September 10, 2022

19th Annual Indy Hematology ReviewTM

ANNUAL STEVEN COUTRE CHRONIC LYMPHOCYTIC LEUKEMIA MEMORIAL LECTURE:

What Would Steve Do? Treatment of CLL in 2022

Adrian Wiestner, MD/PhD Bethesda, MD

adwie777@gmail.com

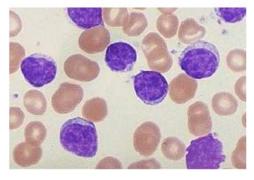
Steven Coutre, who died Nov. 9, established a widely recognized research program at Stanford Medicine to understand and develop treatments for hematological disorders and malignancies. *Courtesy of the Coutre family*

Disclosures:

- Editor in Chief Seminars in Hematology, compensated by Elsevier
- Employee of the National Heart, Lung, and Blood Institute, NIH with research support from Pharmacyclics LLC, an Abbvie company; Acerta LLC, a member of the AstraZeneca Group; Merck; Nurix; Genmab; Verastem

Drugs discussed that have non-FDA indications

Drugs discussed with non-FDA indications


*Zanubrutinib *Ofatumumab *Pirtobrutinib

Drugs with FDA indications

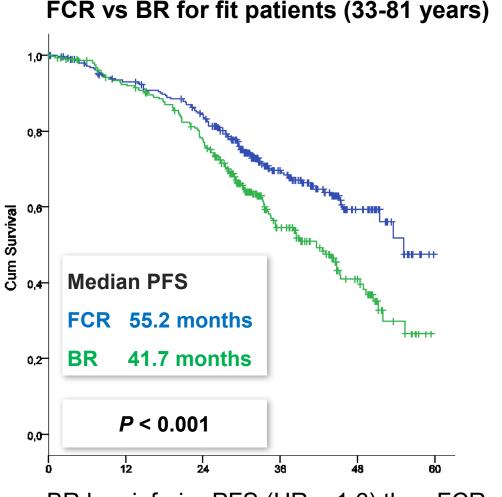
- Acalabrutinib
- Ibrutinib
- Venetoclax
- Obinutuzumab
- Rituximab
- Chlorambucil
- Bendamustine
- Fludarabine
- Cyclophosphamide

Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

Diagnosis

Flow cytometry: CD19+, CD5+, CD23+, weak surface Ig, dim CD20+ Morphology: typical >90% small mature looking lymphocytes

- CLL: Lymphocytosis, >5,000 clonal B-cells/ μ l
- **MBL:** <5,000 clonal B-cells/uL, no cytopenias
- **SLL:** nodal disease, <5,000 B-cells/uL in circulation

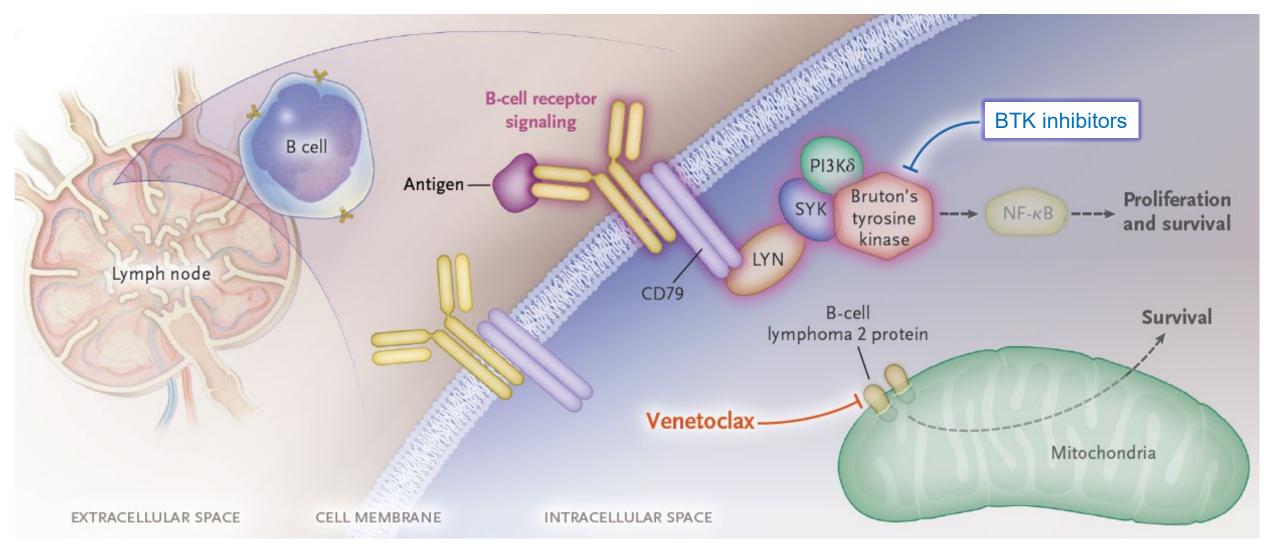

• Not necessary/recommended: bone marrow biopsy, CT, PET

iwCLL guidelines Hallek et al, Blood 2018

Froghostic markers				
Clinical	Stage Lymphocyte doubling time			
Genetic	IGHV mutational status mutated = favorable FISH Low risk: del 13q Intermediate risk: trisomy 12 High risk: del 17p, del 11q Mutations Favorable: MYD88 Unfavorable: TP53, NOTCH1, SF3B1, BIRC3, ATM			
Flow	CD49d, CD38			
cytometry	positive = unfavorable			
Serum	LDH, β2-microglobulin			

