Myeloproliferative Neoplasms Prognostication and therapeutic implications

2022 Indy Hematology Review

Ayalew Tefferi, MD Barbara Woodward Lips Professor of Medicine Mayo Clinic, Division of Hematology Rochester, MN

I have nothing to declare

Objectives

- Contemporary prognostic models
- Risk-based treatment strategies

Diseases to be covered

- Essential thrombocythemia
- Polycythemia vers
- Myelofibrosis

2022 International Consensus Classification (ICC) system for Myeloid neoplasms and Acute leukemia

Pathology co-chairs:

Attilio Orazi Texas Tech University Health Sciences Center, El Paso, El Paso, USA

Robert P. Hasserjian Massachusetts General Hospital, Boston, USA

Clinical advisory committee co-chairs:

Mario Cazzola University of Pavia, Pavia, Italy

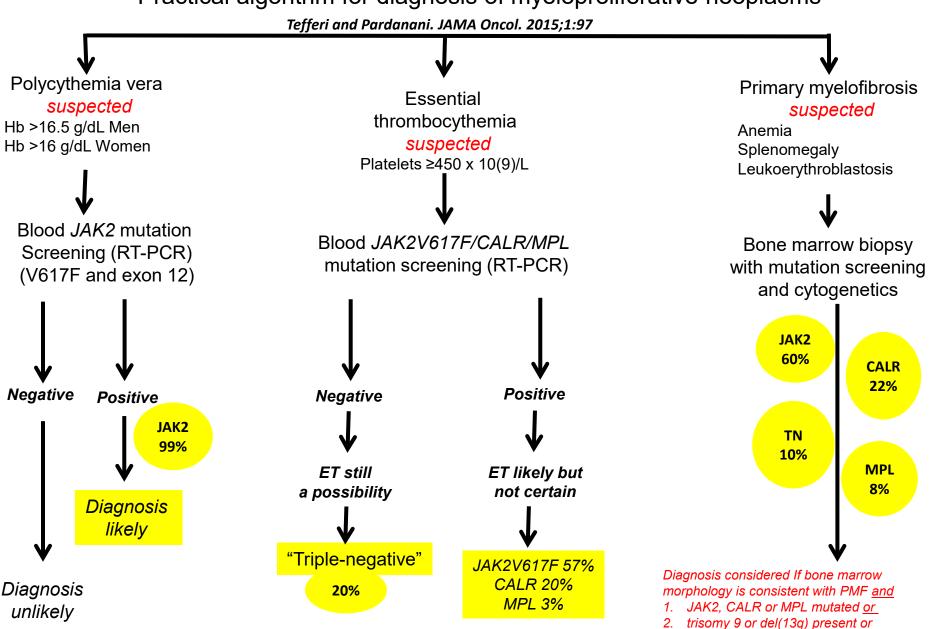
Hartmut Dohner University of Ulm, Ulm, Germany

Ayalew Tefferi Mayo Clinic, Rochester, USA

What is new:

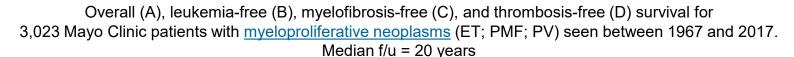
Primary AML is now diagnosed in the presence of \geq 10% blasts BM or PB Diagnosis of secondary AML, with antecedent CML, MPN, or MDS, still requires presence of \geq 20% blasts There are now multiple genetic subcategories of AML

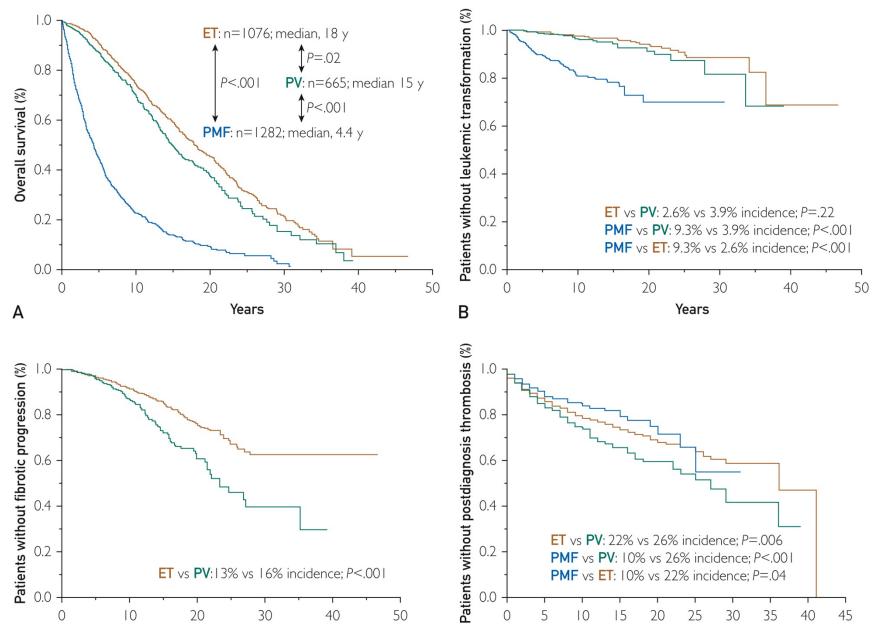
New MDS subcategories


MDS with excess blasts 5-9% (2-9% PB) MDS-SF3B1 (>10% VAF) MDS-del(5q) MDS-NOS without or with single-lineage or multi-lineage dysplasia

