Acute Myeloid Leukemia and Acute Promyelocytic Leukemia

Martin S. Tallman, M.D. Professor of Medicine Northwestern University Feinberg School of Medicine Robert H. Lurie Comprehensive Cancer Center Chicago, IL

> 19th Annual Indy Hematology Review Sept. 2022

Disclosures

- Research Funding
 - Abbvie
 - Rafael
 - Biosight
 - Glycomimetics
 - Orsenix
- Royalties
 - UpToDate
- Off label use
 - Gilteritinib, quizartinib
 - Enasidenib
 - Venetoclax
 - Magrolimab
 - SNDX-5613

- Advisory Boards
 - Abbvie
 - Biosight
 - Cellularity
 - Delta Fly Pharma
 - Daiichi-Sankyo
 - Innate Pharma
 - Ipsen Biopharma
 - Jazz Pharma
 - KAHR
 - Novartis
 - Orsenix
 - Roche
 - Syros

This is my single most important overriding message

Objectives

- Describe major advances in AML over ~5 decades and current outcomes including APL
- Demonstrate importance of genetic profiling for prognosis and therapy
- Discuss new agents, approved and nonapproved, for AML and new treatment strategies
- Define changing landscape for AML

Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

SEER All AML: All Ages

Sasaki et al. Cancer, 2021

Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

SEER All AML: Age 15-39

Sasaki et al. Cancer, 2021

Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

SEER All AML: Age ≥70

Sasaki et al. Cancer, 2021

Recent Progress in AML

- Insights into genetic pathogenesis/integrated genetic profiling
- Recognition of inherited familial predisposition syndromes
- Drug discovery/targeted therapy
- Expanded availability and advances in transplantation
- Paradigm shift in approach to older adults
- Increased importance of minimal (measurable) residual disease

Practice Changing Treatments in AML 1973-2017

Yates et al. Cancer Chemother Rep, 1973; Thomas et al. New Engl J Med, 1979; Mayer et al. New Engl J Med, 1994; Fernandez et al. New Engl J Med, 2009; Burnett et al. J Clin Oncol, 2013; Luskin et al. Blood, 2016; Begna et al. ASH, 2021 (abstr 1267)

Recently Approved Agents for AML 2017-2022

Agent	Target	Population
Midostaurin	FLT3	Induction, consol, (maint)
Gemtuzumab ozogamicin	CD33	CBF, de novo (fav/intermed), relapsed
CPX-351	Cytotoxic	t-AML, AML-MRC, age 60-75
Ivosidenib/enasidenib	IDH1/2	Rel/ref or de novo (Ivo)
Venetoclax	Bcl-2	De novo, >/=75, comorbidities
Gilteritinib	FLT3	Rel/ref
Glasdegib	Smoothened receptor	De novo, >/=75, comorbidities
CC-486	DNA methyltransferase	CR/CRi1, inelig for curative therapy

ELN 2022 Classification Changes

• Changes to blast thresholds defining AML

- All recurrent genetic abn (ex BCR::ABL1) define AML if >/=10% blasts including NPM1, bZIP CEBPα
- New category: Designated AML if >/=20% blasts and MDS/AML with defined genetic abn if 10-19% blasts:
 - Mutated TP53
 - AML with MDS-related mutations ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2
 - AML with MDS-related cytogenetic changes

ELN 2022 Changes to Risk Classification

- FLT3-ITD ratio not relevant, all FLT3-ITD are intermediate risk (+/- NPM1)
- AML with myelodysplasia-related gene mutations is adverse-risk
- Adverse cytogenetics in *NPM1*-mutated AML is adverse
- bZIP $CEBP\alpha$ is favorable-risk (either monoallelic or biallelic)
- Additional adverse disease-defining cyto include t(3q26.2;v) involving MECOM, t(8;16)(p11;p13) with KAT6A::CREBBP

Dohner et al. Blood, 2022

Gene Mutations/Rearrangements to Establish Diagnosis or Identify Actionable Therapeutic Targets