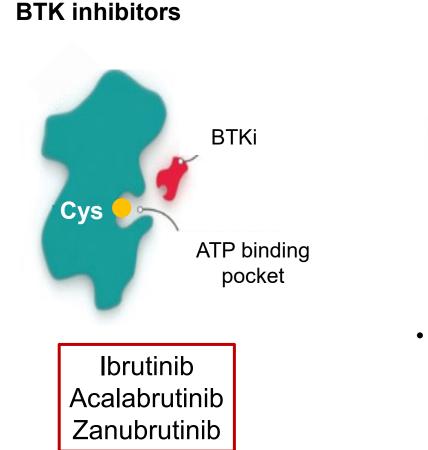
Dragnastia markara

Chemoimmunotherapy

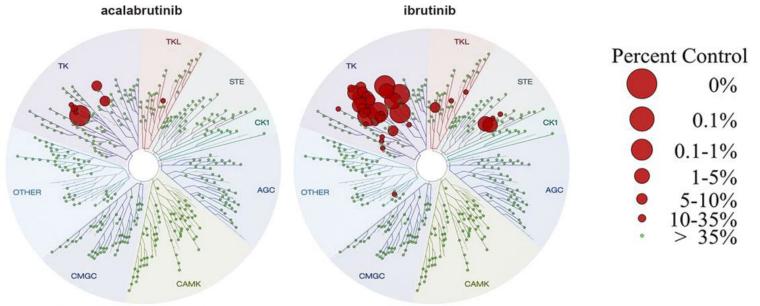

BR has inferior PFS (HR = 1.6) than FCR, less toxicity, no difference in OS

Lessons from chemoimmunotherapy

- Del(17p) poor response with inferior survival
- Duration of response can exceed 10 years after FCR – but only for young patients, IGHV mutated, without adverse cytogenetic markers
- Relevant risk of MDS/AML (2-5%) after chemoimmunotherapy
- Addition of anti-CD20 antibody to chemotherapy improves PFS and in some studies OS
- Randomized study shows improved PFS for chlorambucil with obinutuzumab over chlorambucil with rituximab


Eichhorst, et al, Lancet Oncology 2016

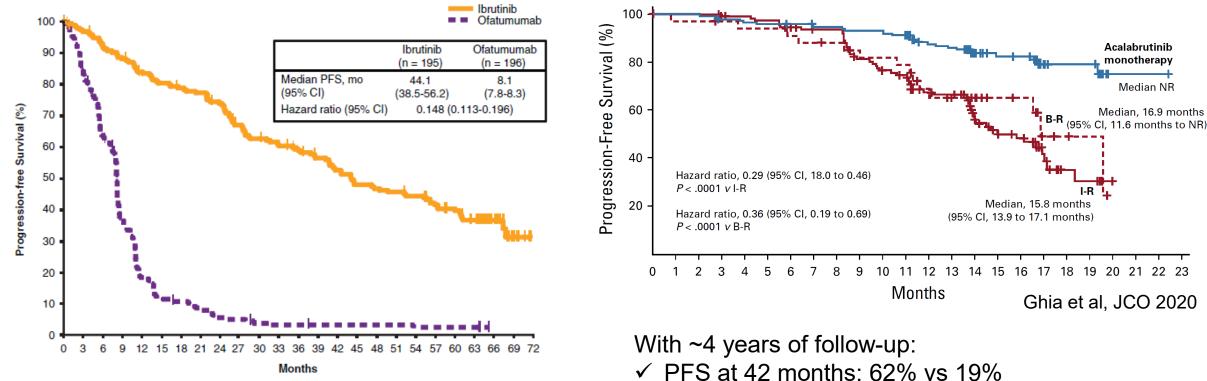
Targeting the critical pathogenic pathways in CLL



NEJM 2019. 380;22 p2170

Covalent Bruton Tyrosine Kinase (BTK) inhibitors

Covalent (irreversible)


 Initial studies used continuous dosing until disease progression or intolerance

Barf, J Pharmacol Exp Ther. 2017

Randomizes trials of BTKi in relapsed/refractory CLL

Resonate: ibrutinib vs ofatumumab

Ascend: acalabrutinib vs Idela-R or BR

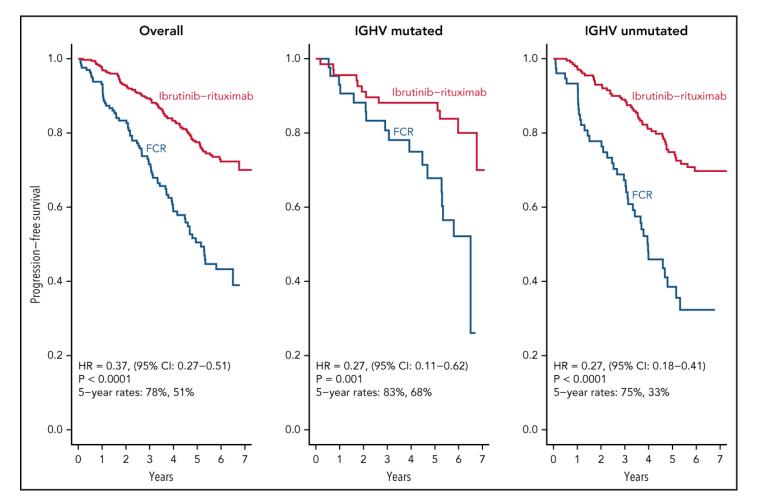
Median follow up 65.3 months

- ✓ Median OS 67.7 vs 65.1 months (68% cross-over to ibrutinib)
- ✓ Only 16% discontinued because of adverse event Munir et al, AJH 2019

- \checkmark For acalabrutinib no diff in PFS for yes/no del(17p)
- \checkmark OS at 42 months: 78% vs 65% (52% cross-over to acalabrutinib

Jurczak et al, poster at ASCO 2022

Long-term outcomes for first-line ibrutinib-rituximab vs chemoimmunotherapy


E1912 trial

- o 529 treatment-naïve patients
- $\circ \leq 70$ years old
- o no del17p13 by FISH
- Randomized 2:1 to
- IR: continuous ibrutinib and rituximab x6 (n=354)
- 6 cycles FCR (n=175)

At median follow-up 5.8 years: IR vs FCR

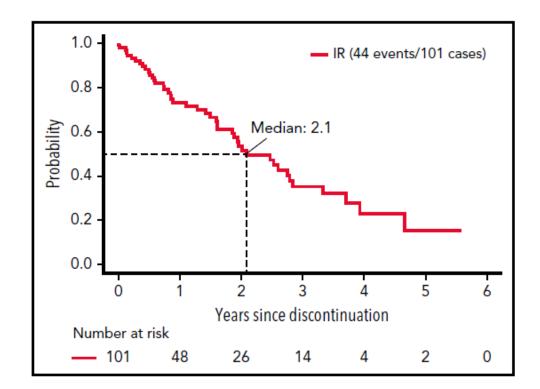
- ✓ PFS 78% vs 51% (P<0.0001)</p>
- ✓ OS 95% vs 89% (p=0.018)