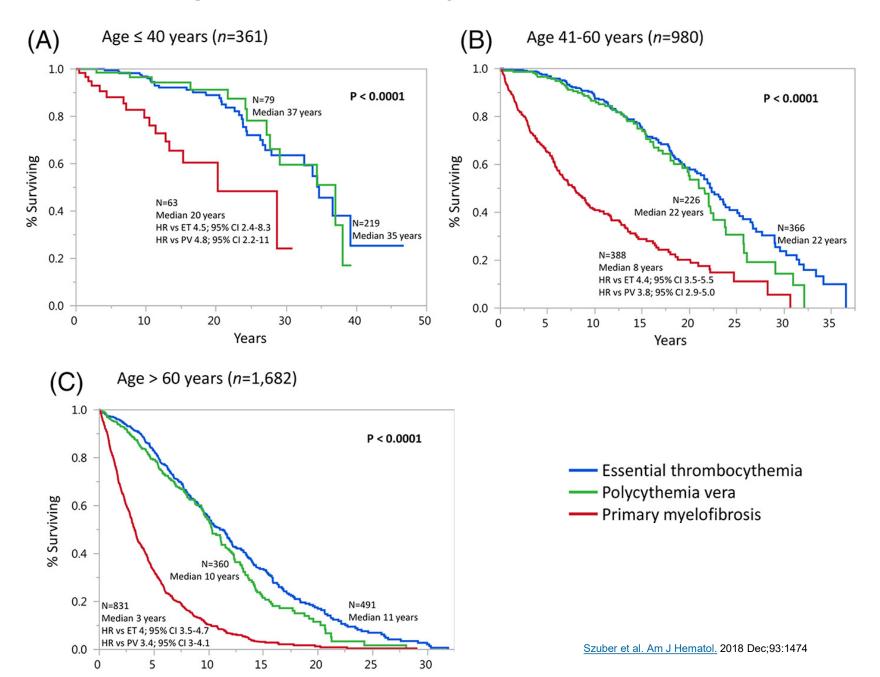
MDS with excess blasts-2 is now classified as MDS/AML, 10-19% blasts AML, MDS or AML/MDS + *TP53* mutation are now classified as "myeloid neoplasms with *TP53* mutation" CMML diagnosis now requires $\ge 0.5 \times 10(9)/L$ PB monocytes and $\ge 10\%$ fraction, with evidence of clonality

The good news is that MPN classification remained mostly unchanged

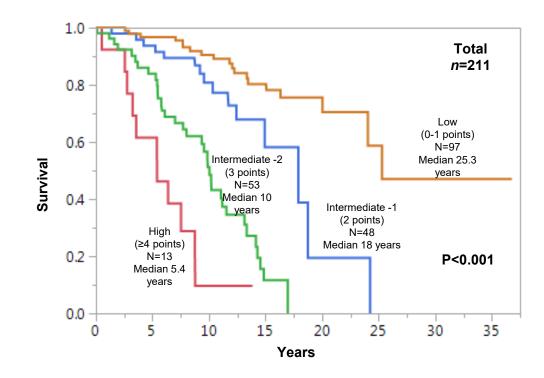

Daniel A. Arber, MD Chair University of Chicago, Chicago, IL, USA


Arber et al. Blood. 2022 (in press) Arber et al. Am J Hematol. 2022;97:514

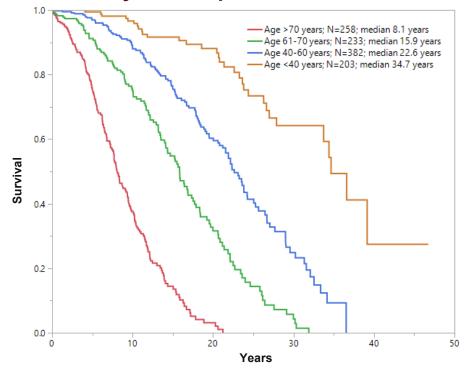
3. Other myeloid malignancies are excluded


Practical algorithm for diagnosis of myeloproliferative neoplasms

Szuber et al. Mayo Clin Proc. 2019;94:599-610.


Age and survival in myeloproliferative neoplasms

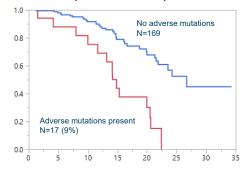
Mutation-enhanced international prognostic score (MIPSS-PV)


Risk factors:

- 1. Age >60 years (2 points),
- 2. Leukocyte count $\geq 11 \times 10^{9}/l$ (1 point), incidence 50%
- 3. Abnormal karyotype (1 point), incidence 20%
- 4. SRSF2 mutations (2 points), incidence 3%

ET prognostication

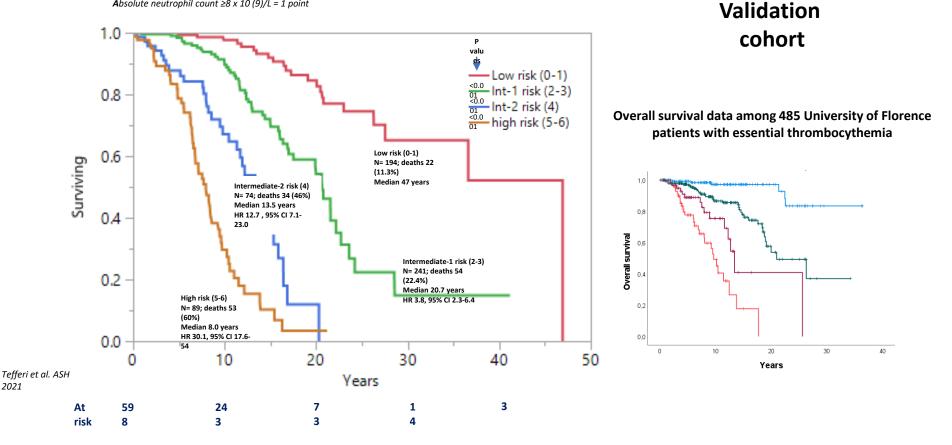
Age-stratified survival among 1,076 Mayo Clinic patients with ET

