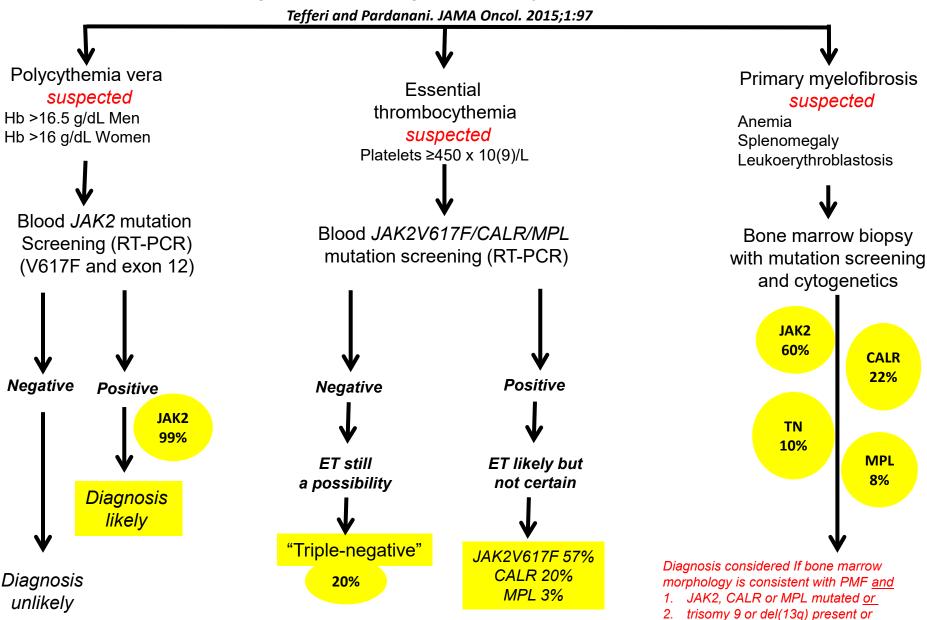
Myeloproliferative Neoplasms

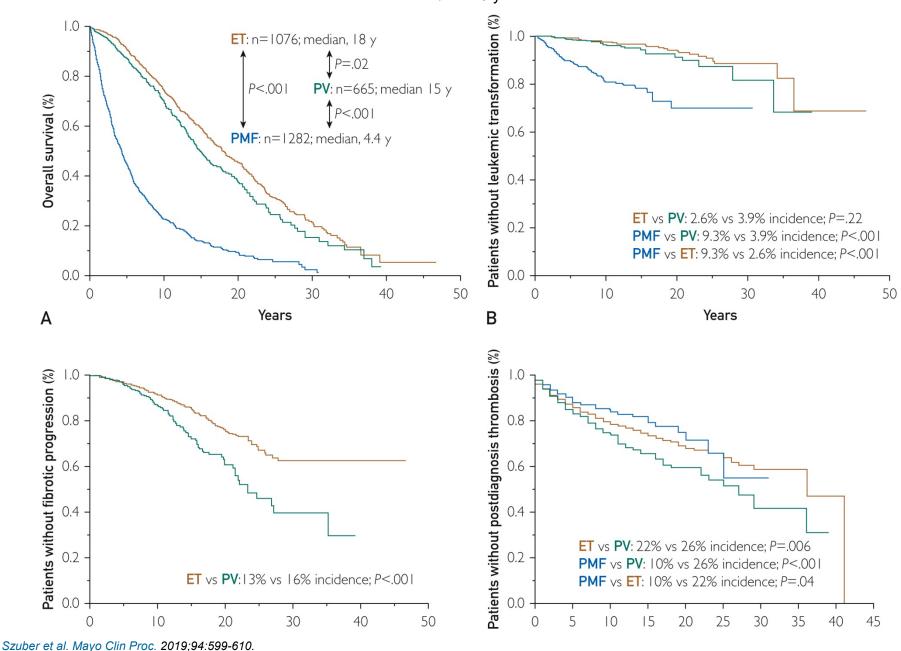
2022 Indy Hematology Review

Ayalew Tefferi, MD
Barbara Woodward Lips Professor of Medicine
Mayo Clinic, Division of Hematology
Rochester, MN

