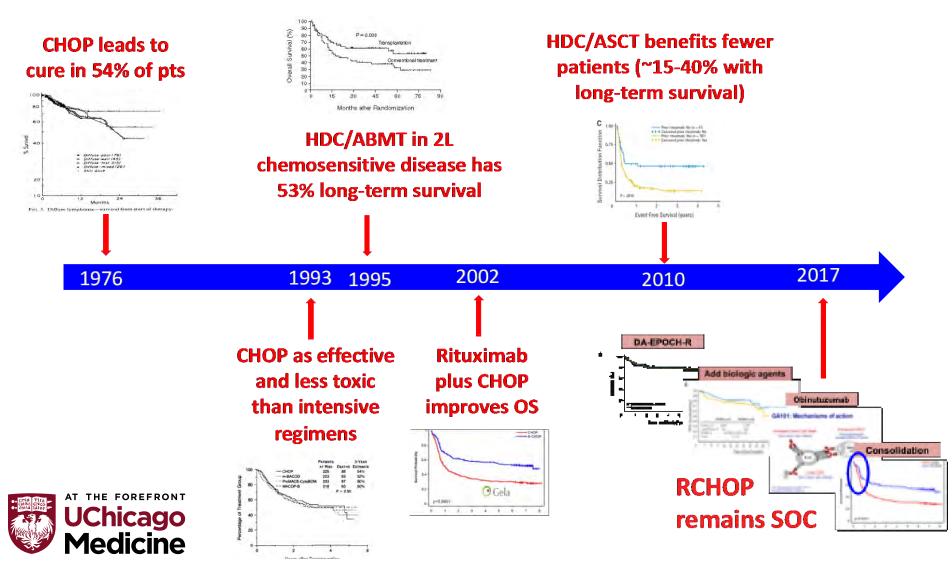
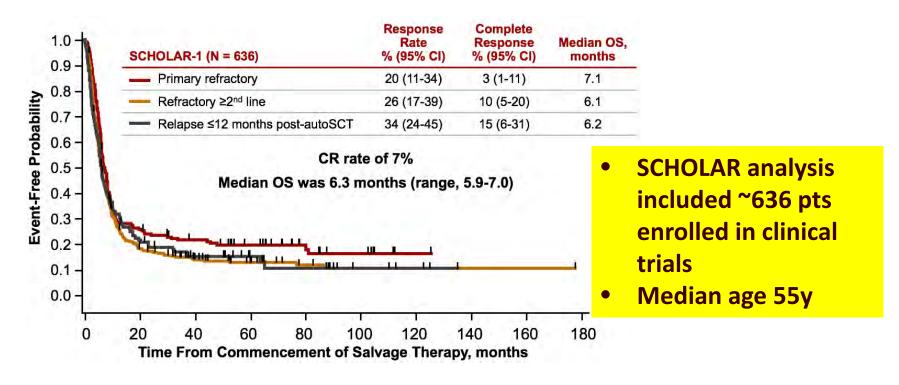


T. HOWARD LEE KEYNOTE LECTURE:

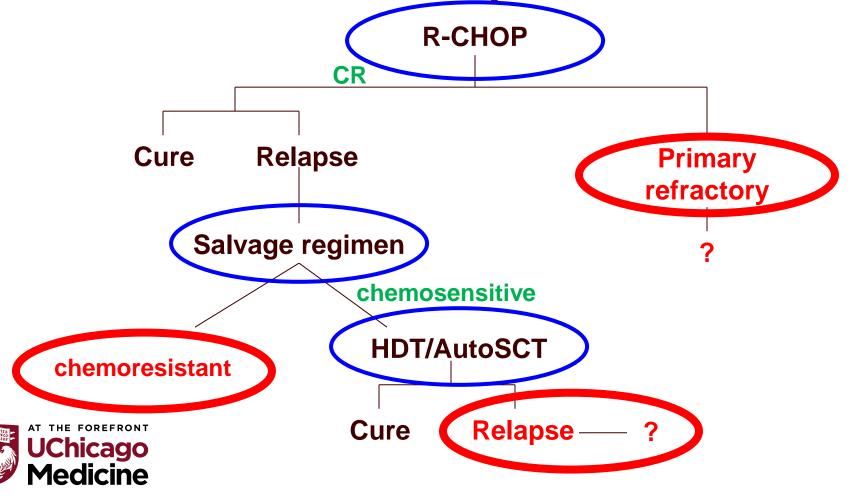

TARGETED AND CELLULAR THERAPY FOR DIFFUSE LARGE B-CELL LYMPHOMA: THE END OF A JOURNEY?

Sonali M. Smith, MD FASCO
Elwood V. Jensen Professor of Medicine
Chief, Section of Hematology/Oncology
Co-Leader, Cancer Service Line
The University of Chicago

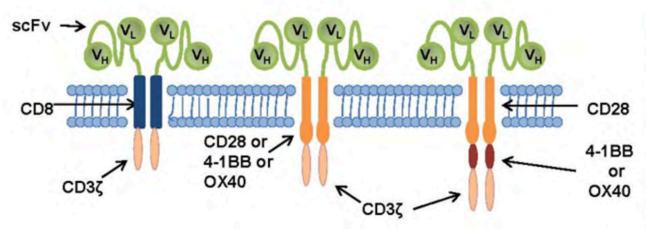

DLBCL in context

The Journey: Major milestones in DLBCL Treatment

Expected survival for R/R DLBCL Treated with Salvage Chemotherapy



Patients unable to undergo autologous stem cell transplant have median survivals < 1 year



KEY QUESTIONS pre-2017:

- 1. Can we cure more patients in 1L?
- 2. What are the best options for 2L+?

Anatomy of a chimeric antigen receptor

First-Generation CAR scFv-CD3Z Second-Generation CAR scFv-CD28-CD3Z Third-Generation CAR scFv-CD28-4-1BB-CD3ζ scFv-CD28-OX40-CD3ζ

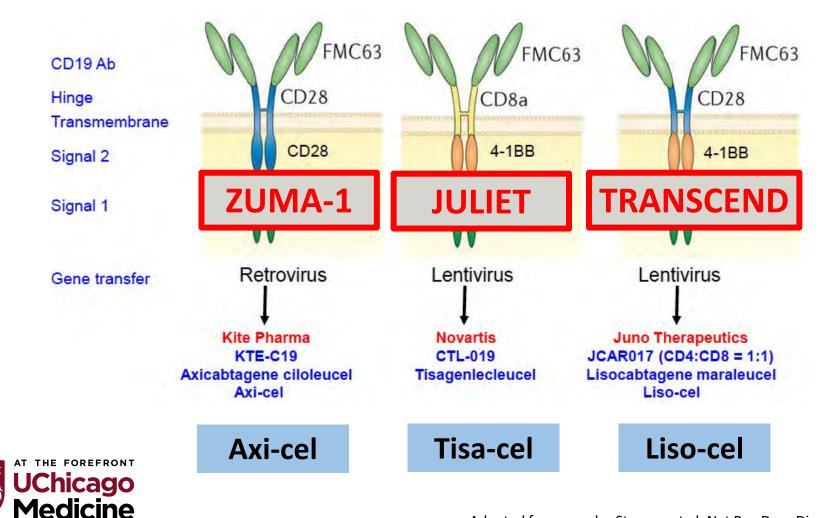
scFv

Single-chain variable fragment (scFv) allows direct activation of T cell by cancer cell antigens

Hinge region

Allows optimal antigen binding

Costimulatory Domain: CD28 or 4-1BB
Enhances CAR T cell proliferation, cytotoxicity


and persistence

Signaling Domain: CD3-zeta chain

Proliferation & activation of CAR T cells CAR T cell-mediated killing of tumor cells

Cellular Therapy: chimeric antigen receptor engineered T-cells (CAR-T)