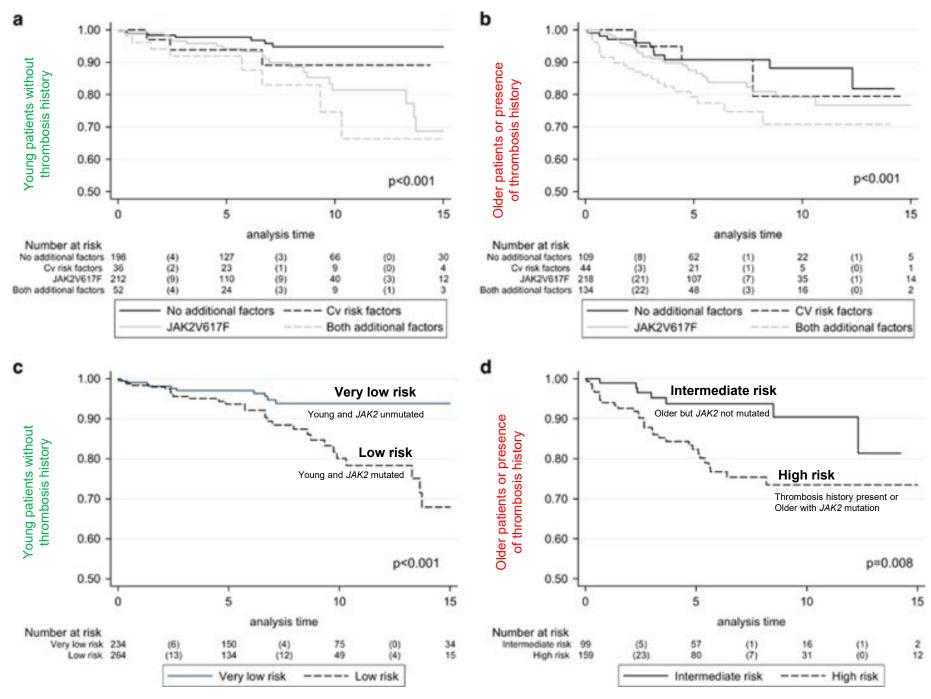


- Leukocytosis
- Male sex
- SF3B1, SRSF2, U2AF1 and TP53 mutations

MIPSS-ET Tefferi et al. BJH 2020;189:297

Mutation effect in 186 patients age 40-60 years, based on merged analysis of 451 total informative cases from the Mayo Clinic and University of Florence

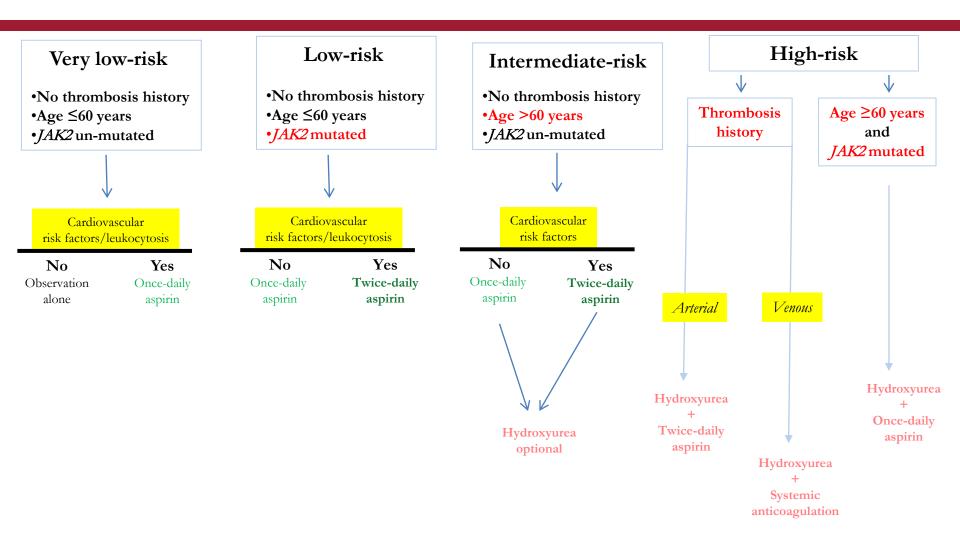

Tefferi and Pardanani, NEJM 2019;381:2135


The new triple-A (AAA) survival model for essential thrombocythemia

Overall survival data among 598 Mayo Clinic patients with essential thrombocythemia Stratified by Age, Absolute neutrophil and Absolute lymphocyte count (AAA) risk model Median follow-up 8.4 years

Age >70 years = 4 points Age 50-70 years = 2 points Absolute lymphocyte count <1.7 x 10(9)/L = 1 point Absolute neutrophil count $\ge 8 \times 10 (9)/L = 1$ point

2021



Revised IPSET: Barbui et al. Blood Cancer J. 2015 Nov; 5(11): e369

Current Treatment Algorithm in Essential Thrombocythemia

Blood Cancer J. 2018 Jan 10;8(1):2

Additional points:

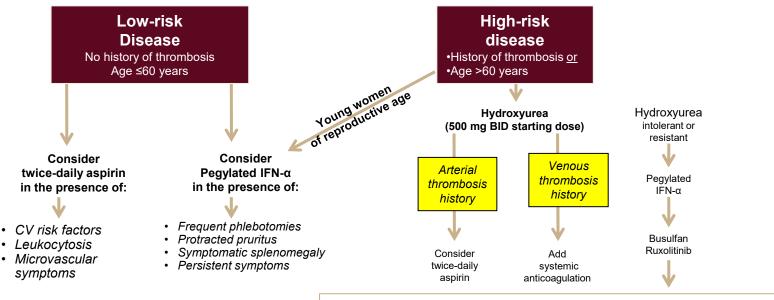
-Must consider the possibility of AvWS before instituting aspirin therapy, especially in the presence of extreme thrombocytosis -Second-line treatment in hydroxyurea intolerant or refractory patients is pegylated IFN- α or busulfan