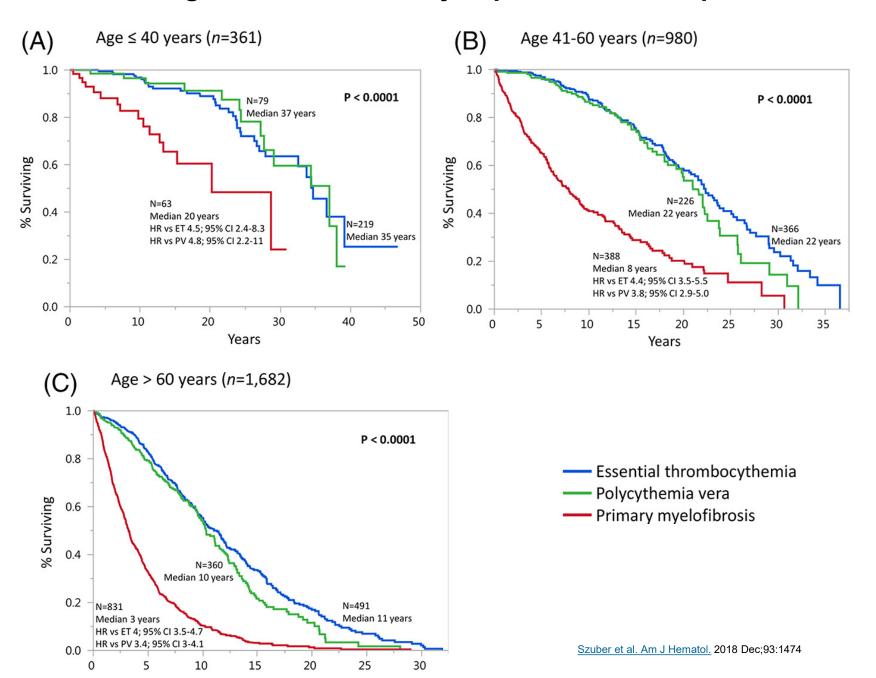


I have nothing to declare

Objectives

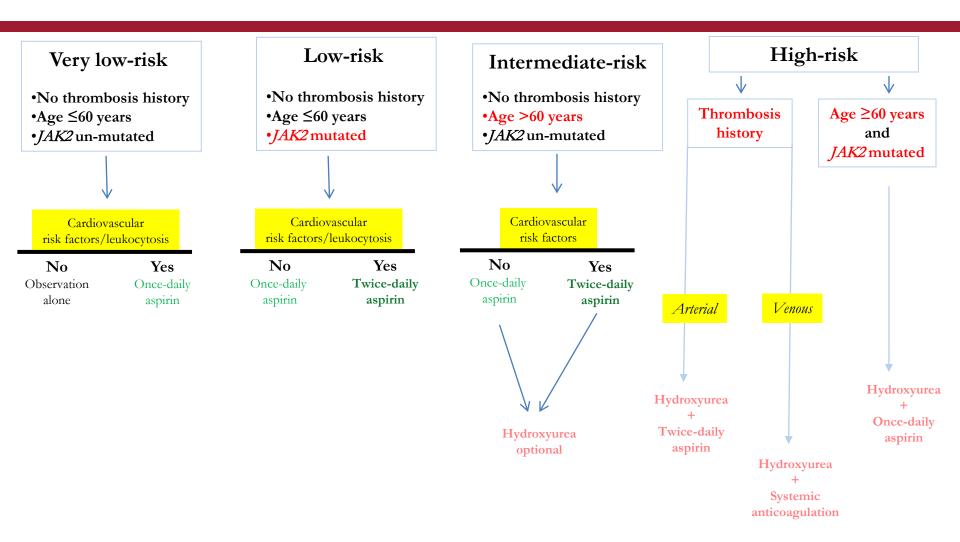

- MPN
 - Diagnosis
 - Prognostication
 - Treatment algorithms
- COVID infection and vaccine experience in patients with MPN