- Gene mutations
 - FLT3, IDH1/IDH2, NPM1
 - CEBPα, DDX41, TP53, ASXL1, BCOR, EZH2, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2
 - C-KIT in CBF AML
 - For *NPM1* and CBF perform baseline qPCR or dPCR for MRD in CR
- Gene rearrangements
 - **PML::RARA**, **CBF::MYH11**, **RUNX1::RUNX1T1**, KMT2A rearrangements, BCR::ABL1

Identification of Significant Co-mutational Pattern in NPM1 Mutant AML

- N=1,001
- Med age 53 yrs
- ELN Classification
 68% favorable, 29% intermed, 3% adverse
- Common mutations
 DNMT3A 54%, FLT3-ITD 38%, RAS 21%

Hernandez-Sanchez et al. EHA, 2022 (abstr S130)

Venetoclax + HMA in Newly Dx "Unfit" AML

Table 5. Efficacy outcomes by subgroups

Subgroup	Evaluable for response/OS, n (%)	CR + CRi, n (%)	n for Median duration of CR + CRi	Median duration of CR + CRi, mo (95%CI)	Median OS, mo (95%CI)
All patients	145	97 (67)	97	11.3 (8.9, NR)	17.5 (12.3-NR)
Cytogenetic risk Intermediate Poor	74 (51) 71 (49)	55 (74) 42 (60)	55 42	12.9 (11, NR) 6.7 (4.1, 9.4)	NR (17.5-NR) 9.6 (7.2-12.4)
Age ≥75 y <75 y	62 (43) 83 (57)	40 (65) 57 (69)	40 57	9.2 (6.4, 12.5) 12.9 (9.2, NR)	11 (9.3-NR) 17.7 (14.2-NR)
AML De novo Secondary	109 (75) 36 (25)	73 (67) 24 (67)	73 24	9.4 (7.2, 11.7) NR (12.5, NR)	12.5 (10.3-24.4) NR (14.6-NR)
Mutations* FLT3† IDH1 or 2‡ NPM1 TP53	18 (12) 35 (24) 23 (16) 36 (25)	13 (72) 25 (71) 21 (91) 17 (47)	13 25 21 17	11 (6.5, NR) NR (6.8, NR) NR (6.8, NR) 5.6 (1.2, 9.4)	NR (8-NR) 24.4 (12.3-NR) NR (11-NR) 7.2 (3.7-NR)

DiNardo et al. Blood, 2019

Overall Survival Aza + Venetoclax vs Aza + Placebo

DiNardo et al. N Engl J Med, 2020

Venetoclax + HMA in AML Tricks of the Trade

- Tumor lysis very uncommon in AML, but some admit to initiate C1
- With concomitant azoles Ven dose reduced from 400mg qd
 - Per FDA 100mg for vori and 70mg for posa
- Continue Ven for 28 days in C1 without interruption for cytopenias
- Bone marrow biopsy day 14-21 C1. If no decrease in blasts, consider alternative therapy; if marrow aplasia hold C2 until recovery
- Once in remission, Ven often decreased to 21 days or 14 days of subsequent 28-day cycles to avoid prolonged cytopenias
- Consider GCSF if in CR and ANC <500/uL for >42 days
- If no CR after 1-2 cycles, consider abandoning

What's New In Induction Therapy? Intensified Induction, Adverse-risk AML

- FLAG-ida + Venetoclax¹: n=45, newly diagnosed (ND), CRc 89%, MRD⁻ in 93%, 60% to allo, 24-month EFS 64%, OS 76%
- Aza + Ven + Gilteritinib²: n=26, *FLT3^{mut}*, relapsed/refractory: ORR 67%, CR 7% and CRi 20%, med OS 10.5 mo; ND: all in marrow CR by D14, CR 73% and CRi 9%
- Quizartinib vs placebo + chemo and maint quiz²: n=539, *FLT3*-ITD^{mut}, ND, med age 51, med OS quiz 32 mo vs 15 placebo, CRc 72% vs 65%.
 But ? Control arm