Additional practice points in essential thrombocythemia

- 1. What if you can't or don't want to use hydroxyurea
 - First choice-pegylated interferon alpha
 - Second choice-busulfan
 - I do not advise use of anagrelide or ruxolitinib in ET
- 2. Management before or during pregnancy
 - Low-risk...low-dose aspirin only
 - High-risk...pegylated IFN + low-dose aspirin
 - LMWH use reserved for patients with venous thrombosis history

- 3. Management of splanchnic vein or cerebral vein thrombosis
 - Systemic anticoagulation advised (DOAC vs warfarin)
 - Consider adding aspirin in the presence of risk factors for arterial thrombosis
 - Additional value of cytoreductive therapy uncertain-to be decided case by case
- 4. Management of platelet millionaires with otherwise low-risk disease
 - No evidence of value for cytoreductive therapy
 - Avoid use of aspirin in patients with clinically evident acquired von Willebrand syndrome
 - Treat the patient and not the platelet count

Vascular events among 27 low-risk patients with essential thrombocythemia presenting with extreme thrombocytosis (≥ 1500 x10⁹/L), stratified by initial treatment reports


Variables	All patients n=27	Observation alone n=5	Aspirin alone n=5	Cytoreduction alone n=7	Aspirin + cytoreduction n=7
Driver mutation status, n (%)					
-JAK2V617F	8 (30)	1 (20)	1 (20)	1 (14)	4 (57)
- CALR	14 (52)	3 (60)	3 (60)	5 (71)	2 (29)
Median f/u in years	15.3	11.2	15.5	10.0	19.5
(range)	(0.5-46.9)	(4.4-24.3)	(7.5-27.5)	(0.5-22.3)	(4.1-41.2)
Major thrombosis, n (%)					
- Arterial thrombosis	2 (7)	0	0	1 (14)	1 (14)
- Venous thrombosis	1 (4)	1 (20)	0	0	0
Major hemorrhage, n (%)	3/26 (12)	1 (20)	0	0	1 (14)

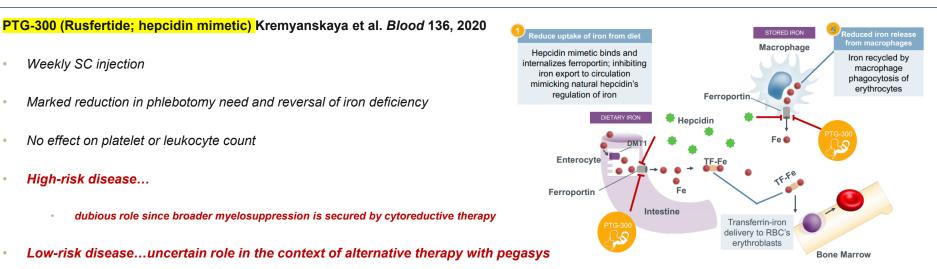
Gangat et al. Blood Advances (in press) Gangat et al. AJH 2021;96:E93 Tefferi et al. Am J Hematol. 2021;96:E182

Current Treatment Approach in Polycythemia Vera

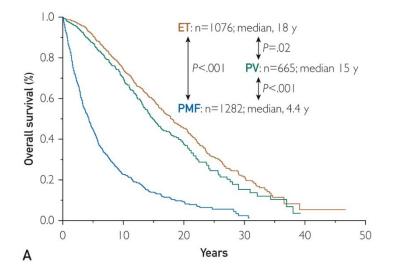
Scheduled phlebotomy to keep hematocrit <45% in all patients

Once-daily low-dose aspirin in all patients

· Ruxolitinib preferred in the presence of symptoms reminiscent of post-PV MF


Busulfan preferred in older patients

Tefferi, Vannucchi, and Barbui Leukemia. 2021;35:3339


New Drugs in PV

Ropeginterferon (Ropeg)

- High-risk disease
 - Ropeg (Besremi®) vs HU in PV phase-3... Gisslinger et al. Lancet Hematology 2020;7:e196
 - CHR...43% vs 46%... Ropeg associated with more side effects and lower JAK2 allele burden
 - Pegasys (Peg-rIFN-α2a) vs HU...Mascarenhas et al. Blood. 2022 May 12;139(19):2931...168 patients with PV (87) or ET (81)
 - CR 35% vs 37%, at 12 months; 30% vs 28% in PV...
 - Pegasys better at Hct control and reduction of *JAK2* allele burden
 - HU better at histopathologic responses and less grade 3 or 4 adverse events.
- Low-risk disease...Barbui et al. Lancet Hematology 2021;8:e175; Ropeg better Hct control than phlebotomy alone relevance?...f/u 1 yr

