)	68/87 (78.2)	F	0.62 (0.46-0.85)
Age				
<75 yr	66/112 (58.9)	36/58 (62.1)	⊢_ ∎¦1	0.89 (0.59-1.33)
≥75 yr	95/174 (54.6)	73/87 (83.9)		0.54 (0.39-0.73)
Geographic region				
United States	27/50 (54.0)	21/24 (87.5)	F	0.47 (0.26-0.83)
Europe	70/116 (60.3)	46/59 (78.0)	⊢ ;	0.67 (0.46-0.97)
China	9/24 (37.5)	5/13 (38.5)	· · · · · · · · · · · · · · · · · · ·	1.05 (0.35-3.13)
Japan	10/24 (41.7)	9/13 (69.2)	F	0.52 (0.20-1.33)
Rest of world	45/72 (62.5)	28/36 (77.8)	⊢−− ■−−−1	0.73 (0.45-1.17)
Baseline ECOG score				
Grade <2	89/157 (56.7)	65/81 (80.2)		0.61 (0.44-0.84)
Grade ≥2	72/129 (55.8)	44/64 (68.8)	· · · · · · · · · · · · · · · · · · ·	0.70 (0.48-1.03)
Type of AML		, , , ,		
De novo	120/214 (56.1)	80/110 (72.7)	⊢ ₩-1	0.67 (0.51-0.90)
Secondary	41/72 (56.9)	29/35 (82.9)	⊢ ∎1	0.56 (0.35-0.91)
Cytogenetic risk				
Intermediate	84/182 (46.2)	62/89 (69.7)	⊢ ∎1	0.57 (0.41-0.79)
Poor	77/104 (74.0)	47/56 (83.9)	⊢ ⇒ ∔1	0.78 (0.54-1.12)
Molecular marker				
FLT3	19/29 (65.5)	19/22 (86.4)	► −−■ − <u>+</u> −	0.66 (0.35-1.26)
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12-0.65)
IDH2	15/40 (37.5)	14/18 (77.8)		0.34 (0.16-0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)		0.34 (0.20-0.60)
TP53	34/38 (89.5)	13/14 (92.9)		0.76 (0.40-1.45)
NPM1	16/27 (59.3)	14/17 (82.4)		0.73 (0.36-1.51)
AML with myelodysplasia-related	changes			
Yes	56/92 (60.9)	38/49 (77.6)	F	0.73 (0.48-1.11)
No	105/194 (54.1)	71/96 (74.0)	F	0.62 (0.46-0.83)
Bone marrow blast count	/			
<30%	46/85 (54.1)	28/41 (68.3)	F	0.72 (0.45-1.15)
30 to <50%	36/61 (59.0)	26/33 (78.8)		0.57 (0.34–0.95)
≥50%	79/140 (56.4)	55/71 (77.5)	F	0.63 (0.45-0.89)
		0.1	1.0	10.0
		A	zacitidine plus Azacitidine	e plus

DiNardo et al. VIALE A trial. N Engl J Med 2020; 383: 617

AGILE: Study Design and End Points


- As of the data cutoff date for this analysis (18March2021), 146 patients have been randomized (IVO+AZA, n=72; PBO+AZA, n=74).
- As of 12May2021, the IDMC recommended to halt enrollment based on a noted difference in clinical importance between the treatment groups, not related to safety.

• A total of 148 patients were enrolled at 155 active sites in 20 countries.

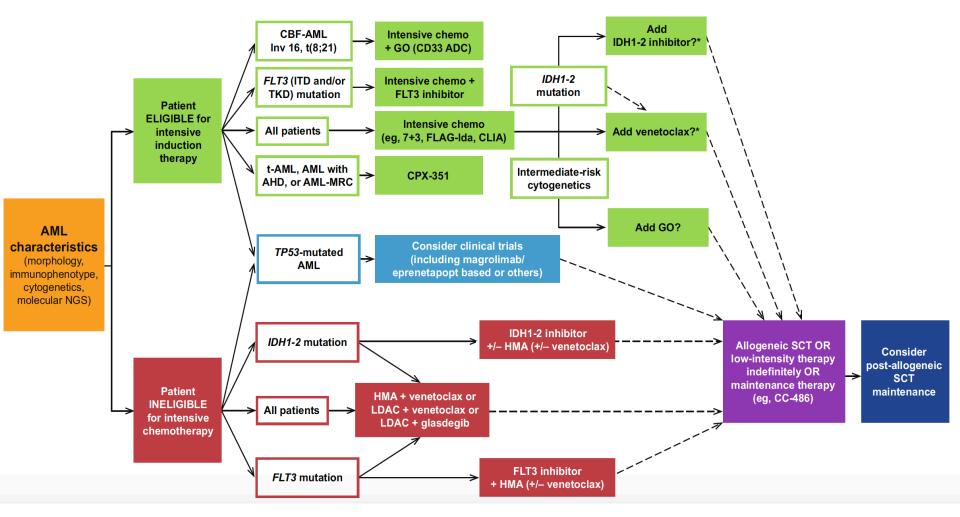
Goodman AM, Mohyuddin GR, Prasad V et al. N Engl J Med. 2022 Jun 30;386(26):2536.