Studies leading to FDA-approval

THE NEW ENGLAND JOURNAL OF MEDICINE

ORIGINAL ARTICLE

Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma

S.S. Neelapu, F.L. Locke, N.L. Bartlett, L.J. Lekakis, D.B. Miklos, C.A. Jacobson, I. Braunschweig, O.O. Oluwole, T. Siddiqi, Y. Lin, J.M. Timmerman, P.J. Stiff, J.W. Friedberg, I.W. Flinn, A. Goy, B.T. Hill, M.R. Smith, A. Deol, U. Farooq, P. McSweeney, J. Munoz, I. Avivi, J.E. Castro, J.R. Westin, J.C. Chavez, A. Ghobadi, K.V. Komanduri, R. Levy, E.D. Jacobsen, T.E. Witzig, P. Reagan, A. Bot, J. Rossi, L. Navale, Y. Jiang, J. Aycock, M. Elias, D. Chang, J. Wiezorek, and W.Y. Go

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

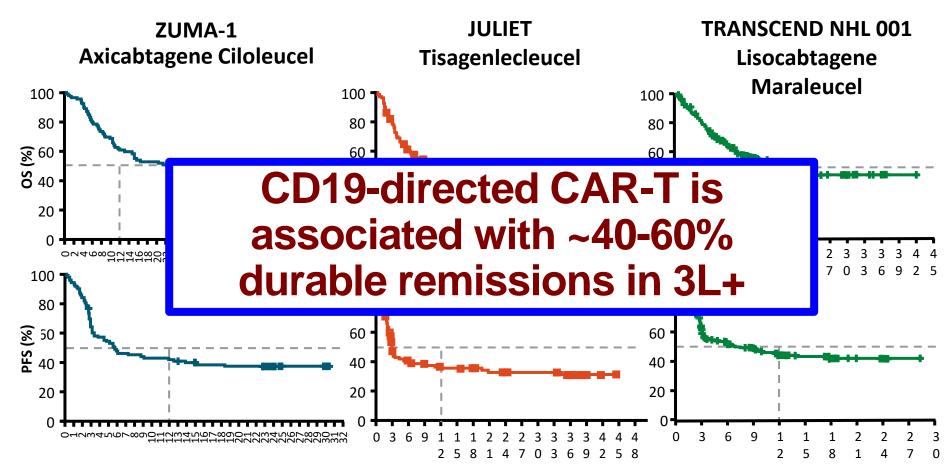
Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma

Stephen J. Schuster, M.D., Michael R. Bishop, M.D., Constantine S. Tam, M.D., Edmund K. Waller, M.D., Ph.D., Peter Borchmann, M.D., Joseph P. McGuirk, D.O., Ulrich Jäger, M.D., Samantha Jaglowski, M.D., Charalambos Andreadis, M.D., Jason R. Westin, M.D., Isabelle Fleury, M.D., Veronika Bachanova, M.D., Ph.D., S. Ronan Foley, M.D., P. Joy Ho, M.B., B.S., D.Phil., Stephan Mielke, M.D., John M. Magenau, M.D., Harald Holte, M.D., Ph.D., Serafino Pantano, Ph.D., Lida B. Pacaud, M.D., Rakesh Awasthi, Ph.D., Jufen Chu, Ph.D., Özlem Anak, M.D., Gilles Salles, M.D., Ph.D., and Richard T. Maziarz, M.D., for the JULIET Investigators*

Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study

Jeremy S Abramson, M Lia Palomba, Leo I Gordon, Matthew A Lunning, Michael Wang, Jon Arnason, Amitkumar Mehta, Enkhtsetseg Purev, David G Maloney, Charalambos Andreadis, Alison Sehgal, Scott R Solomon, Nilanjan Ghosh, Tina M Albertson, Jacob Garcia, Ana Kostic, Mary Mallaney, Ken Ogasawara, Kathryn Newhall, Yeonhee Kim, Daniel Li, Tanya Siddigi

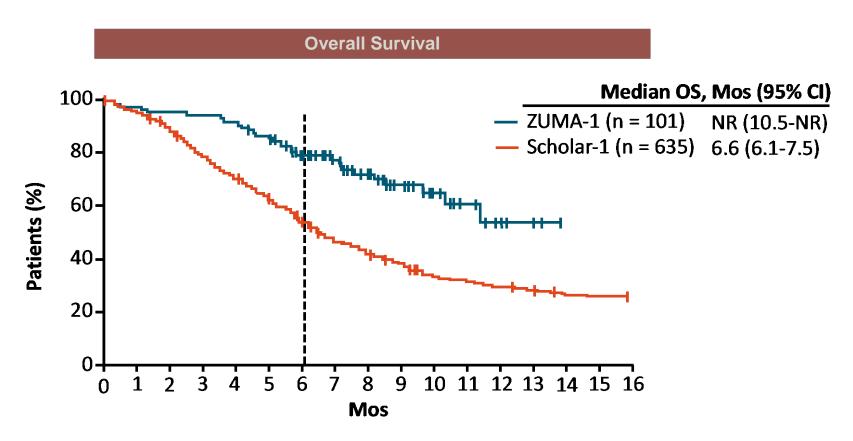
Neelapu SS, et al. N Engl J Med. 2017;377:2531.
Schuster SJ, et al. N Engl J Med. 2019;380:45.
Abramson JS, et al. Lancet. 2019;396:839.



Phase 2 trials leading to approval in 3L+ DLBCL: Patient and product details

	Axi-cel: ZUMA-113,37	Tisa-cel: JULIET16,17	Liso-cel: TRANSCEND ¹¹
Disease type	 DLBCL: 76% Transformed follicular lymphoma: 16% Primary mediastinal B-cell lymphoma: 8% 	 DLBCL: 79% Transformed follicular lymphoma: 19% Other: 2% 	 DLBCL: 51% Transformed DLBCL: 29% High-grade B-cell lymphoma: 13% Primary mediastinal B-cell lymphoma: 6% Follicular lymphoma, grade 3: 1%
Median age, y (range)	58 (23-76)	56 (22-76)	63 (54-70)
Median No. of prior therapies	3	3	3
% patients with prior stem cell transplant	21%	49%	33%: autologous 3%: allogeneic
Lymphodepleting therapy	Fludarabine 30 mg/m² × 3 days and cyclophosphamide 500 mg/m² × 3 days	Fludarabine 125 mg/m² × 3 days and cyclophosphamide 250 mg/m² × 3 days (in 73% of patients) or bendamustine 90 mg/m² × 2 days (in 20% of patients)	Fludarabine 30 mg/m² × 3 days and cyclophosphamide 300 mg/m² × 3 days
CAR T-cell dose	2 × 10 ⁶ cells/kg body weight	0.6-6.0 × 10 ⁸ cells	Median dose 91 × 10 ⁶ cells
Median time for CAR T-cell preparation	17 days (time from leukapheresis to delivery of axi-cel to treatment facility)	54 days (time from enrollment to infusion of tisa-cel)	37 days (time from leukapheresis to infusion of liso-cel)

Pivotal Anti-CD19 CAR T-Cell Therapy Trials: DLBCL



Slide courtesy of Michael Bishop

Locke. Lancet Oncol. 2019;20:31. Jacobson. ASH 2020. Abstr 1187. Jaeger. ASH 2020. Abstr 1194. Abramson. Lancet. 2020;396:839.

CD19 CAR T-cells for DLBCL Outpace Historical Controls

11

Toxicities of special interest: CRS and ICANS

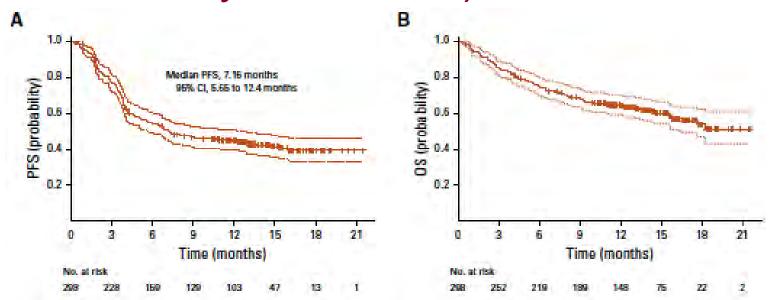
	ZUMA-1	JULIET	TRANSCEND
CRS			
Grading Scale	Lee criteria	Penn grading scale	Lee criteria
Overall / ≥ Grade 3	93% / 13%	58% / 22%	42% / 2%
Median time to onset	2 days (range: 1-12)	3 days (range: 1-51)	5 days (range: 1-14)
Median duration	8 days	7 days (range: 2-30)	5 days (range: 1-17)
Neurologic Toxicities			
Grading Scale	CTCAE Criteria	CTCAE Criteria	CTCAE Criteria
Overall / ≥ Grade 3	64% / 28%	21% / 12%	30% / 10%
Median time to onset	5 days (range: 1-17)	6 days (range: 1-17)	9 days (range: 1-66)
Median duration	17 days	14 days	11 days (range: 1-86)

Neelapu SS, et al. *N Engl J Med*. 2017;377:2531. Schuster SJ, et al. *N Engl J Med*. 2019;380:45. Abramson JS, et al. *Lancet*. 2019;396:839.