Practical algorithm for diagnosis of myeloproliferative neoplasms



Other myeloid malignancies are excluded

Overall (A), leukemia-free (B), myelofibrosis-free (C), and thrombosis-free (D) survival for 3,023 Mayo Clinic patients with myeloproliferative neoplasms (ET; PMF; PV) seen between 1967 and 2017. Median f/u = 20 years



Age and survival in myeloproliferative neoplasms

Current Treatment Algorithm in Essential Thrombocythemia

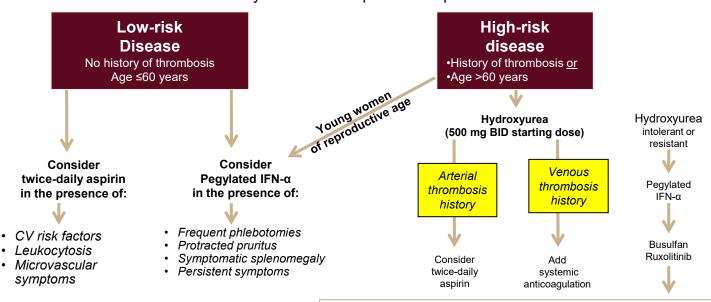
Blood Cancer J. 2018 Jan 10;8(1):2

Additional points:

- -Must consider the possibility of AvWS before instituting aspirin therapy, especially in the presence of extreme thrombocytosis
- -Second-line treatment in hydroxyurea intolerant or refractory patients is pegylated IFN- \alpha or busulfan

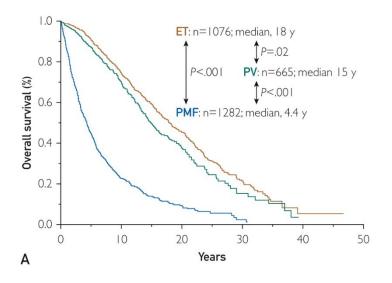
Additional practice points in essential thrombocythemia

- What if you can't or don't want to use hydroxyurea
 - First choice-pegylated interferon alpha
 - Second choice-busulfan
 - I do not advise use of anagrelide or ruxolitinib in ET
- Management before or during pregnancy
 - Low-risk…low-dose aspirin only
 - High-risk...pegylated IFN + low-dose aspirin
 - LMWH use reserved for patients with venous thrombosis history


- Management of splanchnic vein or cerebral vein thrombosis
 - Systemic anticoagulation advised (DOAC vs warfarin)
 - Consider adding aspirin in the presence of risk factors for arterial thrombosis
 - Additional value of cytoreductive therapy uncertain-to be decided case by case
- 4. Management of platelet millionaires with otherwise low-risk disease
 - No evidence of value for cytoreductive therapy
 - Avoid use of aspirin in patients with clinically evident acquired von Willebrand syndrome
 - Treat the patient and not the platelet count