Progression-free survival

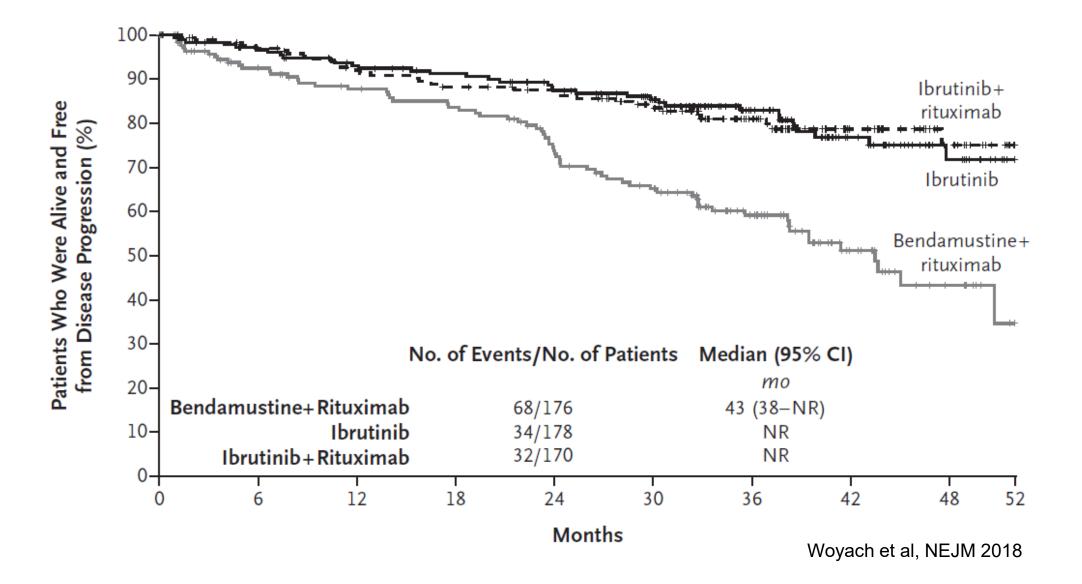
Shanafelt et al. Blood 2022

Adverse events and treatment discontinuations on ibrutinib-rituximab

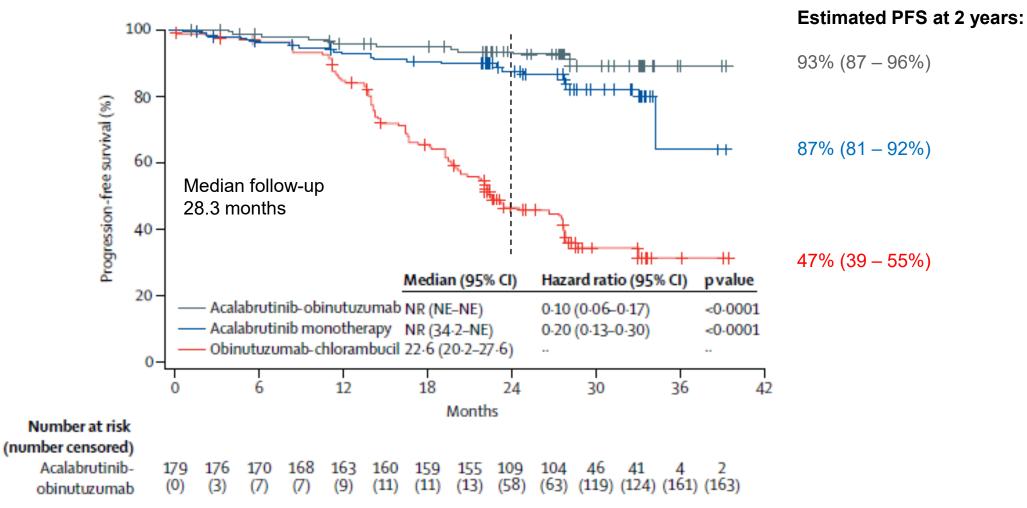
Reasons for IR discontinuations 138 (40%) of 354 patients


Progression or death	26.8%
Adverse event	55.8%
Withdrawal or other reason	17.4%

Grade ≥3 adverse events more common with IR: Arthralgia (5.4%), Hypertension (11.4%), cardiac (7.7%)

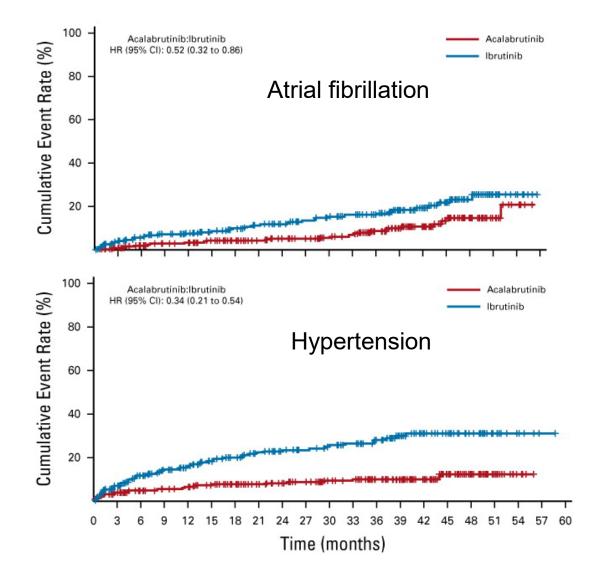

7-year PFS was ~80% for patients who were able to remain on ibrutinib.

PFS from discontinuation of ibrutinib


Discontinuation for reasons other than progression. Median time patients had been on ibrutinib was 25.9 months (0.2-82 months)

The Alliance study: ibrutinib for front-line therapy of CLL

Elevate TN: superior outcome with first-line acalabrutinib +/- obinutuzumab compared with chemoimmunotherapy


Sharman et al. Lancet Oncol 2020

Randomized phase III trial of acalabrutinib versus ibrutinib in r/r CLL

Median follow-up of 40.9 months, median PFS 38.4 months in both arms (non-inferiority)

Most common adverse events (bold = significant difference)					
	Acalab	rutinib	lbrutinib		
	N=2	266	N=2	63	
Event	Any	G≥3	Any	G≥3	
Diarrhea ^{a,b}	34.6	1.1	46.0	4.9	
Headache ^{a,b}	34.6	1.5	20.2	0	
URT infection	26.7	1.9	24.7	0.4	
Fatigue ^b	20.3	3.4	16.7	0	
Arthralgia ^a	15.8	0	22.8	0.8	
Hypertension ^{a,b}	8.6	4.1	22.8	8.7	
Pneumonia	17.7	10.5	16.3	8.7	
Contusion ^a	11.7	0	18.3	0.4	
Rash	9.8	0.8	12.5	0	
Atrial fibrillation ^a	9.0	4.5	15.6	3.4	
UT infection ^a	8.3	1.1	13.7	2.3	
Back pain ^a	7.5	0	12.9	0.8	
Epistaxis	7.1	0.4	10.6	0.4	
Muscle spasms ^a	6.0	0	13.3	0.8	
Dyspesia ^a	3.8	0	12.2	0	

Adverse events are reported as individual MedDRA preferred terms. Higher incidences are shown in bold text for terms with statistical differences. ^aDescriptive two-sided $P \le .05$ Barnard's exact test for all-grade AE; ^bDescriptive two-sided $P \le .05$ for grade 3 or higher adverse events.