Choosing between the available products

	ZUMA-1	JULIET	TRANSCEND CORE
Product	Axi-cel	Tisa-cel	Liso-cel
# pheresed	111	165	344
# treated	101	111	269 (294*)
ORR (%)	82	52	73
CR (%)	54	40	53
6m ORR (%)	41	37	NR
mOS	25.8m	11.1m	21.1m
ITT ORR/CR	76/53	35/27	62/45
ITT OS	Median 17.5m, 4 year 41%	NR	NR
CRS (%)	93	58	42
Gr 3+ CRS (%)	13	NA	2
ICANS (%)	64	21	30
Gr 3+ ICANS (%)	28	12	10
anufacturing Time (d)	17	22	24 (?)

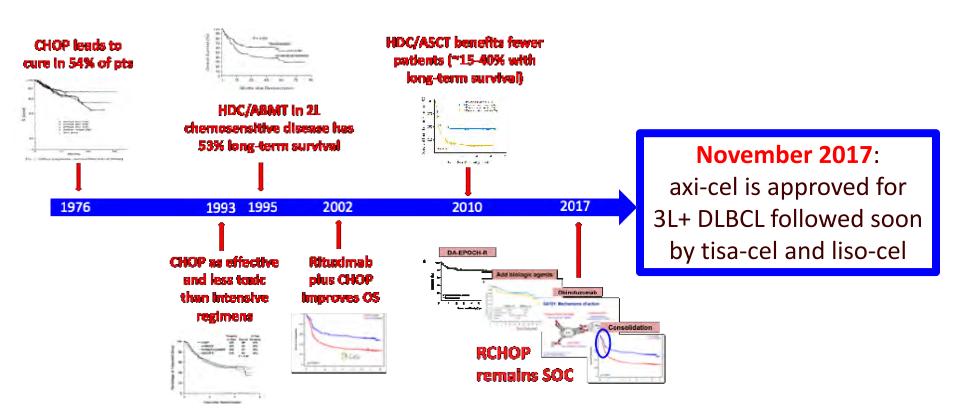
Neelapu SS, et al. N Engl J Med. 2017;377:2531.
Schuster SJ, et al. N Engl J Med. 2019;380:45.
Abramson JS, et al. Lancet. 2019;396:839.


Slide courtesy of Caron Jacobson

Patient Characteristics: Real-world vs. CAR-T cell trials

	Post-approval			Pivotal trial	Pivotal trial
Characteristics	Jacobson et al.	Nastoupil et al.	Pasquini et al.	ZUMA-1	JULIET
Cellular therapy	Axi-cel	Axi-cel	Tisa-cel	Axi-cel	Tisa-cel
Number leukapheresed	104	295	NR	119	165
Number infused	91	274	63	108	111
Median age (range)	64 (21-80)	60 (21-83)	65 (18-81)	59 (23-76)	56 (22-76)
ECOG PS 0-1	90%	81%	82%	100%	100%
High risk IPI (≥3)	46%	55%	NR	44%	NR
Bridging therapy	40%	NR	NR	0%	92%
Double/triple hit	24%	23%	30%	11% ^a	27%
Prior autologous SCT	27%	33%	21%	23%	49%
neligible for pivotal trial	60%	43%	NR	NA	NA
atcomes	70.00	- 7 - 2 - 2	- 1 Ex 21		
Median follow-up	5.6 months	3.9 months	4.5 months	27.1 months	14 months
Best ORR	71%	81%	66%	83%	52%
Best CR rate	44%	57%	42%	58%	40%
≥ Grade 3 CRS ^b	16%	7%	<5%	11%	22%
≥ Grade 3 neurotoxicity ^c	39%	33%	4%	32%	12%
Tocilizumab given	67%	63%	NR	43%	14%
Steroids given	64%	55%	NR	26%	NR

Does CAR-T work in the "real world"? (Axi-cel analysis; n=298)

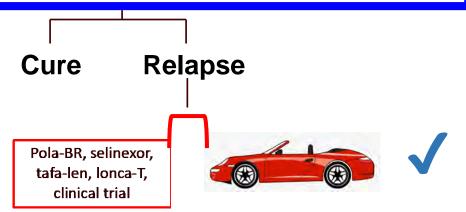


Yes...43% of patients would not have met criteria for the clinical trial poor PS, thrombocytopenia, recent VTE, CNS disease, renal insufficiency, cardiac dysfunction, other

...and no: median age 60y, and "real-world" remains limited to specialized centers

Major milestones in DLBCL Treatment

Treatment Algorithm for DLBCL post-2017

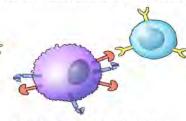

R-CHOP

- Can we cure more patients in 1L?
- 2. What are options for CAR-T failure?
- What can we offer non-CAR-T eligible patients (and who are they??)

4. Can CAR-T be moved earlier in the algorithm?



Post-CAR-T failure: potential mechanisms and mitigation strategies


Loss of CD19 Host or tumor factors **T-cell specific factors**

Potential Mechanisms of CAR T Failure

CD19 Epitope Loss

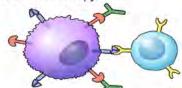
Loss of CD19 epitope by uncertain mechanisms in lymphoma.

Host or Tumor Factors

Upregulation of negative regulatory receptors on CAR T cells or ligands on tumor or microenvironment; high tumor burden and inadequate target to effector ratio.

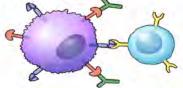
T cell Specific Factors

Inadequate central memory and/or stem central memory CAR T cells; pre-manufacture T cell dysfunction due to disease or prior therapy; inadequate cytokine profile; paucity of CD4 CAR T cells: insufficient CAR T cell expansion or persistence.


Potential Treatment Strategies

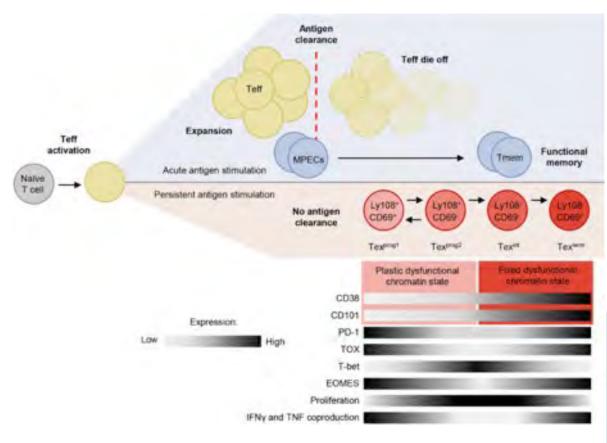
Alternative CAR T-cells

CAR T cells against alternative targets; allogeneic transplantation for patients able to achieve post relapse remission.

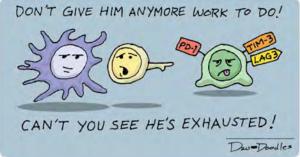

Checkpoint Inhibitors

Checkpoint blockade, immunomodulation with ImiDs, ITKi, or other agents; additional CD19 CAR T cell therapy.