Disease Complications in Myelofibrosis

- Anemia
- Splenomegaly
- Constitutional symptoms
- Cachexia

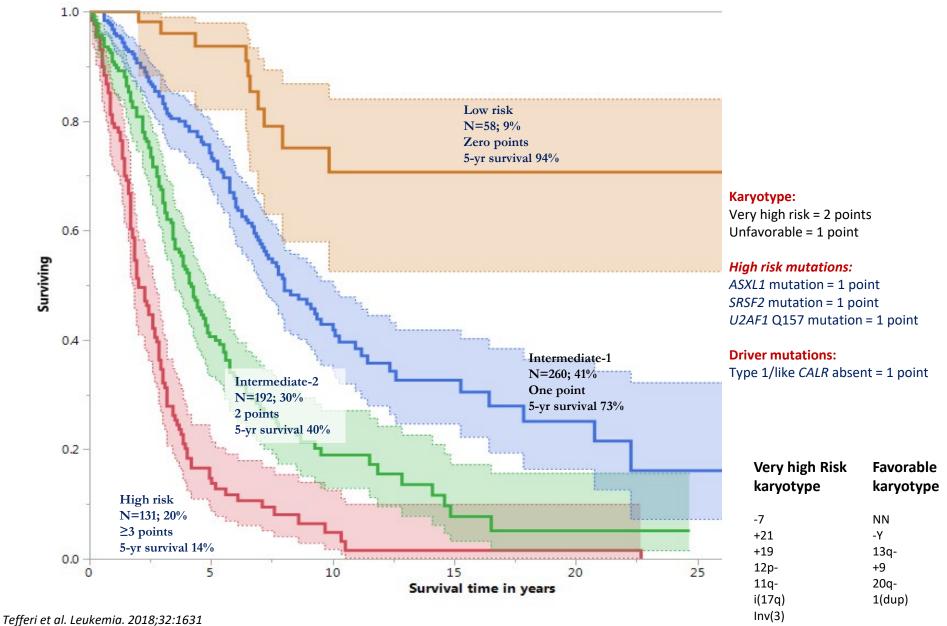
Therapeutic options in myelofibrosis

Curative or with potential to improve survival

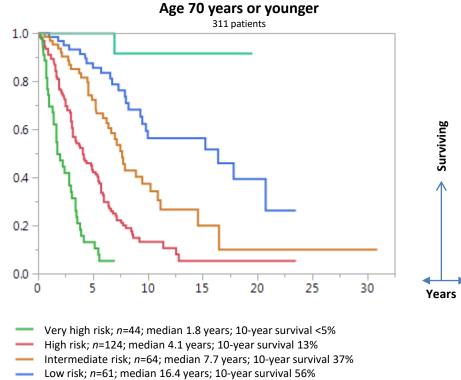
Allogeneic hematopoietic cell transplant (allo-HCT)

Palliative

- Observation alone (watch-and-wait)
- Treatment for anemia
 - Thalidomide ± prednisone
 - Androgens
 - Danazol
 - ESAs
 - Lenalidomide/pomalidomide
- Treatment for symptomatic splenomegaly
 - Hydroxyurea
 - JAK2 inhibitors
 - Splenectomy
- Treatment for constitutional symptoms
 - JAK2 inhibitors
- Involved field radiotherapy for extra-medullary hematopoiesis
- Experimental therapy

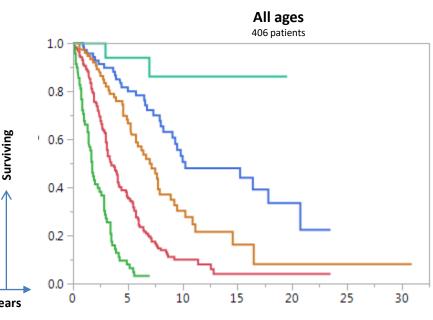

Prognostication in myelofibrosis

- 1. Mutation-enhanced international prognostic scoring system version 2.0 (MIPSSv2)
- 2. Genetics-inspired IPSS (GIPSS)


GIPSS

genetically-inspired prognostic scoring system-stratified survival data in 641 patients with primary myelofibrosis

Survival data on Mayo Clinic patients with primary myelofibrosis stratified by MIPSS70+ version 2.0 (MIPSSv2)


Risk categories: very high risk ≥9 points; high risk 5-8 points; intermediate risk 3-4 points; low risk 1-2 points; and very low risk zero points

— Very low risk; *n*=18; median not reached; 10-year survival 92%

Very high risk karyotype	4 points
Unfavorable karyotype	3 points
≥2 HMR mutations	3 points
One HMR mutation	2 points
Type 1/like CALR absent	2 points
Constitutional symptoms	2 points
Severe anemia	2 points
Moderate anemia	1 point
≥2% circulating blasts	1 point

Very high risk; n=69; median 1.8 years; 10-year survival <3%</p>

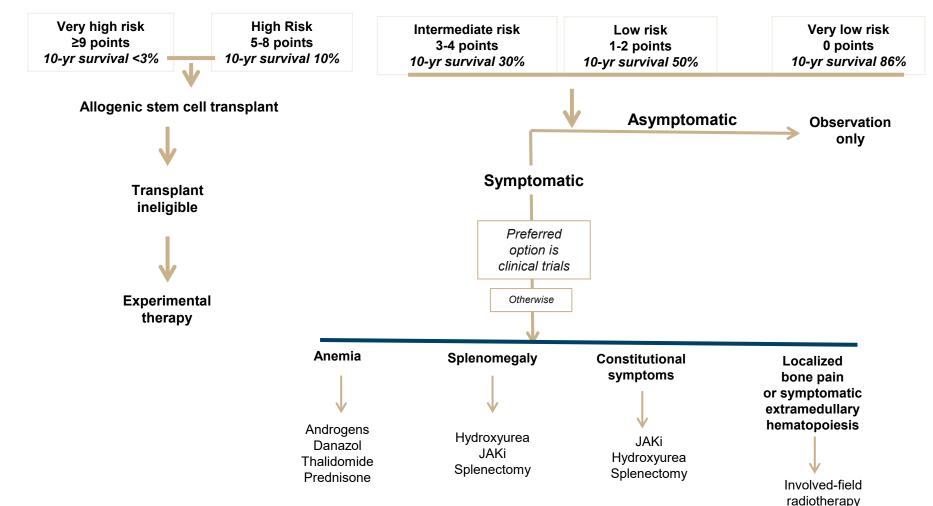
High risk; n=172; median 3.5 years; 10-year survival 10%