Byrd et al, JCO 2021

Additional adverse events and considerations

Ventricular arrhythmia

AE	Acalabi	rutinib	Ibrutinib		
	Any grade	Grade ≥3	Any grade	Grade ≥3	
Cardiorespiratory arrest	1	1	0	0	
Cardiac arrest	0	0	2	2	
Any ventricular arrhythmia	0	0	3	1	

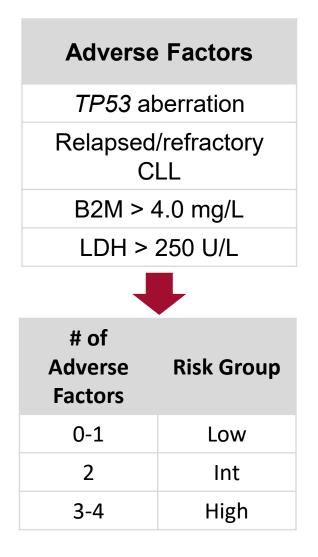
Byrd et al, JCO 2021

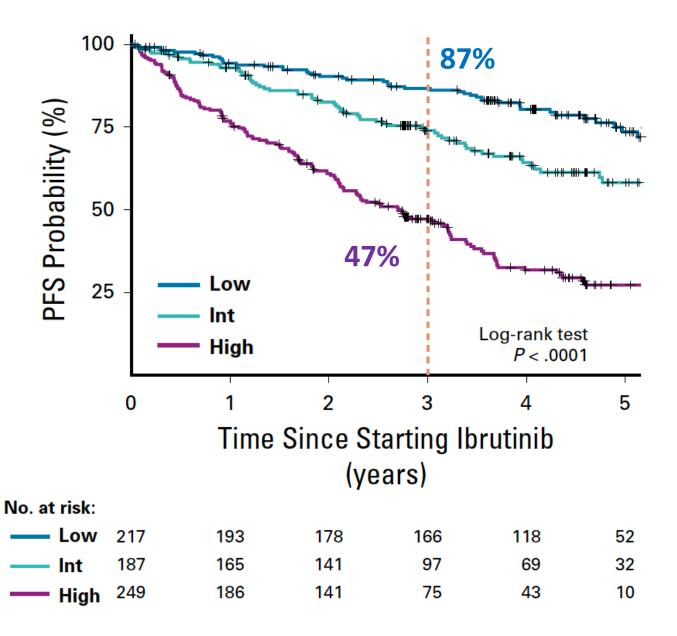
Patients treated with acalabrutinib had a >8 fold increase in ventricular arrhythmia and sudden death.
Ventricular arrhythmias may be a class-effect of BTKitherapies, and vigilance is needed. Dose modifications for ibrutinib

Hold drug and reduce dose with grade 2 cardiac failure, grade 3 arrhythmias

USPI May 2022

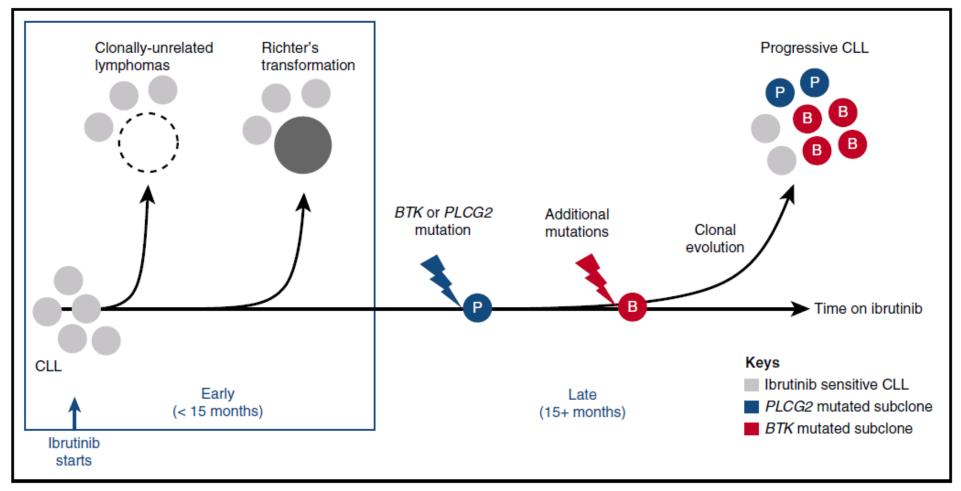
Hemorrhage with ibrutinib and acalabrutinib


Low grade common, serious ~3-4% Consider withholding ibrutinib and acalabrutinib 3-7 days pre- and post-surgery Clinical trials generally excluded warfarin use

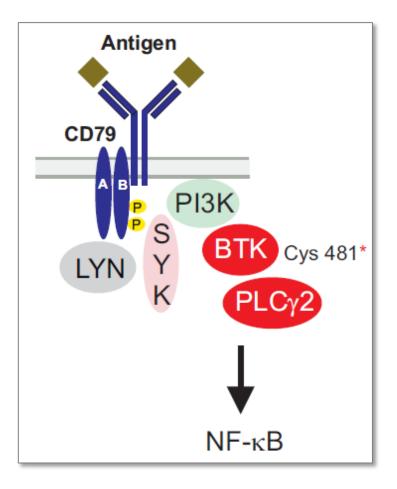

Drug interactions for ibrutinib and acalabrutinib

Avoid co-administration with strong **CYP3A** inhibitors / inducers, consider dosing modifications with moderate CYP3A inhibitors

Bhat et al, Blood 2022

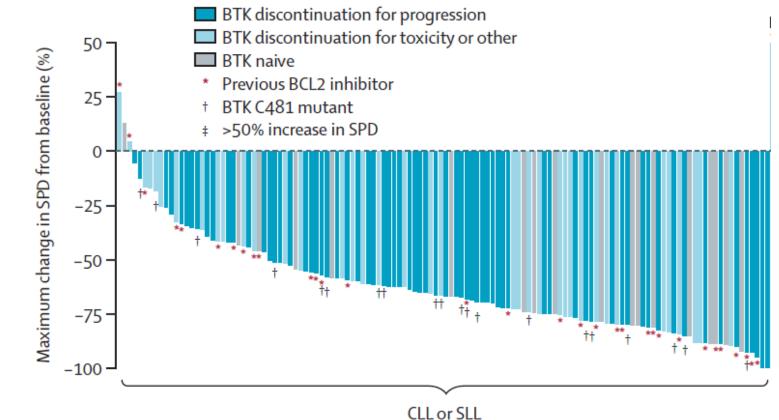

Risk stratification of CLL patients treated with ibrutinib using a 4-factor model