Current Treatment Approach in Polycythemia Vera

ta kaon banataarit <4


Scheduled phlebotomy to keep hematocrit <45% in all patients

+
Once-daily low-dose aspirin in all patients

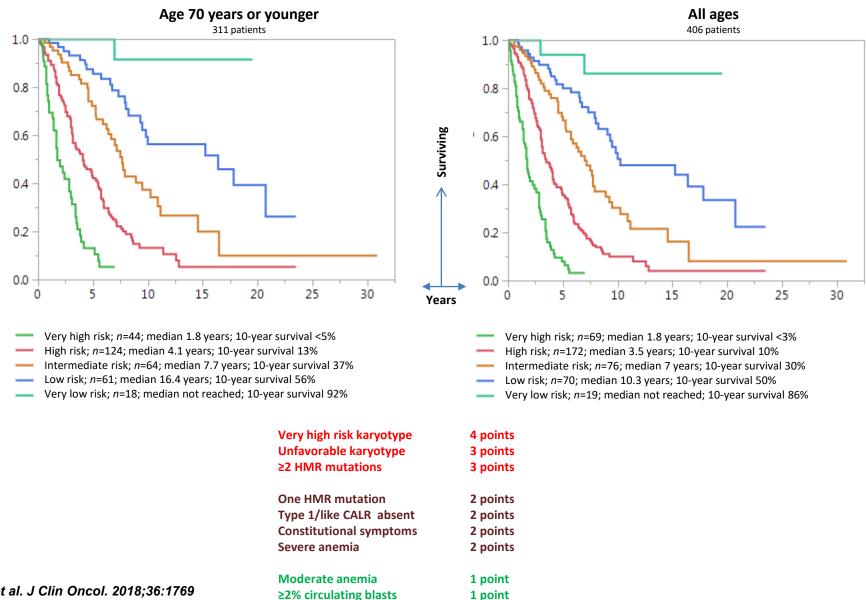
- · Ruxolitinib preferred in the presence of symptoms reminiscent of post-PV MF
- · Busulfan preferred in older patients

Disease Complications in Myelofibrosis

- Anemia
- Splenomegaly
- Constitutional symptoms
- Cachexia

Therapeutic options in myelofibrosis

Curative or with potential to improve survival

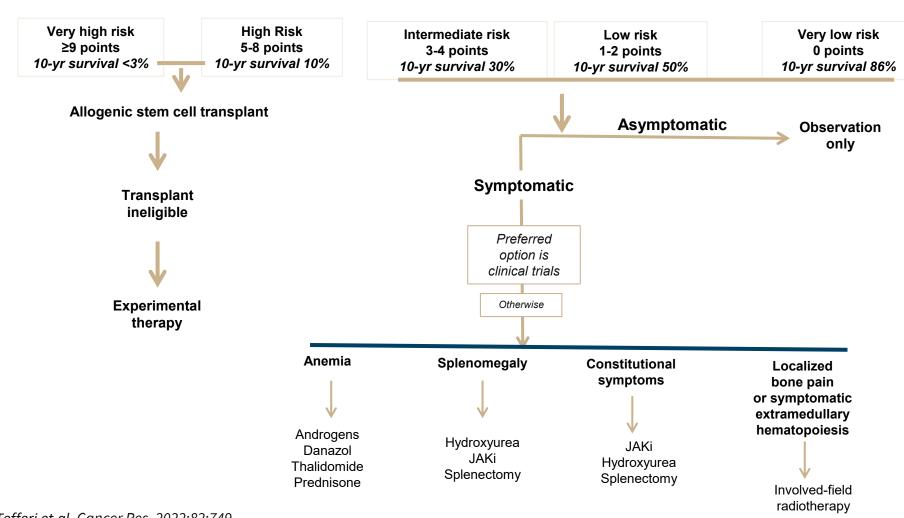

Allogeneic hematopoietic cell transplant (allo-HCT)

Palliative

- Observation alone (watch-and-wait)
- Treatment for anemia
 - Thalidomide ± prednisone
 - Androgens
 - Danazol
 - ESAs
 - Lenalidomide/pomalidomide
- Treatment for symptomatic splenomegaly
 - Hydroxyurea
 - JAK2 inhibitors
 - Splenectomy
- Treatment for constitutional symptoms
 - JAK2 inhibitors
- ✓ Involved field radiotherapy for extra-medullary hematopoiesis
- Experimental therapy

Survival data on Mayo Clinic patients with primary myelofibrosis stratified by MIPSS70+ version 2.0 (MIPSSv2)

Risk categories: very high risk ≥9 points; high risk 5-8 points; intermediate risk 3-4 points; low risk 1-2 points; and very low risk zero points