Intermediate risk; n=76; median 7 years; 10-year survival 30%

Low risk; n=70; median 10.3 years; 10-year survival 50%

Very low risk; n=19; median not reached; 10-year survival 86%

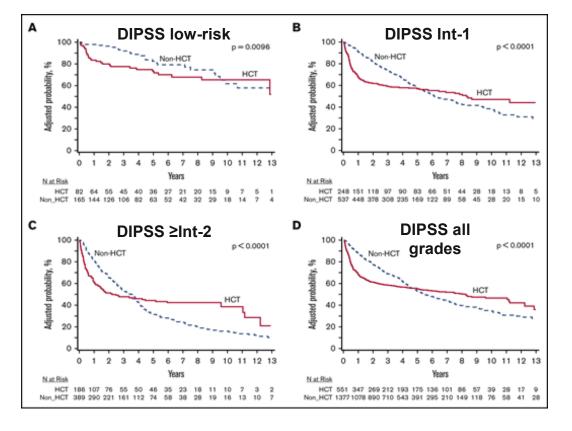
Current Treatment Algorithm in Myelofibrosis (Risk-adapted)


MIPSS70+ version 2.0

Karyotype: Very high risk 4 points; unfavorable 3 points;

Mutations:: ≥2 high risk 3 points; one high risk 2 points;

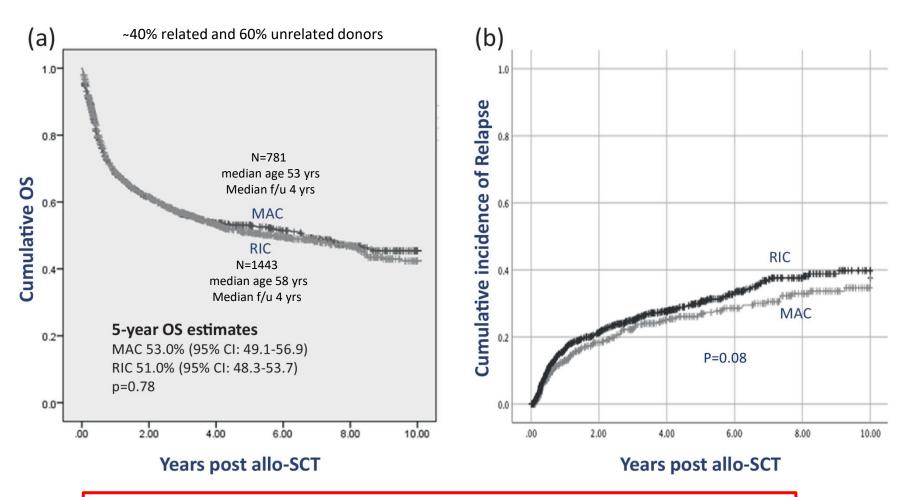
Type 1 CALR mutation: absent 2 points;


Clinical risk factors: constitutional symptoms 2 points; severe anemia 2 points; moderate anemia 1 point; ≥2% circulating blasts 1 point

Tefferi et al. Cancer Res. 2022;82:749

Survival following allogeneic transplant in patients with myelofibrosis (CIBMTR and MPN Research Consortium study)

551 patients transplanted vs 1377 not transplanted



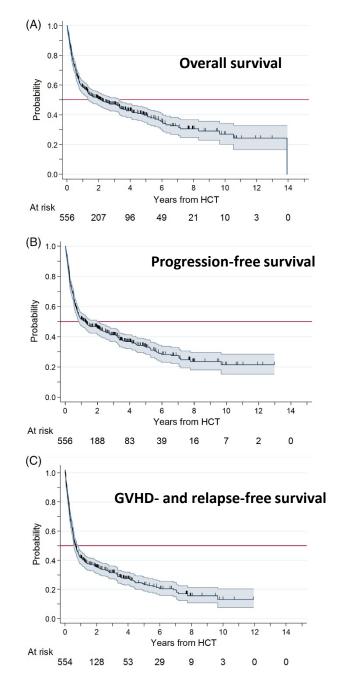
RIC vs MAC

Retrospective study by the ESBMT of 2224 MF patients

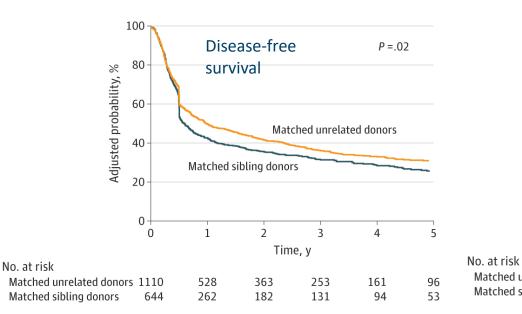
who underwent allogeneic stem cell transplantation between 2000 and 2014

McLornan et al. Biol Blood Marrow Transplant 2019;25:2167

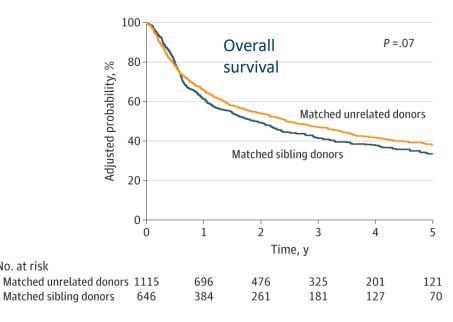
GVHD-free and relapse-free survival was 32% for MAC and 26% for RIC

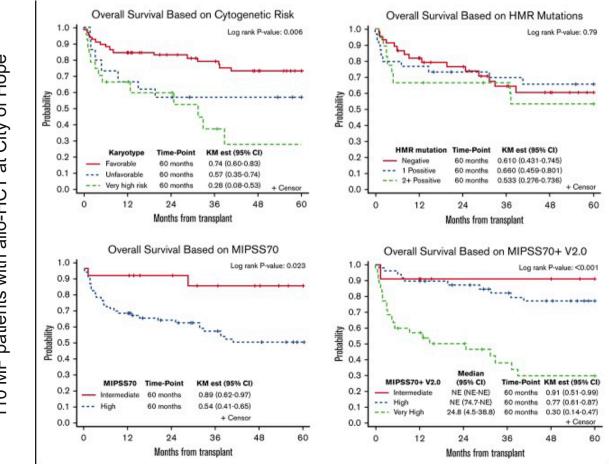

556 patients with myelofibrosis age ≥65 years undergoing allogeneic hematopoietic cell transplantation