Ahn et al, JCO 2020


Biology of progressive disease on ibrutinib (covalent BTK inhibitors)

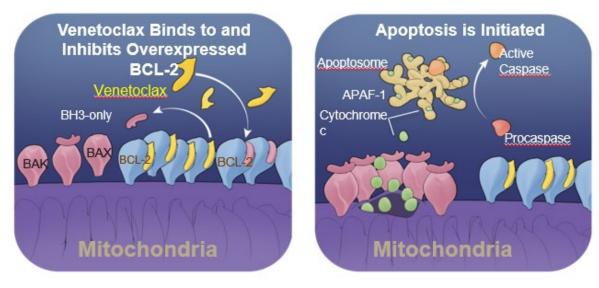
Specific mutations are found in up to 85% of patients progressing with CLL.

Ahn, Blood 2017 Woyach, JCO 2017 Burger, Nat Com 2016 Kadri, Blood Adv 2017 Byrd, Blood 2020

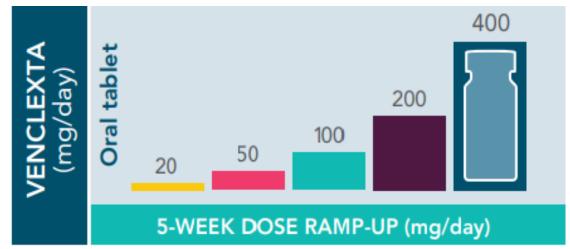

Targeting resistance to covalent BTKi

BTK and PLCG2 mutations

Pirtobrutinib (LOXO-305): a selective, non-covalent BTK inhibitor


ORR 62% in CLL patients previously treated with covalent BTKi

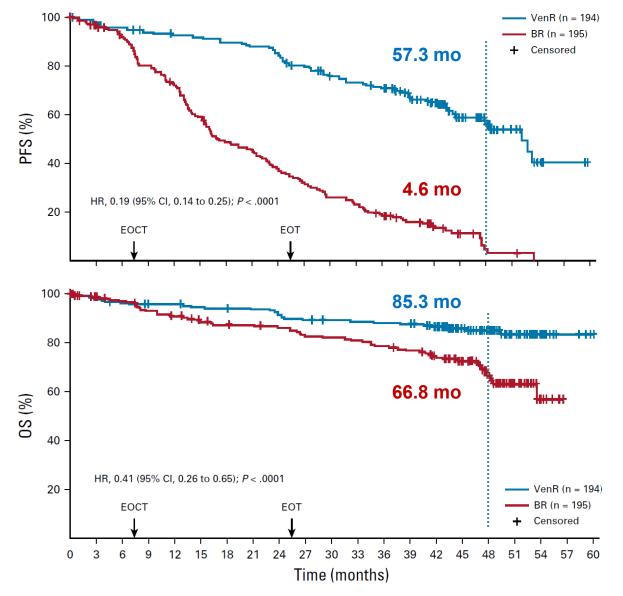
Mato et al, Lancet 2021


Targeting the BCL2 survival pathway with venetoclax

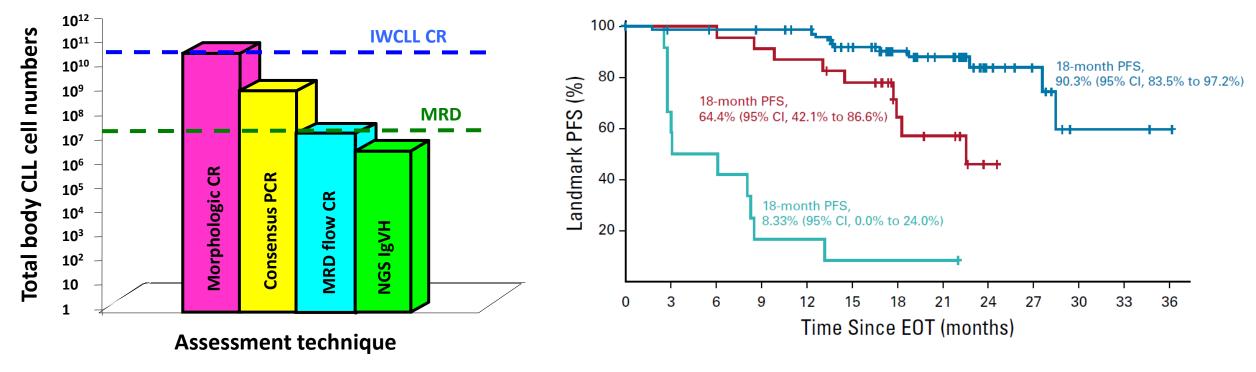
 Venetoclax is an orally bioavailable, selective BCL2 inhibitor, directly inducing apoptosis in CLL cells independent of p53

 First-in-human study of venetoclax showed a 79% ORR in relapsed/refractory CLL (Roberts et al., *NEJM* 2015)