Immunomodulation

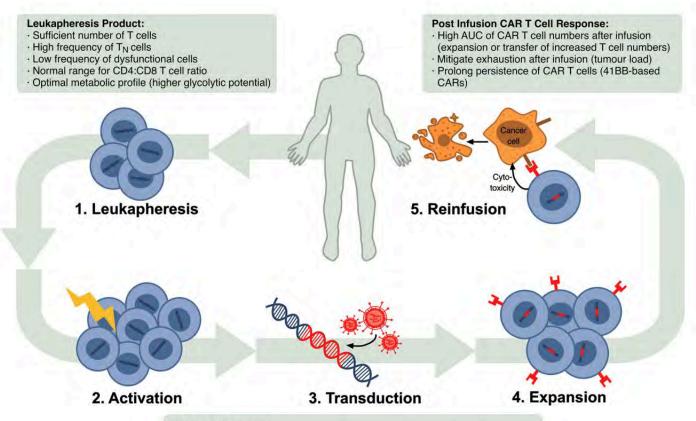

Immunomodulation with IMIDs. ITKi, or other off the shelf CAR T cell strategies.

Can (and should) CAR-T be moved earlier?



Drivers of T-cell fitness

Age, chronic infection, disease burden, prior treatment


Markers of T-cell exhaustion:

PD-1, TIM-3, LAG-3, TIGIT, and CTLA-4

Impact of cancer and cancer treatment on T-cell fitness

Inflammatory state in cancer decreases T-cell fitness

Prior treatment and lymphopenia are associated with premature T-cell aging

CAR T Cell Product

- High frequency of less differentiated phenotypes (i.e. T_N, T_{SCM} or T_{CM})
- · Low frequency of cells with exhaustion markers (i.e. PD-1, LAG3 and/or TIM3)
- · Shorter in vitro differentiation protocols
- · Optimal ratio of CD4:CD8 CAR T cells
- · Optimal metabolic profile (lower mitochondrial load and glucose uptake)

Ongoing Phase III Clinical Trials in B-Cell Lymphomas: Will CD19 CAR T-Cell Therapy Replace Auto-transplant?

ASH 2021

ZUMA-7

Axicabtagene ciloleucel

TRANSFORM

Lisocabtagene maraleucel

BELINDA

Tisagenlecleucel

NCT03391466. NCT03570892. NCT03575351.

CAR T-cell therapy

Refractory to first-line tx

High-risk DLBCL/ B-cell lymphomas:

Relapsed after first-line tx₄

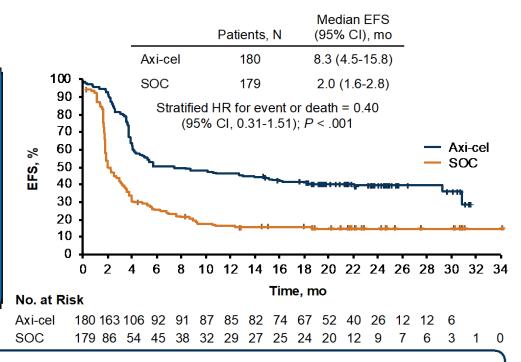
Salvage therapy/ auto-transplant **ASH Presentation**

Locke, Abstr 2 Sunday, 12/12, 2:00 PM

Kamdar, Abstr 91 Saturday, 12/11, 9:30 AM

Bishop, Abstr LBA-6 Tuesday, 12/14, 9:00 AM

Slide credit: clinicaloptions.com


Slide courtesy of Michael Bishop

21

Phase 3 ZUMA-7: Axi-Cel Versus SOC as 2L Treatment for R/R LBCL¹

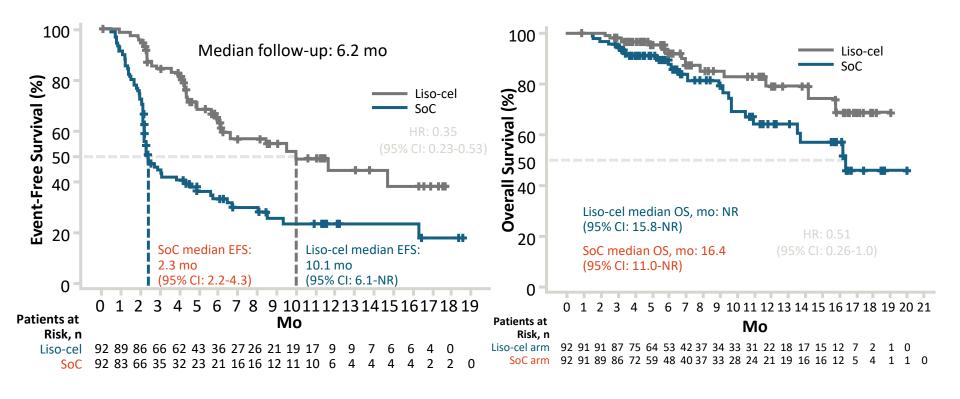
At a medium follow-up of 24.9 months:

- The primary endpoint of EFS was met with axi-cel vs SOC in patients with R/R LBCL
- 24-mo EFS rates were 41% vs 16%, respectively
- ORR and CR rates were higher with axi-cel vs SOC (ORR: 83% vs 50%; P < .0001; CR: 65% vs 32%)
- Median OS favored axi-cel vs SOC, although it did not meet statistical significance

April 2022: Axi-cel was FDA approved for patients with R/R LBCL refractory to 1L chemoimmunotherapy or that relapses within 12 months of 1L chemoimmunotherapy

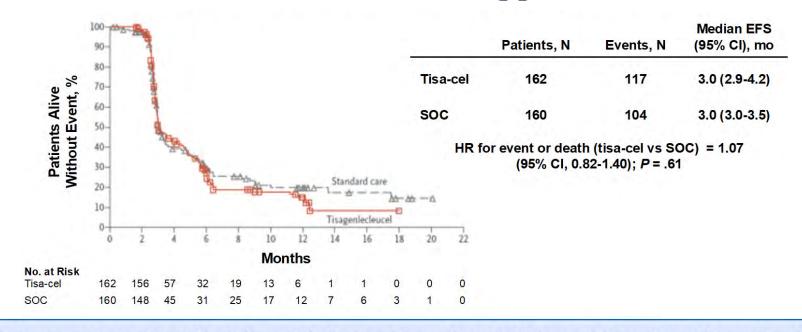
1. Locke FL et al. N Engl J Med. 2022;386:640-654.

Phase 3 TRANSFORM: liso-cel vs. SOC in 2L DLBCL (med f/u 6m)


Efficacy, IRC assessed ^a	SOC Arm A (ITT; n = 92)	Liso-Cel Arm B (ITT; n = 92)		
EFS, median [95% CI], mo	2.3 [2.2-4.3]	10.1 (6.1-NR]		
	HR = 0.349 (0.229-	0.530); <i>P</i> < .0001		
EFS rate at 6 mo, %	33.4	63.3		
EFS rate at 12 mo, %	23.7	44.5		
ORR, n (%) [95% CI]	44 (48) [37.3-58.5]	79 (86) [77.0-92.3]		
CR rate	36 (39) [29.1-49.9]	61 (66) [55.7-75.8]		
PFS, median [95% CI], mo	5.7 [3.9-9.4]	14.8 [6.6-NR]		
	HR = 0.406 (0.250-	HR = 0.406 (0.250-0.659); <i>P</i> = .0001		
OS, median [95% CI], mo	16.4 [11-NR]	NR [15.8-NR]		
	HR = 0.509 (0.258-	HR = 0.509 (0.258-1.004); <i>P</i> = .0257		

^a Lugano 2014 criteria.

AT 11 HKarndar-Moetal. ASH 2021. Abstract 91.