¹DiNardo et al. Am J Hematol, 2022; ²Short et al. ASH, 2021 (abstr 696); ³Erba et al. EHA, 2022 (abstr S100)

What's New In Induction Therapy? Adverse-risk AML

- HMA + Ven in adverse-risk AML w or wo TP53 mutation¹: ND, age >/=75, adverse-risk cyto with TP53^{wt} CR/CRi with Aza/Ven vs Aza 70% vs 23%, OS 23.4 vs 11.3 mo; with TP53^{mut} CR/CRi 41% vs 17%, OS 5.2 vs 4.9 mo.
- Aza + Ven + Magrolimab²: n=38, ND and R/R, med age 70 in ND, CR/CRi in ND 94% and CR 81% (82% adverse risk), CRcyto 75%, MRD⁻ 55%
- Menin inhibitor SNDX-5613³: n=45 with *MLL*r, CRc 49% and in *NPM1* 30% with MRD⁻ in 70%

¹Pollyea et al. ASH, 2021 (abstr 224); ²Daver et al. ASH, 2021 (abstr 371); ³Stein et al. ASH, 2021 (abstr 699)

Any Progress In Maintenance Therapy?

- Maintenance after HSCT for *FLT3- ITD*^{mut} AML
- Retrospective
- n=1,208 (756 no maint, 443 maint)
- OS longer for and maint *FLT3*i, HMA, chemo, targeted agents) (p<0.001)

Yang et al. ASH, 2021 (abstr 693)

Measurable Residual Disease and Clinical Decisions

- Not all MRD⁻ pts are in CR; not all MRD⁺ pts will relapse
- CBF and NPM1, most reliably studied, may show persistent low level of MRD without prognostic significance^{1,2}
- Detectable MRD pre-transplant independent predictor of posttransplant outcome³
- Pts with RUNX1, SF3B1,TP53 unlikely to achieve MRD⁻ CR/CRi while NPM1, IDH1, KRAS predict high rates of MRD⁻ prior to transplant; posttransplant OS better if MRD- pre-transplant regardless if pts require additional therapy beyond induction.

¹Rucker et al. Blood, 2019; ²Tiong et al. Blood Adv, 2021; ³Hourigan et al. ASCO, 2022 (abstr 7006); Stahl et al. ASH, 2020 (abstr 273)

Measurable Residual Disease in AML Treated With Low-Intensity Therapy

- n=164 with CRc evaluable for MRD
- Treated with Aza/Ven
- MRD assessment by MFC
- MRD <10⁻³: 41%, MRD >/=10⁻³: 59%
- Multivariable analysis: CRc and MRD 10⁻³ predicted OS (p<0.001)
- MRD important for patients treated with low-intensity therapy

Pratz et al. J Clin Oncol, 2022

Why Talk About APL Separately from Other AMLs?

- Cells are attractive and intriguing to
- Molecular pathogenesis has been de
- Clinical manifestations are unique
- Treatment is different from all other
- Disease is highly curable (almost ev
- This is the one AML that every hem (such pts are notoriously admitted on Friday nights)

Important Concepts in Induction in APL

- No modification based on additional cyto abn (? if complex¹), therapy-related, *FLT3* mutations (treated with ATO²), *PML* isoform, morphology (M3V), or CD56^{pos}
- Bone marrow not needed on day 14 and not at CR
 - <u>No primary resistance</u>
 - <u>No prognostic importance of cyto/molecular genetics</u> in CR1 at end of induction
 - EVERY pt achieves CR (if no early death)
- Maybe no marrow needed at presentation for some pts if diagnosis unequivocal (provocative concept)

¹Epstein-Peterson et al. Blood Adv, 2022; ²Poire et al. Leuk Lymph, 2014

Induction in APL

- ATRA + ATO for low-risk (Lo Coco regimen)
- ATRA + ATO + ida (or GO) for high-risk (Iland or Estey/Ravandi/Abaza regimen)

OR (if ATO unavailable)