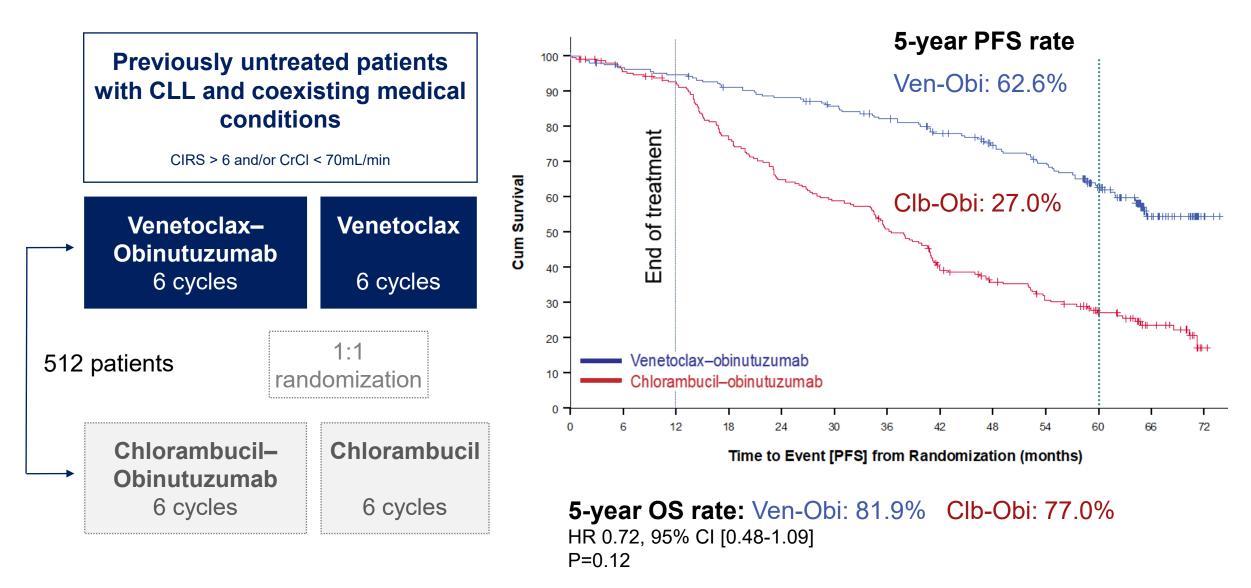
- Main toxicity in early trials: tumor lysis syndrome
- Stepped up dosing with close monitoring of TLS labs, supportive care (allopurinol, hydration)


- Intensity of monitoring depends on TLS risk:
- ✓ High risk: any node ≥10cm or any ≥5cm <u>and</u> ALC
 ≥25,000/uL → in hospital for 20mg and 50mg
- ✓ Medium risk: any node ≥5cm or ALC ≥25,000/uL
 → outpatient monitoring

Venetoclax plus rituximab for relapsed/refractory CLL


Murano study: 389 patients with r/r CLL randomized to 2 years of venetoclax (+rituximab for the first 6 cycles) vs BR 4-year follow-up

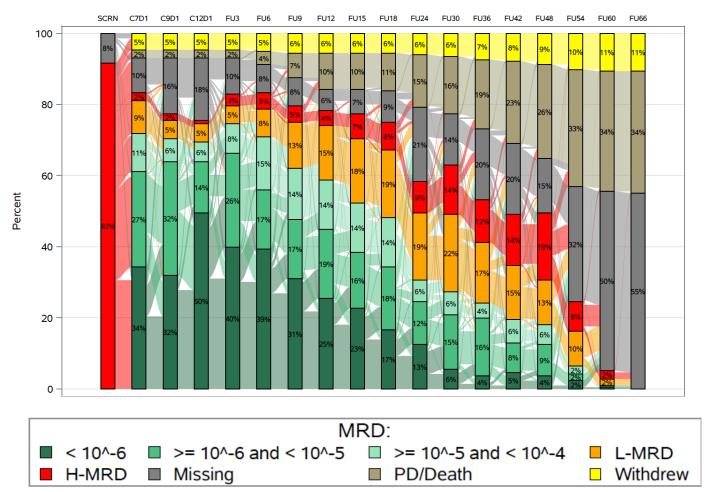
Minimal residual disease undetectable (uMRD): <1 CLL cell in 10,000 leukocytes (10⁻⁴)


Minimal residual disease (MRD): depth of response predicts PFS

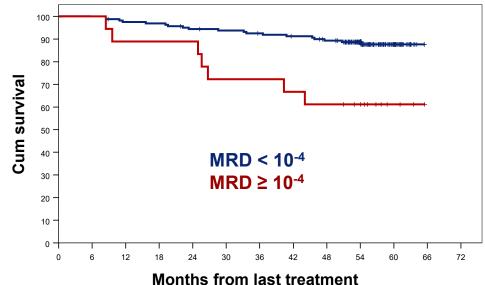
Courtesy of P. Hillmen

Kater et al, JCO 2020

CLL14: Venetoclax-Obinutuzumab for front-line therapy of CLL


Slide courtesy of O. Al-Sawaf, presented EHA 2022

Most frequent grade ≥3 adverse events


		o binutuzumab =212)	Chlorambucil-obinutuzumab (N=214)		
	During	After Treatment	During	After Treatment	
Neutropenia	51.9%	4.0%	47.2%	1.9%	
Thrombocytopenia	14.2%	0.5%	15.0%	0.0%	
Anemia	7.5%	2.0%	6.1%	0.5%	
Febrile neutropenia	4.2%	1.0%	3.3%	0.5%	
Leukopenia	2.4%	0.0%	4.7%	0.0%	
Pneumonia	3.8%	3.0%	3.3%	1.4%	
Infusion-related reaction	9.0%	0.0%	9.8%	0.5%	
Tumor lysis syndrome	1.4%	0.0%	3.3%	0.0%	
Second primary malignancy	20).8%	1	5%	

Longitudinal MRD assessment using NGS in Ven-Obi arm

4 years after Ven-Obi, **39 (18.1%)** of patients had sustained MRD <10⁻⁴

Overall survival by MRD status at the end of treatment

Slide courtesy of O. Al-Sawaf, presented EHA 2022

Factors associated with PFS in multivariable models

Ven-Obi

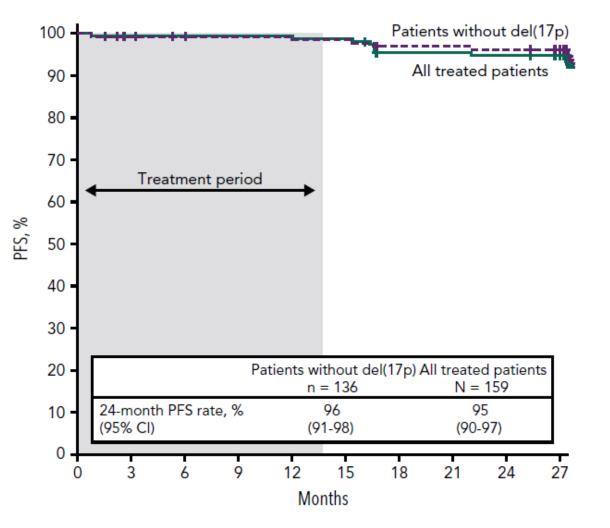
COX regression PFS	Univariate comparison	Hazard ratio	95% Wald Cl			COX regression PFS	Univariate comparison	Hazard ratio	95% Wald Cl			
Disease burden c	ategory (TLS risk catego	ry)				Serum β2 microglob	ulin					
High	Vs. intermediate/low	2.815	1.773-4.469		-#-	> 3.5	vs. <= 3.5	1.534	1.037-2.269		-=-	
Deletion 17p						IGHV mutational sta	itus					
del(17p)	vs. no del(17p)	3.150	1.727-5.745			unmutated	Vs. mutated	2.765	1.847-4.141		-#-	
						Deletion 17p						
Madian DE				0.1 1	.0 10.0	del(17p)	vs. no del(17p)	2.667	1.413-5.036			
Median PF	ວ no <i>TP53</i> del/mut					Deletion 11q						
	<i>TP53</i> del/mut: 49					del(11q)	vs. no del(11q)	2.056	1.331-3.177			
						Complex Karyotype						
Clb-Obi & r	no <i>TP53</i> del/mut:	38.9 m				CKT/HCKT	vs. NCKT	2.761	1.720-4.433			
Clb-Obi & 7	7P53del/mut: 19	.8 m								·		
										0.1 1	.0	10.0