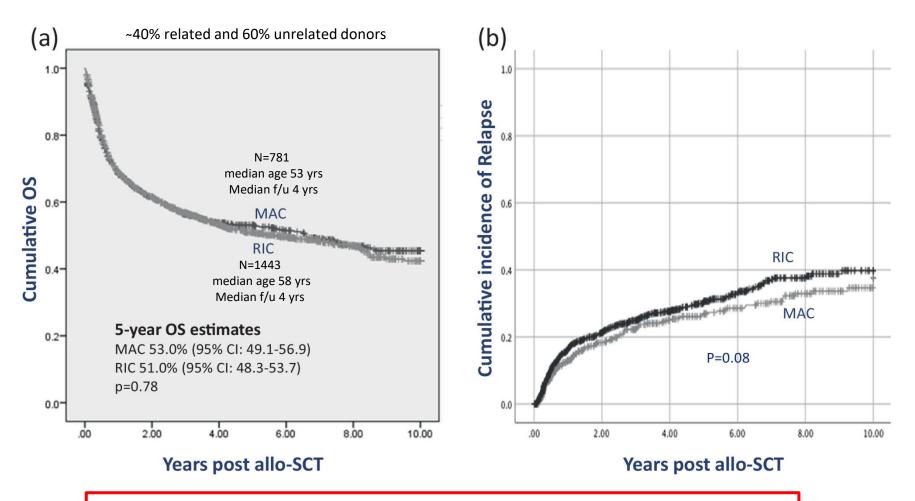

Current Treatment Algorithm in Myelofibrosis (Risk-adapted)

MIPSS70+ version 2.0

Karyotype: Very high risk 4 points; unfavorable 3 points; Mutations:: ≥2 high risk 3 points; one high risk 2 points;

Type 1 CALR mutation: absent 2 points;

Clinical risk factors: constitutional symptoms 2 points; severe anemia 2 points; moderate anemia 1 point; ≥2% circulating blasts 1 point



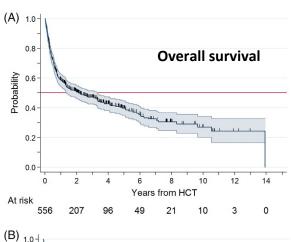
Tefferi et al. Cancer Res. 2022;82:749

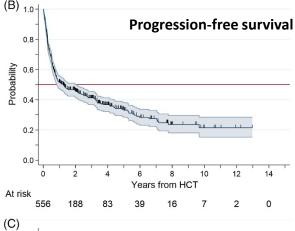
RIC vs MAC

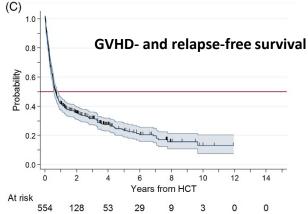
Retrospective study by the ESBMT of 2224 MF patients who underwent allogeneic stem cell transplantation between 2000 and 2014

McLornan et al. Biol Blood Marrow Transplant 2019;25:2167

GVHD-free and relapse-free survival was 32% for MAC and 26% for RIC


556 patients with myelofibrosis age ≥65 years undergoing allogeneic hematopoietic cell transplantation


Hernández-Boluda et al. AJH 2021;96:1186


Median age 67 years (range, 65–76) 83% DIPSS high or intermediate-2 risk Median f/u 3.4 years Deaths 55% (n=306; GVHD 106; relapse/prog 80; infection 69) Survival rates at 1, 3, and 5 years were 59%, 49%, and 40% Relapse/progression at 1, 3, and 5 years was 18%, 22%, and 25%

5-year risk-adjusted survival of non-transplant cohort 33%

Syngeneic	1 (0)
HLA-matched related	134 (24)
HLA-mismatched related	5 (1)
Haploidentical	22 (4)
HLA-matched unrelated	<mark>255 (46)</mark>
HLA-mismatched unrelated	71 (13)
Unrelated, HLA-match unknown	61 (11)
Cord blood	5 (1)

Phase-3 tested JAK2 inhibitors in myelofibrosis

N Engl J Med. 2010 Sep 16;363(12):1117 (ruxolitinib phase-2) JAMA Oncol. 2015 Aug;1(5):643 (fedratinib phase-3) Leukemia. 2018 Apr;32(4):1035-1038 (momelotinib phase-2) Blood. 2015 Apr 23;125(17):2649-55 (pacritinib phase-2)