- ATRA + ida
- CNS prophylaxis for high-risk (IT x 4-6-no data, but I do it)
- Prophylactic steroids for all

Consolidation in APL

- ATRA + ATO
 - Low-risk: 4 courses (Lo Coco)
 - High-risk: 2 courses with ida in induction (Iland)

OR (if ATO not available)

- 3 cycles anthracycline-based chemo (leads to molecular CR in 95%)
 - ATRA for 2 weeks with each cycle, based on historical comparisons of consecutive series
- High-risk patients require either
 - ATO in induction or consolidation
 - IDAC in consolidation

Lo Coco et al. New Engl J Med, 2013; Iland et al. Blood, 2012; Mandelli et al. Blood, 1997; Diverio et al. Blood, 1999; Sanz et al. Blood, 2009; Powell et al. Blood, 2010

The 3 Big Questions in AML in 2022

• Is patient a candidate for intensive chemotherapy?

 Do patient's leukemia cells have a targetable mutation or antigen?

• Is patient a transplant candidate?

AML Treatment Strategies in 2022

AML subgroup	Candidate for intensive chemo	Not candidate for intensive chemo		
All patients	Clinical trial preferred	Clinical trial preferred		
CBF	GO + chemo, ? If pretrans	HMA + Venetoclax		
CD33 pos	?GO + chemo,? If pretransplant	GO d1,8 or HMA + Venetoclax		
t-AML or AML with MRC (incl complex cyto)	CPX-351 induc/consol, transplant	HMA + Venetoclax		
TP53 mutant	Chemo or ?decitabine x 5- 10d +/- Venetoclax ¹	-/- Venetoclax ¹		
FLT3+	Mido + chemo induc/consol/?maint, transplant	HMA + Venetoclax		
<i>IDH</i> 1/2+	Chemo (on trial with <i>IDH</i> i)	HMA + Venetoclax or Ivo		
Marker -	Chemo	HMA + Venetoclax		

¹*Maiti et al. ASH*, 2021 (abstr 694)

AML Treatment Strategies in 2022: Rel/Ref

AML subgroup	Candidate for intensive chemo	Not a candidate for intensive chemo
All patients	Clinical trial preferred	Clinical trial preferred
IDH2+	Enasidenib	Enasidenib
IDH1+	Ivosidenib	Ivosidenib
FLT3+	Gilteritinib or Gilteritinib + Venetoclax ² or	Gilteritinib or Gilteritinib + Venetoclax ² or
	HMA + Venetoclax	HMA + Venetoclax
TP53 mutant	Chemo vs decitabine x 5-10d +/- Venetoclax	Decitabine x 5-10d +/- Venetoclax
CD33+	Chemo or GO	HMA + Venetoclax ¹ or GO
marker -	Chemo vs HMA vs HMA + Venetoclax ^{*1}	HMA vs HMA + Venetoclax*1

^{*}Lower RR for HMA + Venetoclax in R/R setting.¹DiNardo et al. Am J Hematol 2018; ¹Goldberg et al. ASH 2017, (abstr 1353); ²Daver et al. J Clin Oncol, 2022

Conclusions

- 9 new drugs recently approved for AML
- Second gen more potent *FLT3* available, in randomized trials
- CPX-351 new SOC for t-AML, AML-MRC, prior MDS/CMML
- Venetoclax + HMA
 - highly effective new SOC for older adults, unfit adults or maybe even younger adults with poor-risk disease (await studies)
 - Serves as a backbone for combinations with novel agents
- MRD incorporated into clinical decisions (but pre-transplant conundrum persists)
- Therapeutic paradigms are changing

Changing Landscape in AML 2022 Final Thoughts

- Move towards less chemotherapy and in fact, away from chemotherapy with targeted strategies
- New-found ability to effectively treat older adults, poor-risk pts and those with comorbidities (major areas of unmet need)
- Shift to oral therapies, future may be doublets, triplets and beyond
- Increased burden on outpatient care delivery

Northwestern Medical Center

ALE