Hernández-Boluda et al. AJH 2021;96:1186

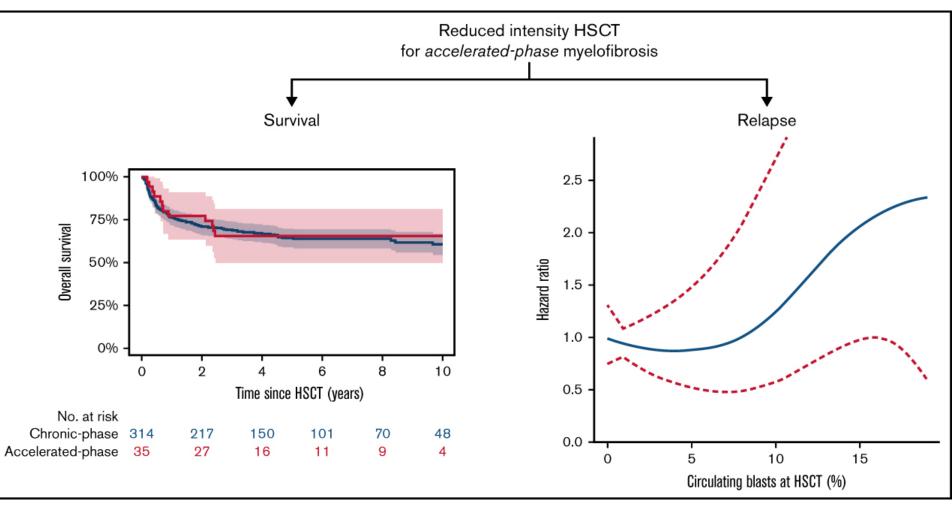

Median age 67 years (range, 65–76) 83% DIPSS high or intermediate-2 risk Median f/u 3.4 years Deaths 55% (n=306; GVHD 106; relapse/prog 80; infection 69) Survival rates at 1, 3, and 5 years were 59%, 49%, and 40% Relapse/progression at 1, 3, and 5 years was 18%, 22%, and 25%


5-year risk-adjusted survival of non-transplant cohort 33%


Syngeneic	1 (0)
HLA-matched related	134 (24)
HLA-mismatched related	5 (1)
Haploidentical	22 (4)
HLA-matched unrelated	<mark>255 (46)</mark>
HLA-mismatched unrelated	71 (13)
Unrelated, HLA-match unknown	61 (11)
Cord blood	5 (1)



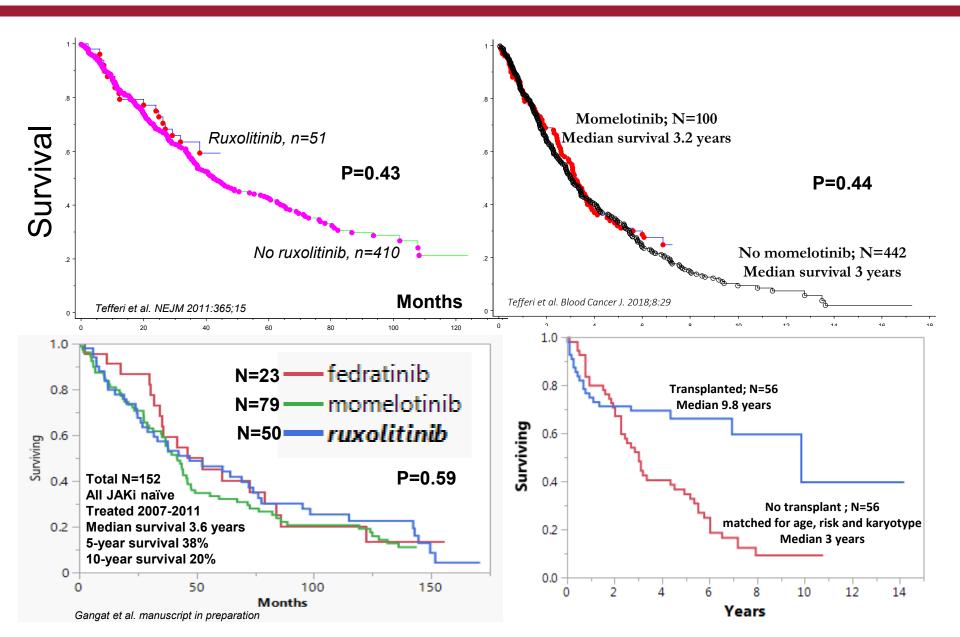
Relapse and Disease-Free Survival in Patients With Myelodysplastic Syndrome Undergoing Allogeneic Hematopoietic Cell Transplantation Using Older Matched Sibling Donors vs Younger Matched Unrelated Donors



Reduced intensity hematopoietic stem cell transplantation for accelerated-phase myelofibrosis (peripheral blood blasts 10-19%)

Donor source was matched unrelated (n = 174), HLA-identical sibling (n = 89), or mismatch related or unrelated (n = 86).