Clb-Obi

For Ven-Obi, **pre-treatment disease burden** (max. lymph node size >5 cm and absolute lymphocyte count > 25 G/I) and **deletion 17p** are independent prognostic factors for PFS.

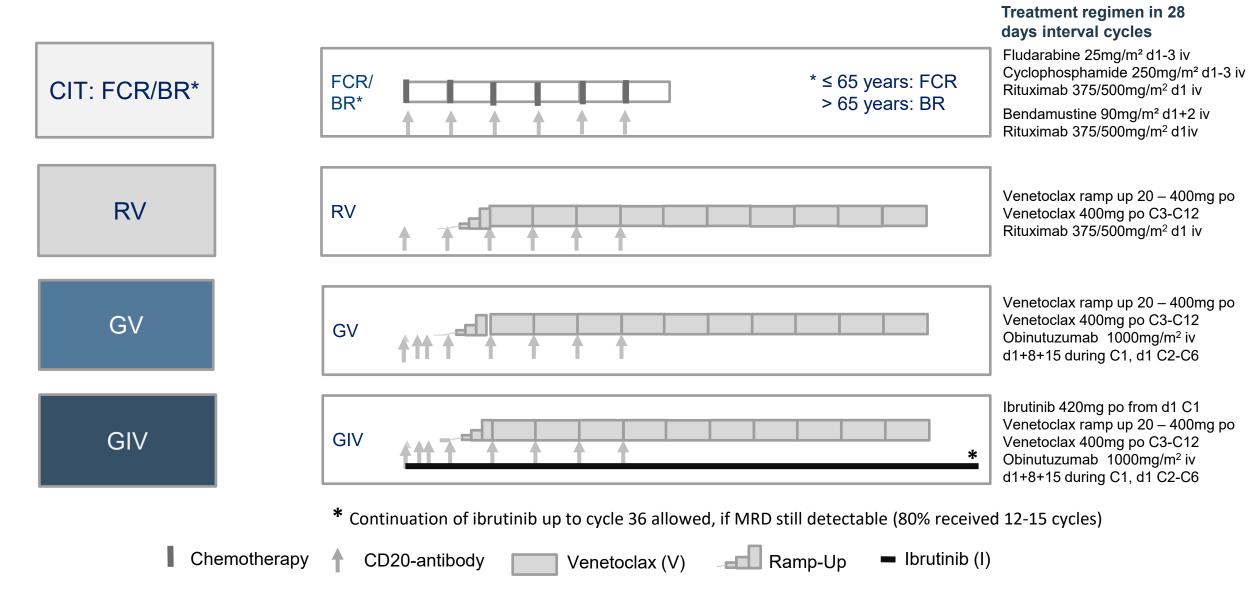
Captivate: fixed duration ibrutinib plus venetoclax as first-line therapy of CLL

159 patients aged ≤70 years


- 3 cycles ibrutinib lead in
- 12 cycles ibrutinib plus venetoclax

Primary endpoint: 56% CR rate uMRD rates 77% (blood), 60% (bone marrow)

Ibrutinib lead in reduced high-risk TLS group from 21% to 1%.


92% completed all treatment

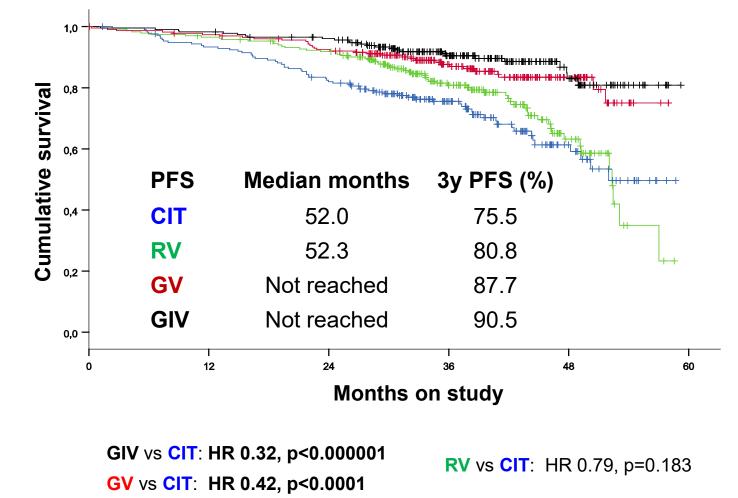
Most common AEs: diarrhea, nausea, neutropenia, arthralgia Grade 3/4 AEs: neutropenia (33%), hypertension (6%) PFS after fixed duration treatment

Tam et al, Blood 2022

GAIA/CLL13 study: randomized comparison of double and triple therapy

Slide courtesy of B. Eichhorst, presented at EHA 2022

Primary endpoints: rate of uMRD and progression-free survival


uMRD (< 10⁻⁴) at Mo15 in PB by 4-color-flow p < 0.0001 proportion of ITT population in % p < 0.0001 92.2 86.5 p = 0.31757 52 CIT RV GV GIV n = 237 n = 229 n = 229 n = 231

Rate of uMRD (co-primary endpoint)

Slide courtesy of B. Eichhorst, presented at EHA 2022

Progression-free survival (co-primary endpoint)

Median FU 38.8 months

Adverse events \geq grade 3 in \geq 5% of patients in at least one arm and of interest

	СІТ	RV	GV	GIV
All patients of safety population	216	237	228	231
All ≥ CTC grade 3 events (%)	176 (81.5)	173 (73.0)	192 (84.2)	193 (83.5)
Blood and lymphatic system (%)	122 (56.5)	103 (43.5)	128 (56.1)	117 (50.6)
Infections and infestations (%)	44 (20.4)	27 (11.4)	34 (14.9)	51 (22.1)
Febrile neutropenia (%)	24 (11.1)	10 (4.2)	7 (3.1)	18 (7.8)
Infusion related reaction (%)	12 (5.6)	19 (8)	26 (11.4)	10 (4.3)
Tumor lysis syndrome (%) *	9 (4.2)	24 (10.1)	19 (8.3)	15 (6.5)
Hypertension (%)	3 (1.4)	5 (2.1)	4 (1.8)	13 (5.6)

* Defined by Cairo-Bishop criteria

Slide courtesy of B. Eichhorst, presented at EHA 2022

Time to leave watch & wait behind?