2013 revised IWG-MRT respon	nse rates for 1	66 JAKi treated Mayo Clinic patients	
CR	PR	1-2-3 years	
		discontinuation rates	

Momelotinib (n=100)	0%	1%	31%-52%-71%	
Ruxolitinib (n=51)	0%	0%	49%-71%-86%	Leukemia 2014
Fedratinib (n=15)	0%	0%	20%-67%-80%	

	JAK targets	Other targets	Symp. resp.	Spleen resp.	Anemia resp.	Side effects
Ruxolitinib FDA approved 11/16/2011	JAK1 JAK2	TRK-B, ACK1 FAK, LCK RET	Yes	28-42% (MRI)	NR	↓Hgb/Plts Ruxolitinib withdrawal synd. Opportunistic infections
Fedratinib (SAR302501) FDA approved 8/16/2019	JAK2	FLT3, RET, ACK1 JNK1	Yes	36% (MRI)	NR	↓Hgb/Plts Nausea/Diarrhea ↑LFTs/Lipase/amylase Encephalopathy
Pacritinib (SB1518) FDA approved 2/28/2022	JAK2	FLT3	Yes	19% (MRI)	NR	Diarrhea/Nausea
Momelotinib (CYT387)	JAK1 JAK2	PKD3, PKCμ CDK2, ROCK2	Yes	27% MRI	53%	↓Plts 1st dose effect ↓BP/dizzy
Phase-3 completed	DAKE	JNK1, TBK1 ALK-2 (ACVR1)			31% vs 20% Tx-indep. vs danazol	Neuropathy/Headache ↑LFTs/Lipase/Amylase

COMFORT-1 vs placebo COMFORT-2 vs BAT

JAKARTA-1 vs placebo

PERSIST-1 vs BAT (no rux)

SIMPLIFY-1 vs ruxo

MOMENTUM vs danazol

in JAKi treated

Survival impact of JAKi in myelofibrosis: Mayo Clinic studies (retrospective comparisons with risk-adjusted controls)

Clinical characteristics at time of fedratinib initiation and outcomes for 28 patients with myelofibrosis relapsed/refractory to ruxolitinib; retrospective review of real-world experience *Gangat et al. BJH 2022;*doi: 10.1111/bjh.18284. Online ahead of print

Variables	All patients (n=28)	Patients switched from ruxolitinib ≥20 mg twice daily (n=11)	Patients switched from ruxolitinib <20 mg twice daily (n=17)	P- value
Age in years, median (range)	73 (52-85)	72 (53-85)	74 (52-84)	0.68
Splenomegaly, n (%)	24 (86)	8(73)	16(94)	0.12
Spleen size in cm (median, range)				
(based on imaging, US/CT/MRI)	23 (16.6-34)	29.7 (17.5-34)	22.1 (16.6-33.5)	0.05
Dose of fedratinib (median, range)	400 (100-400)	400 (100-400)	400 (300-400)	0.16
Duration of therapy in months, (median, range)	8.0 (1.0- 29.2)	4.2 (1.0-29.2)	9.0 (1-24.1)	0.88
Response*, n (%) - Spleen, n evaluable =24 - Symptom, n evaluable =25	3 (13%) 8 (32%)	<mark>0/9(0%)</mark> <mark>1/9 (11%)</mark>	3/16(19%) 7/16 (44%)	0.08 0.07 0.01
Duration of response in months, (median, range)	7.8 (0-25.8)	6.0 (0-25.8)	8.5 (1.4-12.6)	0.16
Treatment discontinuation, n (%)	15 (54)	6(55)	9(53)	0.93
Allogeneic transplant, n (%)	4 (14)	3(27)	1(6)	0.12
Toxicity, n (%)				
- Gastrointestinal	6 (21)	3(27)	3(18)	0.55
- Anemia, Grade 3	7 (25)	1(9)	6(35)	0.10
- Thrombocytopenia, Grade 3/4	6 (21)	3(27)	3(18)	0.55
- Renal insufficiency	4 (14)	2(18)	2(12)	0.64
- Increased lipase	1 (4)	1(9)	0(0)	0.16

Practice points regarding ruxolitinib or related JAKi therapy

Indications

- 1. Marked splenomegaly that is symptomatic and resistant to hydroxyurea
- 2. Severe constitutional symptoms including pruritus, night sweats, fatigue and cachexia

Side effects include...