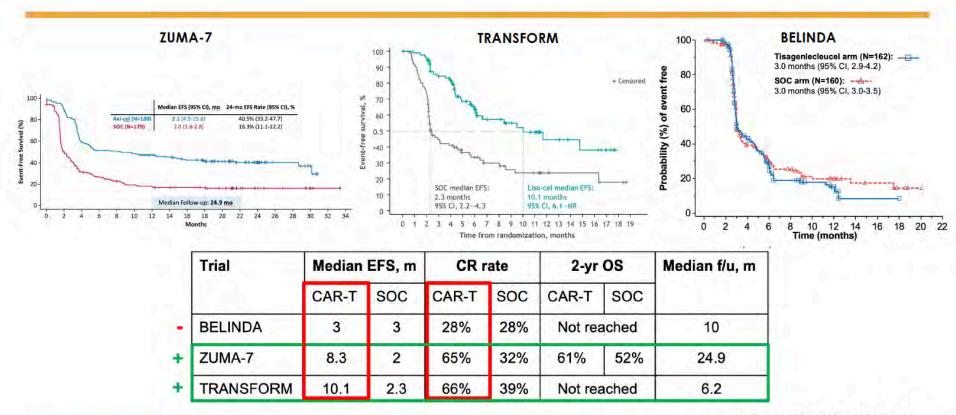

TRANSFORM Liso-cel vs SoC: EFS and OS

Improved EFS
No new safety concerns

Phase 3 BELINDA: Tisa-Cel Versus SOC as 2L Treatment for R/R Aggressive NHL¹

EFS was not significantly different between tisa-cel and SOC as 2L treatment in patients with R/R aggressive NHL; additional studies are needed to assess which patients may obtain the most benefit from each approach

1. Bishop MR et al. N Engl J Med. 2022;386:629-639.



So Why Did BELINDA Not Succeed?

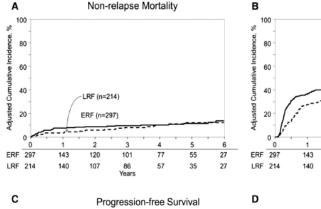
- Flawed Study Design:
 - EFS definition
 - Permission of too much or any bridging therapy
 - Inadequate lymphodepleting chemotherapy
- More difficult patient population
 - A high proportion of patients had PD at week 6
 - Low response rate in SOC arm
- Delay in infusion (med 53d to infusion)
- Inadequate expansion relative to lymphoma proliferative rate and burden
- Construct (4-1BB)/Product

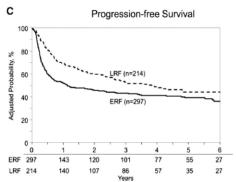
CAR-T cell therapy in 2L DLBCL

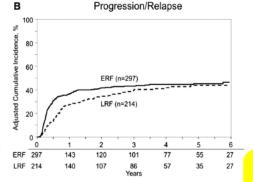
19th International Ultmann Chicago Lymphoma Symposium

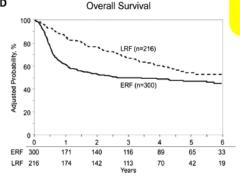
Locke FL, et al. N Engl J Med. 2021; Dec 11.

Kamdar M, et al. Blood. 2021;138(suppl 1):91.

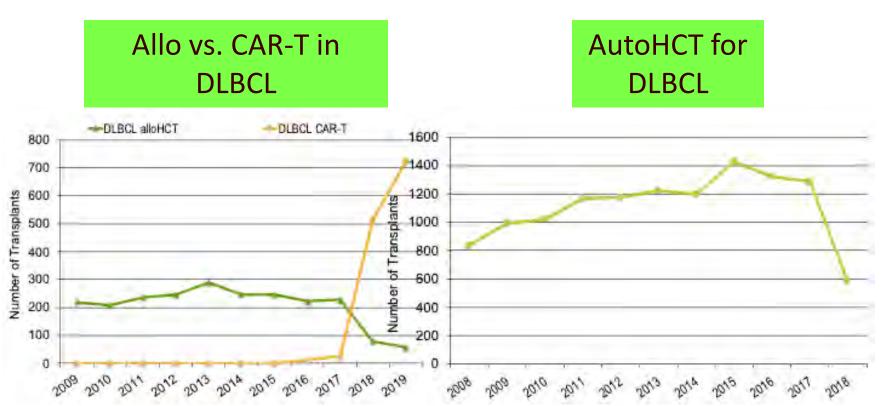

Bishop MR, et al. N Engl J Med. 2021;Dec 14.



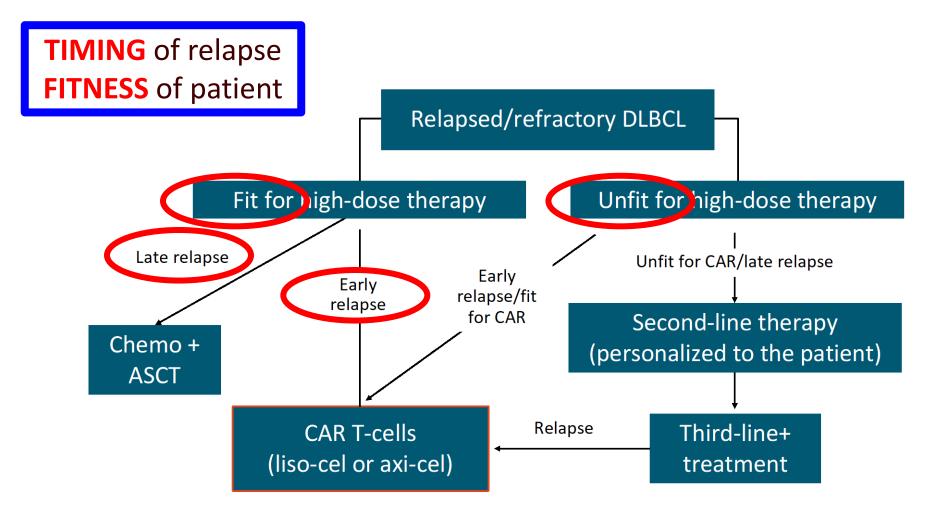

Autologous stem cell transplant still has a role in the relapsed setting


CIBMTR Analysis: Early relapse versus late relapse following rituximabcontaining initial therapy

- Med age 58y (ERF) and 62y (LRF)
- No CNS disease
- KPS >90% in 2/3 of patients
- 15-20% with marrow involvement

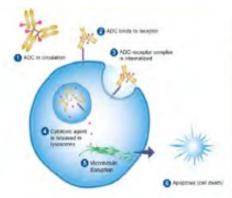


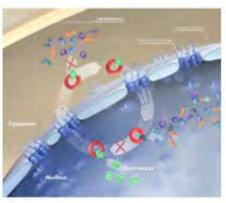
...for selected pts

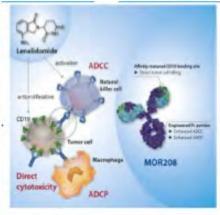


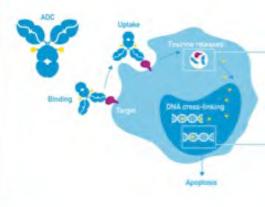
Speaking with their feet—transplant trends in the US (CIBMTR data)

A new algorithm for 2022 and beyond






IF CAR-T IS NOT AN OPTION



Recently approved agents/regimens

Polatuzumab vedotin (antiCD79 ADC)

Selinexor (XPO1 inhibitor)

Tafasitamab (enhanced anti-CD19 moAb)

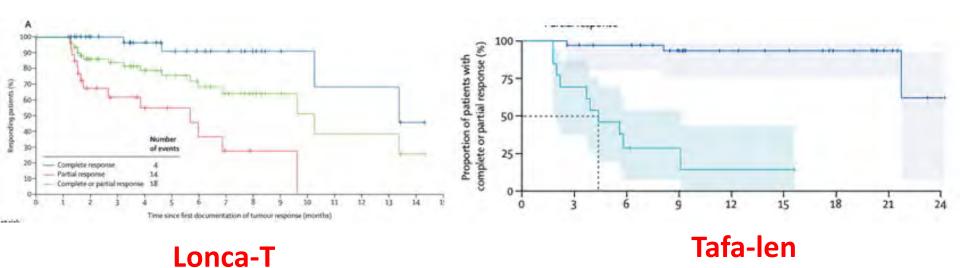
Loncastuximab teserine (anti-CD19 ADC with PBD dimer payload)