Phase-3 tested JAK2 inhibitors in myelofibrosis


N Engl J Med. 2010 Sep 16;363(12):1117 (ruxolitinib phase-2) JAMA Oncol. 2015 Aug;1(5):643 (fedratinib phase-3) Leukemia. 2018 Apr;32(4):1035-1038 (momelotinib phase-2) Blood. 2015 Apr 23;125(17):2649-55 (pacritinib phase-2)

2013 revised IWG-MRT response rates for 166 JAKi treated Mayo Clinic patients

	CR	PR		-2-3 years iscontinuat	ion ra	ates	
Momelotinib (<i>n</i> =100)	0%	1%	31	1%-52%-71	%		
Ruxolitinib (n=51)	0%	0%	49	9%-71%-869	%	Leukemia 2014	
Fedratinib (n=15)	0%	0%	20	0%-67%-80	%		

	JAK targets	Other targets	Symp. resp.	Spleen resp.	Anemia resp.	Side effects	
Ruxolitinib FDA approved 11/16/2011	JAK1 JAK2	TRK-B, ACK1 FAK, LCK RET	Yes	28-42% (MRI)	NR	↓Hgb/Plts Ruxolitinib withdrawal synd. Opportunistic infections	COMFORT-1 vs placebo COMFORT-2 vs BAT
Fedratinib (SAR302501) FDA approved 8/16/2019	JAK2	FLT3, RET, ACK1 JNK1	Yes	36% (MRI)	NR	↓Hgb/Plts Nausea/Diarrhea ↑LFTs/Lipase/amylase Encephalopathy	JAKARTA-1 vs placebo
Pacritinib (SB1518) FDA approved 2/28/2022	JAK2	FLT3	Yes	19% (MRI)	NR	Diarrhea/Nausea	PERSIST-1 vs BAT (no rux)
Momelotinib (CYT387)	JAK1 JAK2	PKD3, PKCµ CDK2, ROCK2	Yes	27% MRI	53%	ુPlts _ 1 st dose effect	
Phase-3 completed		JNK1, TBK1 ALK-2 (ACVR1)			31% vs 20% Tx-indep. vs danazol	Neuropathy/Headache ↑LFTs/Lipase/Amylase	SIMPLIFY-1 vs ruxo MOMENTUM vs danazol in JAKi treated

Survival impact of JAKi in myelofibrosis: Mayo Clinic studies (retrospective comparisons with risk-adjusted controls)

Fedratinib in myelofibrosis patients meeting stringent criteria for ruxolitinib failure

Study	Treatment	Spleen volume response ≥35%	Grade ¾ Toxicity
Retrospective analysis	Fedratinib		Anemia
of JAKARTA-2	400 mg/day		44% (rux-relapsed),
	(initial dose 400 mg/d)		49% (rux-refractory),
High/intermediate risk MF			29% (rux-intolerant)
with platelets ≥50k	Median duration 24 weeks		
			Thrombocytopenia
N=79 patients meeting			28% (rux-relapsed),
stringent criteria of resistance			19% (rux-refractory),
or intolerance to ruxolitinib		↓	14% (rux-intolerant)
Relapsed = 18;		<mark>28%</mark>	
Refractory = 47;		<mark>32%</mark>	Fedratinib discontinuation
Intolerant = 14		<mark>29%</mark>	22% (rux-relapsed),
			17% (rux-refractory),
			29% (rux-intolerant)

Harrison et al. AJH 2020;95:594

Clinical characteristics at time of fedratinib initiation and outcomes for 28 patients with myelofibrosis relapsed/refractory to ruxolitinib; retrospective review of real-world experience *Gangat et al. BJH 2022;*doi: 10.1111/bjh.18284. Online ahead of print

Variables	All patients (n=28)	Patients switched from ruxolitinib ≥20 mg twice daily (n=11)	Patients switched from ruxolitinib <20 mg twice daily (n=17)	P- value
Age in years, median (range)	73 (52-85)	72 (53-85)	74 (52-84)	0.68
Splenomegaly, n (%)	24 (86)	8(73)	16(94)	0.12
Spleen size in cm (median, range)				
(based on imaging, US/CT/MRI)	23 (16.6-34)	29.7 (17.5-34)	22.1 (16.6-33.5)	0.05
Dose of fedratinib (median, range)	400 (100-400)	400 (100-400)	400 (300-400)	0.16
Duration of therapy in months, (median, range)	8.0 (1.0- 29.2)	4.2 (1.0-29.2)	9.0 (1-24.1)	0.88
Response*, n (%) - Spleen, n evaluable =24 - Symptom, n evaluable =25	→ <mark>3 (13%)</mark> 8 (32%)	<mark>0/9(0%)</mark> 1/9 (11%)	<mark>3/16(19%)</mark> 7/16 (44%)	0.08 0.07 0.01
Duration of response in months, (median, range)	7.8 (0-25.8)	6.0 (0-25.8)	8.5 (1.4-12.6)	0.16
Treatment discontinuation, n (%)	15 (54)	6(55)	9(53)	0.93
Allogeneic transplant, n (%)	4 (14)	3(27)	1(6)	0.12
Toxicity, n (%)				
 Gastrointestinal Anemia, Grade 3 Thrombocytopenia, Grade 3/4 Renal insufficiency Increased lipase 	6 (21) 7 (25) 6 (21) 4 (14) 1 (4)	3(27) 1(9) 3(27) 2(18) 1(9)	3(18) 6(35) 3(18) 2(12) 0(0)	0.55 0.10 0.55 0.64 0.16

Ongoing challenges and investigations

Drugs other than JAK2 inhibitors

- CPI-0610 (BET inihibitor)
- Luspatercept (SMAD inhibitor)
- *Imetelstat* (telomerase inhibitor)
- **Bomedemstat** (LSD1 inhibitor; histone demethylase specific for H3K4)
- Navitoclax (BCL-2/BCL-X inhibitor)
- Tagraxofusp (SL-401; IL3RA/CD123-directed cytotoxin-IL3 fused to diphtheria toxin)
- Alisertib (aurora kinase inhibitor)
- Buparlisib/Parsaclisib (PI3/AKT inhibitors)
- Pre-transplant management of the spleen
 - No specific intervention
 - Splenectomy
 - Splenic irradiation
 - Ruxolitinib
- Palliative treatment options after ruxolitinib
 - Splenectomy
 - Other JAKi Momelotinib, Fedratinib, Pacritinib