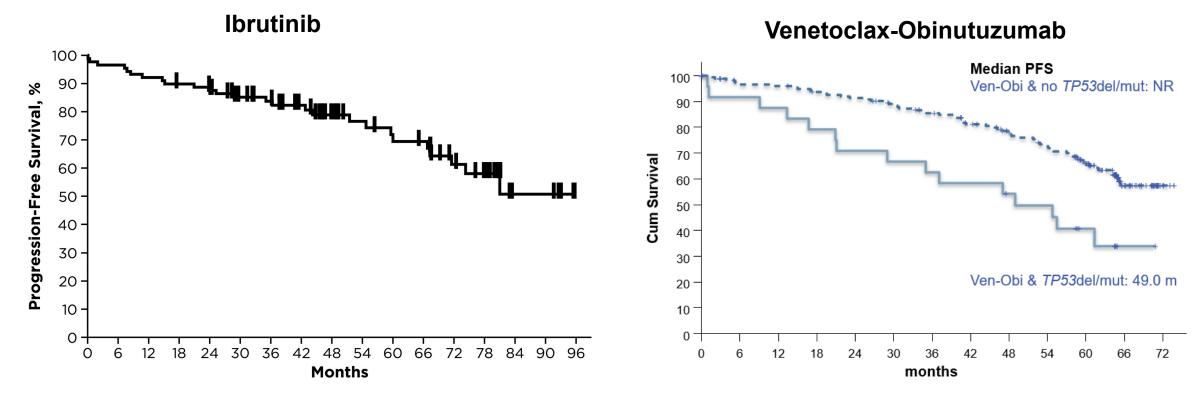
Double-blind, randomized, placebo-controlled study

Risk assessment ПТ del(17p) IGHV ¢ ÷ del(11q) ECOG PS Increased risk of Thymidine kinase progression Sex Placebo β2 microglobulin Ibrutini Versus Age 0.8 Event-free survival 0.6 Median EFS 48 months 0.4 -Event-free survival: time to active disease progression, initiation of **CLL** Patients 0.2 - Treatment-naive subsequent treatment, or death Asymptomatic Binet stage A Hazard ratio, 0.25 (95% CI, 0.14-0.43) 0.0 -P<0.0001 36 42 48 60 12 30 54 18 24 6 Time to event [EFS] (months) Patients at risk Ibrutinib 182 99 83 59 21 130 121 71 Placebo 181 122 108 83 45 33 13 141 64

No!

Key Points

- Ibrutinib is effective in patients with early-stage CLL, but the results do not justify changing the current standard of "watch and wait."
- Ibrutinib is associated with relevant cardiovascular toxicity.


Any grade AE: ibrutinib / placebo

- Atrial fib: 5.7% / 0.6%
- Hypertension: 11.4% / 4.5%
- Bleeding:

33.5% / 14.8%

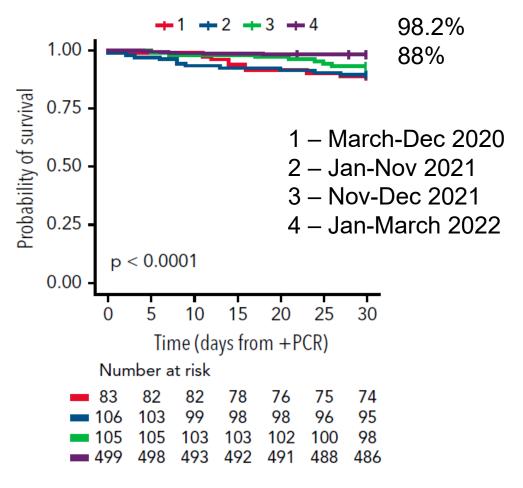
Langerbeins, Blood. 2022

First-line treatment for CLL with TP53 disruption (del(17p) or TP53 mutation)

- Pooled analysis of 89 patients treated with ibrutinib in first-line
- 4-year PFS 79% (95% CI, 68-87)

- Ven-Obi time limited 1 year treatment
- Median PFS 49.0 months for patient with TP53 disruption

Covid-19 and vaccinations in patients with CLL


6000 Anti-SARS-CoV-2S (U/mL) CLL: 52% 4000 Controls: 100% 2000 250 200 150 100 50 **CLL** patients Treatment-naïve CLL 55.2% On BTKi 16.0% Venetoclax +/- anti-CD20 13.6%

Herishanu et al, Blood 2021

In non-responders to initial series: 24% of all, 40% of treatment-naïve CLL patients responded to the 3rd dose.

30-day OS for CLL patients in Denmark

+ PCR for Covid

Niemann et al, Blood 2022

Response to 2 doses of Pfizer vaccine

Sequencing treatment in CLL

Line of Treatment	Therapy	Comments		
	Chemoimmunotherapy (FCR or BR)	Time limited; for young (<65) patients with good prognostic risk; 2-5% risk of MDS/AML		
1 st Line	Acalabrutinib or ibrutinib +/- anti-CD20	Anti-CD20 adds little; high response, low MRD rates; consider risk:benefit with bleeding or cardiac risk factors		
	Venetoclax + obinutuzumab, total 1 year duration	High response and MRD rates. Time-limited therapy with long duration of response		
2 nd Line	Acalabrutinib or ibrutinib (+/- anti-CD20)	See above		
	Venetoclax + anti-CD20, total 2 years duration	Venetoclax & rituximab approved regimen, obinutuzumab might be more effective anti-CD20		
	Clinical trials	Non-covalent BTK inhibitors; BTK degraders; CAR-T cells; T cell engaging bispecific antibodies;		
3 rd & subsequent line	PI3K inhibitors	Autoimmune side effects and risk of opportunistic infections; responses not very long lasting; negative data on OS		
	Allo-SCT	Potential cure. Problematic: advanced age, co-morbidities, toxicity		