- 1. Anemia
- 2. Thrombocytopenia
- 3. Immunosuppression
- 4. Opportunistic infections
- 5. Protracted myelosuppression

Special concerns

- 1. Poor immune response to COVID vaccination*
- 2. Might compromise future eligibility for clinical trials because of protracted myelosuppression
- 3. Benefit lasts for an average of approximately one year; might be best to try HU first
- BEWARE of withdrawal symptoms that might include SIRS and overt and immediate relapse of splenomegaly/symptoms

COVID-19 and MPN

European MPN-COVID study first and second wave Barbui et al. Leukemia. 2022;36:897

Total 479 patients

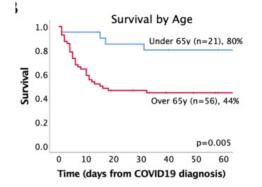
- 161 ET
- 135 PV
- 134 PMF
- 49 pre-PMF

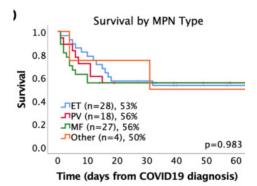
Predictors of death

- Age >70 years
- Male sex
- Severity of COVID-19
- Ruxolitinib discontinuation

Venous thrombotic complications were more likely to occur in ET

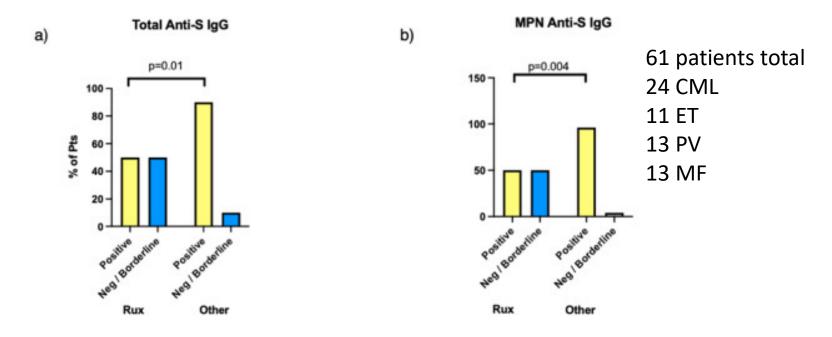
UK national survey

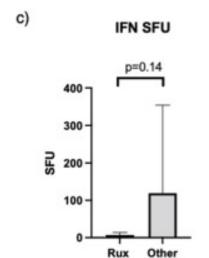

MPN-U4


77 MPN patients with COVID-19 (median age 74)
ET 28


I Salisbury et al.
PV 18

45% died Leukemia. 2021; 35(8):
MF 27


Leukemia. 2424–2430



Effect of Ruxolitinib treatment on antibody and T cell response to COVID vaccination (median 6.4 weeks from 2nd dose) (Harrington et al. <u>Blood Cancer J.</u> 2022; 12: 73)

What do I advice my patients:

- 1. COVID-19 is just the beginning
- 2. Make social distancing and masking, as necessary, a permanent habit
- 3. Follow vaccine guidelines
- 4. Ruxolitinib and other JAK inhibitors are immunosuppressants
 - Increase mortality from infection
 - Compromise vaccine response
- 5. If not on JAKi, consider alternative therapy, if possible
- 6. If already on JAKi, do not discontinue; consider evusheld/paxlovid
 - Note drug-drug interactions with paxlovid...decrease ruxo by 50%
- 7. Hydroxyurea or interferon-alpha do not appear to be deleterious