ADC: antibody drug conjugate

Recently approved agents/regimens for RR DLBCL

Agent/ Regimen	No. pts	Key pt features	ORR/CR	PFS/OS/DR
Pola-BR	40	Med age 67y Med 2 prior Rx 75% ref	63/50	9.5m/12.4m/12.6m (v. BR with med DR 7.7m)
Selinexor	127	Med age 67y 45% ≥ 70y Med 2 prior Rx 72% ref	28/12	2.6m/9.1m/9.3m
Tafa-len	81	Med age 72y 50% 2L 44% ref	48/34	12.1m/NR/DR 22m (NR for CR pts)
Lonca-T	145	Med age 66y 55% ≥ 54y Med 3 prior Rx 20% ref	48/25	4.9m/9.9m/10.3m

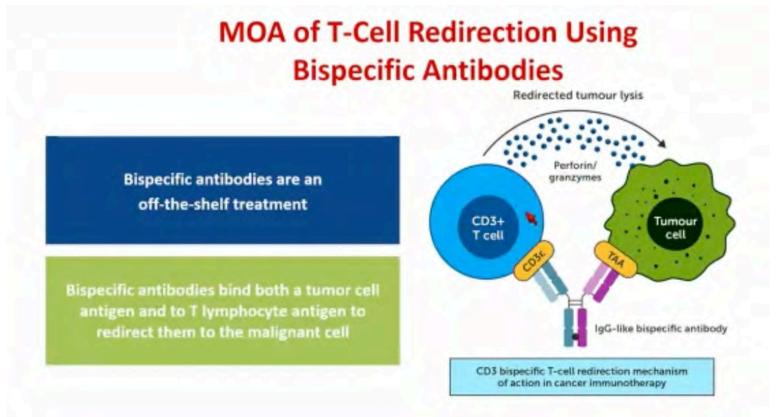
Ease of administration


Agent/ Regimen	Administration route	Treatment duration	Selected Toxicities
Pola-BR	Pola over 90 min (can shorten to 30min) on D1 of C1-6 BR	6 months	Peripheral neuropathy, cytopenias
Selinexor	Take on D1 and D3 weekly (*60mg)	Until progression	Asthenia, nausea
Tafa-len	Tafa over 2h on C1 D1, 4, 8, 15, 22 Tafa over 2h on C2-3 D1, 8, 15, 22 Tafa over 2h on C4-12 D1 and D15	12 cycles	Cytopenias, rash
Lonca-T	30 min infusion q3 weeks	Up to 1 year	Cough, peripheral edema, rash

All are generally well-tolerated, have outpatient administration

Caimi Lancet Oncol 2021 Jun;22(6):790-800 Sehn J Clin Oncol 2020 Jan 10;38(2):155-165; Kalakonda Lancet Haematol. 2020 Jul;7(7):e511-e522; Salles Lancet Oncol 2020 Jul;21(7):978-988

Some complete responders and less heavily pretreated pts can have long duration of response



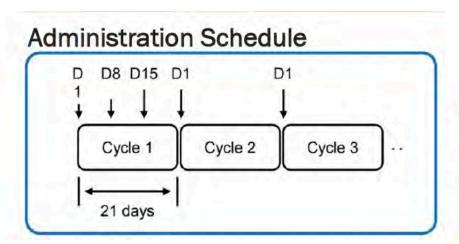
Tafa-len and Lonca-T: Can anti-CD19 directed treatment be given in the era of CAR-T?...probably

- Lonca-T: 15 pts had subsequent CD19-directed CAR-T with ORR 47% and 40% with CR
- Tafa-len: case reports of durable remission

Bispecific antibodies: an alternative T-cell engaging therapy

- Target CD3 (on T-cells) and CD20 (on B-cells)
- Induces T-cell mediated cytotoxic activity against CD20 expressing B-cells

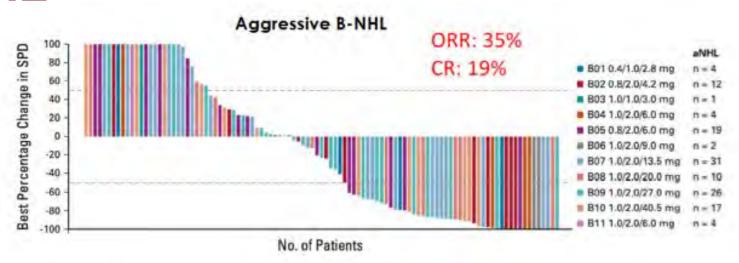
CD20 x CD3 bispecific antibodies in development

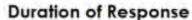


- "Off the shelf" therapy
- Route of administration: IV or SC
- Being explored in various subtypes of B-NHL

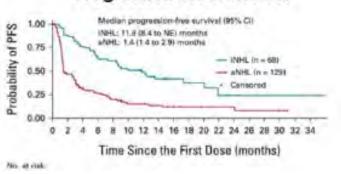
Olszewski ASH 2020 #401 Matasar ASH 2020 #2096 Philips ASH 2020 #1184 REGN1979 Bannerji ASH 2020 #400; Glofitamab Hutchings ASH 2020 #403 Epcoritamab Hutchings ASH 2020 #402

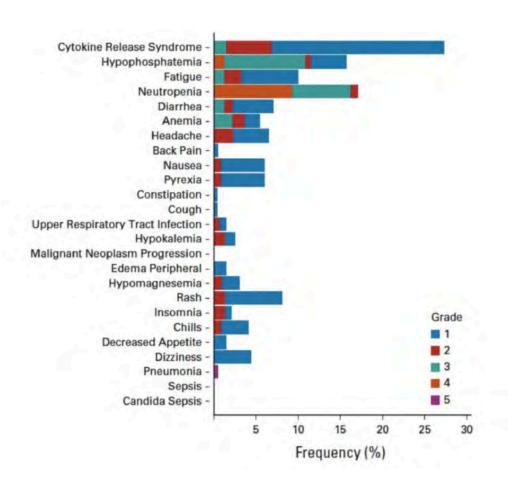
Mosunetuzumab administration


- IV outpatient administration
- Cycle 1 step-up dosing followed by fixed dosing
- Key inclusion:
 - RR B-NHL after > 1 prior regimen
 - **ECOG 0-1**
 - No viable treatment options


Characteristic	Aggressive NHL ^a (n = 129)	
Age, years		
Median	63.0	
Range	19-91	
Prior systemic therapies, No.	7 7 7	
Median	3	
Range	1-14	
Prior CAR-T therapy, No. (%)	15 (11.6)	
Prior autologous stem-cell transplant, No. (%)	44 (34.1)	
Refractory to last therapy, No. (%)d	106 (82.2)	
Refractory to prior anti-CD20 therapy, No. (%)d	100 (77.5)	

 Initial treatment = 8 cycles; if CR, stop (if PR/SD, continue to up to 17 cycles)


Mosunetuzumab monotherapy in RR aNHL



Progression-Free Survival

Toxicity Profile: mosunetuzumab

CRS:

All Grade: 27%

Grade 1: 21%

Grade 2: 6%

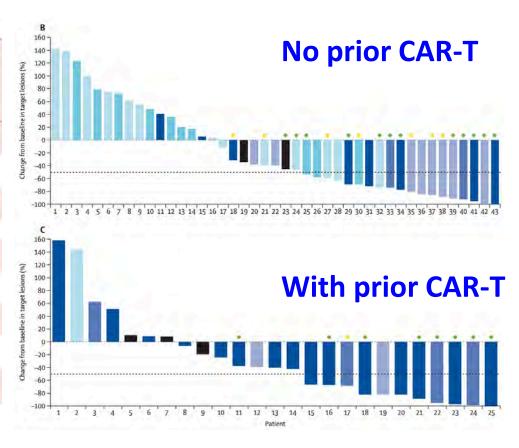
Grade 3: 1%

Tocilizumab used in 3 patients

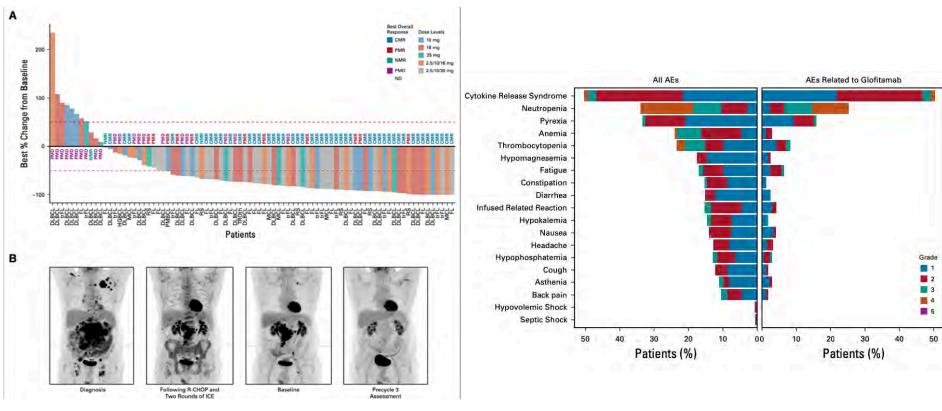
Neurologic toxicity:

Headache: 18%

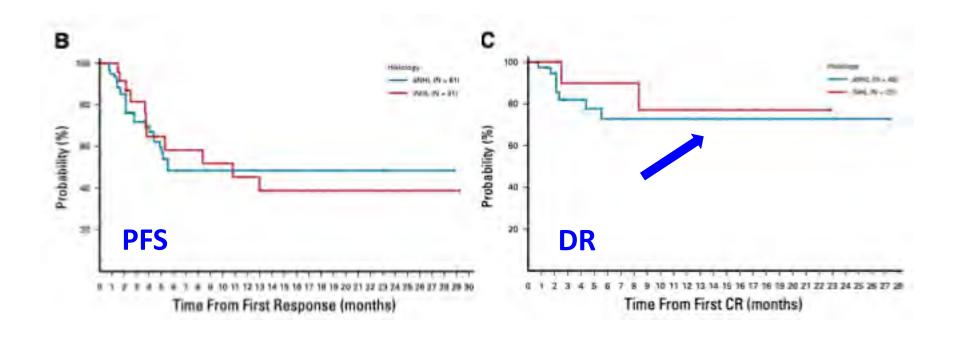
Insomnia: 11%


Dizziness: 10%

Grade 3: 1%

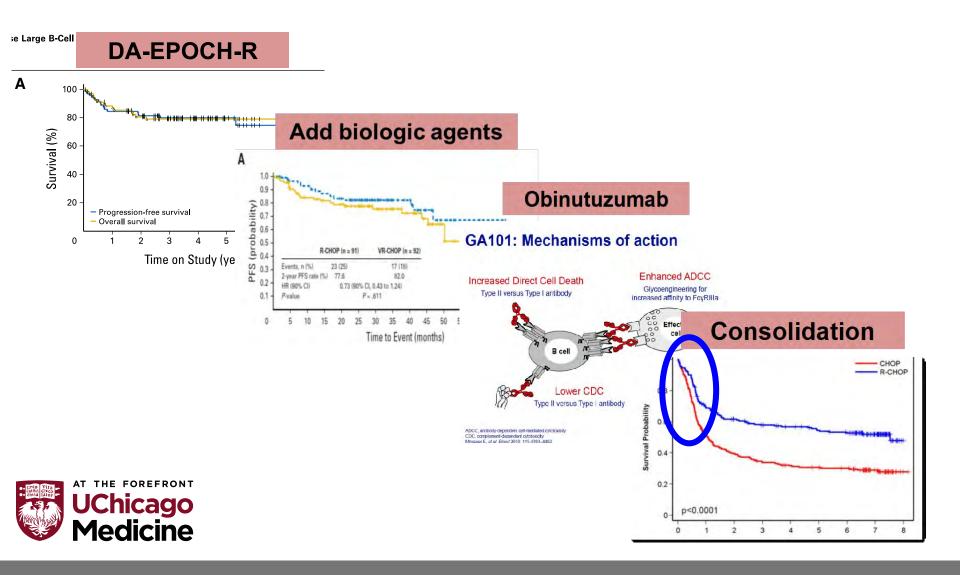

Odrenextumab: impact of prior CAR-T

		-1-1-1-1-1
	Relapsed or refractory diffuse large B-cell lymphoma without previous CART-cell therapy (n=49)	Relapsed or refractory diffuse large B-cell lymphoma with previous CART-cell therapy (n=33)
Objective response (complete or partial)	19 (39%; 25-2-53-8)	11 (33%; 18-0-51-8)
Best overall complete tumour response	12 (24%; 13:3-38-9)	8 (24%; 11-1-42-3)
Best overall partial turnour response	7 (14%; 5-9-27-2)	3 (9%; 1-9-24-3)
Time to first response, months	14(10-2-6)	1-1 (0-8-2-5)
Estimated duration of response, months	4-4 (95% CI 2-9-NE)	NR (95% CI 1-6-NE)
Observed duration of response, months	4-4 (2-8-21-0)†	6-7 (1-6-12-8)‡
Time to first complete response, months	2-3 (1-0-2-8)	1-5 (0-8-2-6)
Estimated duration of complete response, months	NR (95% CI 4-0-NE)	NR (95% CI NE-NE)
Observed duration of complete response, months	10-3 (4-2-21-4)	7-4 (2-6-15-8)



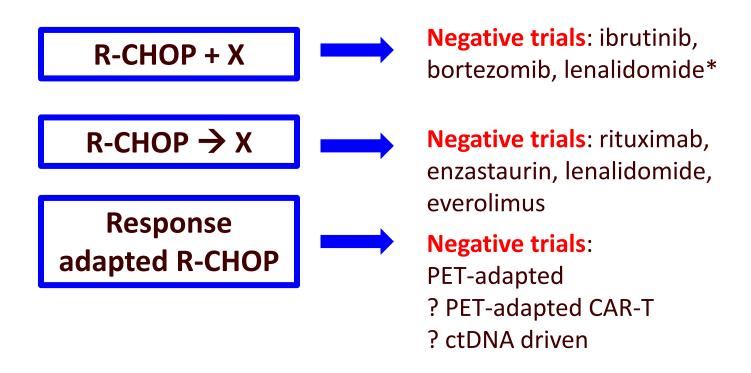
Glofitamab: activity and adverse effects

Glofitamab: efficacy



BACK TO THE BEGINNING: ARE THERE OPPORTUNITIES FOR TARGETED THERAPY IN 1L?

Challenging R-CHOP


Evolution of CHOP-like regimens for aggressive B-NHL

- ➤ m-BACOD = ProMACE-cytaBOM= CHOP21
 - ➤ CHOP14 > CHOP21
 - > CHOEP-14/21 > CHOP21 (younger pts)
 - > R-CHOP21 > CHOP21
 - > R-CHOEP=R-CHOP
 - ightharpoonup R-CHOP14 x 8 = R-CHOP14 x 6 + R2
 - ➤ R-CHOP14=RCHOP21

R-CHOP-21 has been the standard of care for the past 20 years

Can we improve upon R-CHOP with targeted approaches?