IVO+AZA improved overall survival (OS)

OS benefit was consistent across subgroups: de novo status, region, age, baseline ECOG PS score, sex, race, baseline cytogenetic risk status, WHO classification of AML, baseline white blood cell count. baseline percentage of bone marrow blasts.

UChicago Medicine

Goodman AM, Mohyuddin GR, Prasad V et al. N Engl J Med. 2022 Jun 30;386(26):2536.


Selected treatment options for patients

not suitable for intensive chemotherapy

Regimen	Recommended dosing
Azacitidine or decitabine+	Azacitidine 75 mg/m ² SC/IV d1-7 (alternatively d1-5 + d8-9) or decitabine 20 mg/m ² IV d1-5; venetoclax dose ramp up: 100 mg d1, 200 mg d2, 400 mg PO QD d3-28
venetoclax ^{a,b}	 Adjust venetoclax dose if concurrent strong CYP3A4 inhibitors: 10 mg on d1, 20 mg on d2, 50 mg on d3, 100 mg (or less^b) PO QD from d4
	 For venetoclax dose modifications and management of myelosuppression see Table 12
	Cytarabine 20 mg/m ² SC daily, d1-10; venetoclax dose ramp up: 100 mg d1, 200 mg d2, 400 mg d3, 600 mg d4-28
Low-dose cytarabine + venetoclax ^{a,b}	 Adjust venetoclax dose if concurrent strong CYP3A4 inhibitors: 10 mg d1, 20 mg d2, 50 mg d3, 100 mg (or less^b) PO QD d4-28
	 For venetoclax dose modifications and management of myelosuppression see Table 12
Azacitidine + ivosidenib (AML with <i>IDH1</i> mutation)	Azacitidine 75 mg/m ² SC/IV d1-7 (alternatively d1-5 + d8-9); ivosidenib 500 mg PO QD d1-28; both q4weeks, until progression
Ivosidenib (AML with <i>IDH1</i> mutation)	For very frail patients, ivosidenib 500 mg PO QD d1-28 as monotherapy, until progression may be considered
Best supportive care	Including hydroxyurea; for patients who cannot tolerate any anti-leukemic therapy, or who do not wish any therapy

^a To reduce the risk of tumor lysis syndrome, the prophylactic use of uric acid lowering drugs, close electrolyte monitoring and cytoreduction of the WBC to <25,000/µL or even lower, for patients with high bone marrow blast burden, elevated LDH is recommended.

^b In the VIALE-A and VIALE-C trials, an adjusted venetoclax dose of 50 mg was used in the presence of a strong CYP3A4 inhibitor. This venetoclax dose is supported by a pharmacokinetic study examining venetoclax in the presence of posaconazole.

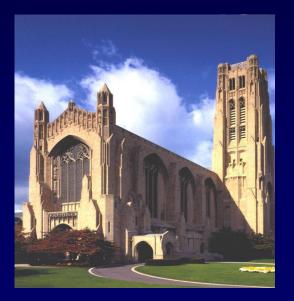
Approved and *investigational* therapies for MDS and AML

- Olutasidenib (targeting IDH1) FDA approved
- Decitabine + cedazuridine (approved for MDS) +/- venetoclax
- Oral azacitidine (CC-486) approved for maintenance in AML
- Magrolimab (targeting TP53 mutant disease)
- Sabatolimab (anti-TIM3) MBG453
- Azacitidine/venetoclax + gilteritinib (FLT3-mutant AML)
- Eprenetapopt (targets mutant TP53)
- Pevonidostat (NEDD8 inhibitor)

The Leukemia Program at The University of Chicago

Toyosi Odenike, MD Michael Drazer, MD Chris Daugherty, MD Lucy Godley, MD, PhD A. Jakubowiak, MD, PhD Satyajit Kosuri, MD **Richard A. Larson, MD** Hongtao Liu, MD, PhD Mariam Nawas, MD **Anand Patel, MD** Wendy Stock, MD Michael J. Thirman, MD

Hematopathology Sandeep Gurbuxani, MBBS, PhD Daniel A. Arber, MD Jason Cheng, MD Garish Venkataraman, MD Geoff Wool, MD, PhD


Nurse Specialists Zariya Gonzalez, RN Jamie Matthews, APN Allison Mulchrone, RN Afsheen Noorani, APN

Biostatistics Ted Karrison, PhD

Cytogenetics and Molecular Biology

Carrie Fitzpatrick, PhD Angela M. Lager, PhD Jeremy P. Segal, MD, PhD Megan E. McNerney, MD, PhD

rlarson@uchicago.edu