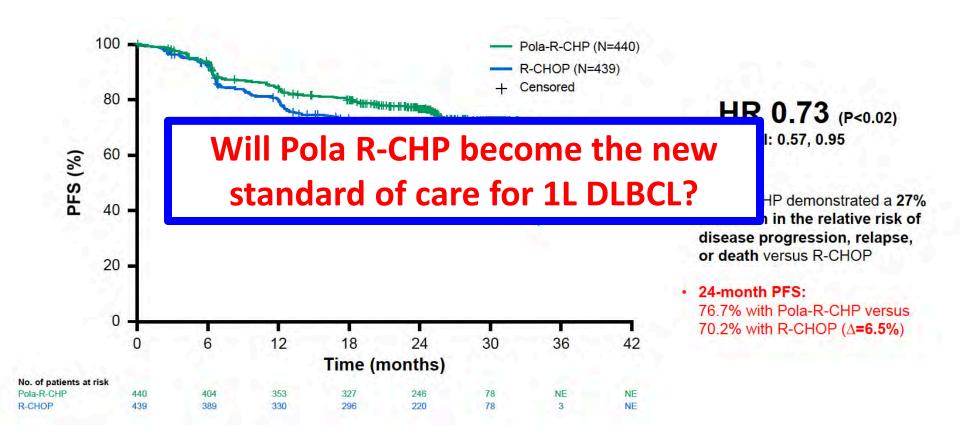
POLARIX: a randomized double blind phase 3 trial

 Microtubule inhibitor MMAE conjugated to CD79b monoclonal antibody via a protease-cleavable peptide linker Pola-R-CHP Polatuzumab vedotin (1.8mg/kg)* R-CHP + vincristine placebo **Patients** Previously untreated DLBCL Cycles 1-6 R Rituximab Age 18-80 years 1:1 (1 cycle=21 days) 375mg/m² IPI 2-5 ECOG PS 0-2 Cycles 7 & 8 R-CHOP Stratification factors IPI score (2 vs 3-5) Bulky disease (<7.5 vs ≥7.5cm) R-CHOP† + polatuzumab vedotin placebo

Geographic region (Western Europe, US, Canada, & Australia vs Asia vs rest of world)

PRIMARY ENDPT: PFS Med f/u 28.2m

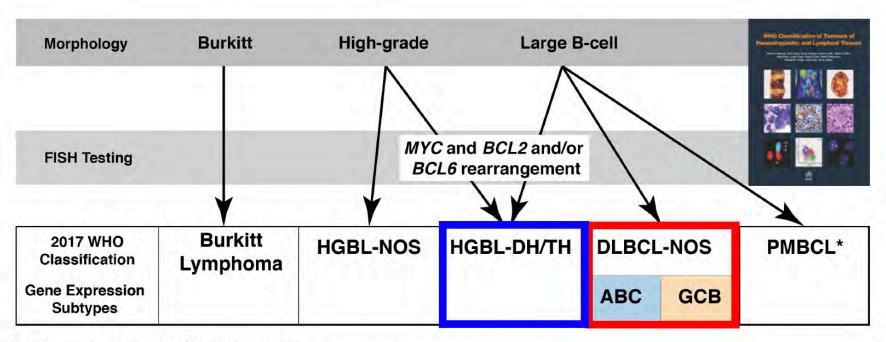
Tilly N Engl J Med. 2022 Jan 27;386(4):351-363


POLARIX: toxicity

AEs, %	Pola + R-CHP (n = 435)		R-CHOP (n = 438)	
	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Peripheral neuropathy	52.9	1.6	53.9	1.1
Nausea	41.6	1.1	36.8	0.5
Neutropenia	30.8	28.3	32.6	30.8
Diarrhea	30.8	3.9	20.1	1.8
Anemia	28.7	12.0	26.0	8.4
Constipation	28.7	1.1	29.0	0.2
Fatigue	25.7	0.9	26.5	2.5
Alopecia	24.4	0	24.0	0.2
Dec appetite	16.3	1.1	14.2	0.7

AEs, %	Pola + R-CHP (n = 435)		R-CHOP (n = 438)	
	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Pyrexia	15.6	1.4	12.6	0
Vomiting	14.9	1.1	14.4	0.7
Febrile neutropenia	14.3	13.8	8.0	8.0
Headache	12.9	0.2	13.0	0.9
Cough	12.9	0	12.1	0
Dec weight	12.6	0.9	11.9	0.2
Asthenia	12.2	1.6	12.1	0.5
Dysgeusia	11.3	0	13.0	0

POLARIX: primary endpoint was met

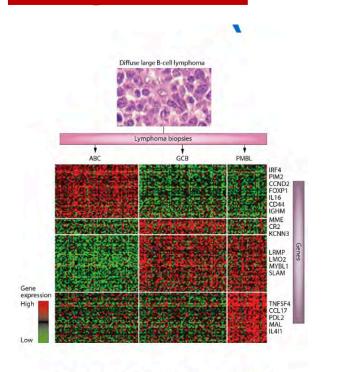

No difference in overall survival

Tilly N Engl J Med. 2022 Jan 27;386(4):351-363

TARGETED VS. PRECISION APPROACHES

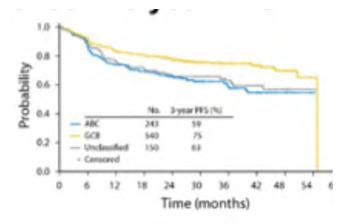
Heterogeneity of aggressive B-cell lymphomas

HGBL-NOS: high-grade B-cell lymphoma NOS


HGBL-DH/TH: high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements

PMBCL: Primary mediastinal B-cell lymphoma

Swerdlow et al WHO revised 4th Edition 2017


Cell-of-origin (COO) model as a prognostic tool in DLBCL

Alizadeh et al Nature 2000 Rosenwald et al, NEJM 2002 Lenz et al, NEJM 2008

Lenz et al. N Engl J Med. 2008;359:2313-2323.

GOYA Trial R-CHOP v G-CHOP PFS including both arms

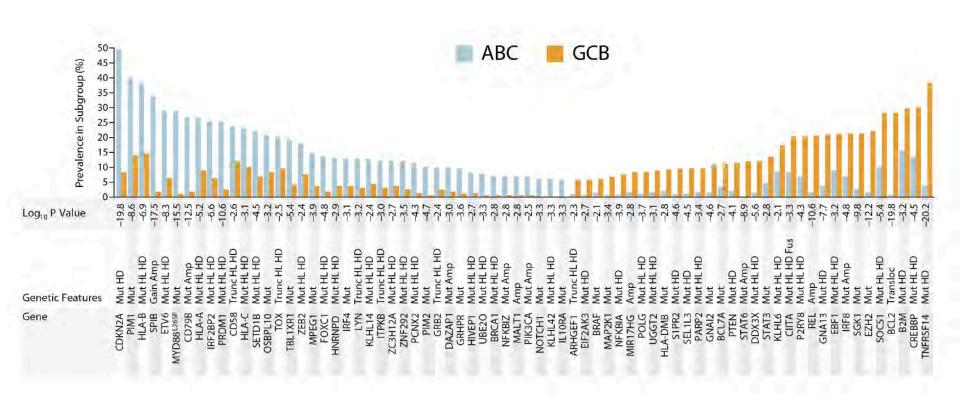
Vitolo et al J Clin Oncol 2017

Cell-of-origin (COO) model as a predictive tool in DLBCL

Putative targets may differ between GC and non-GC DLBCL

PI3K

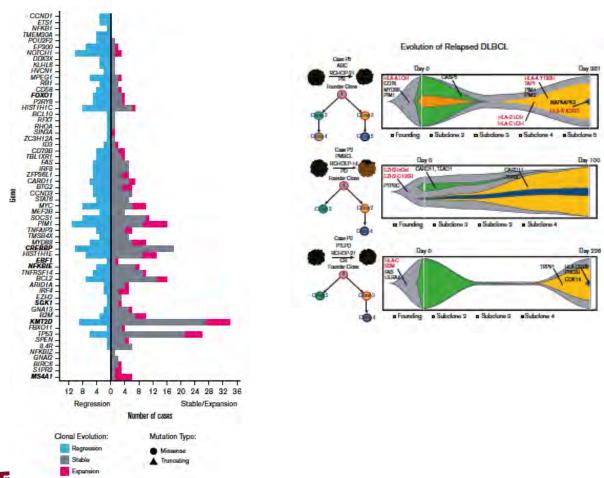
BCL6

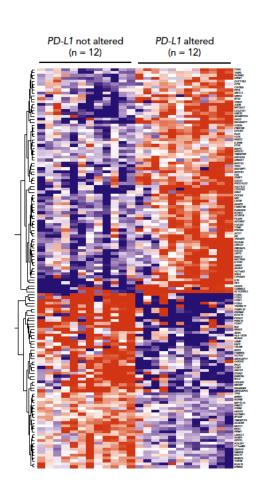

BCR signaling

SYK

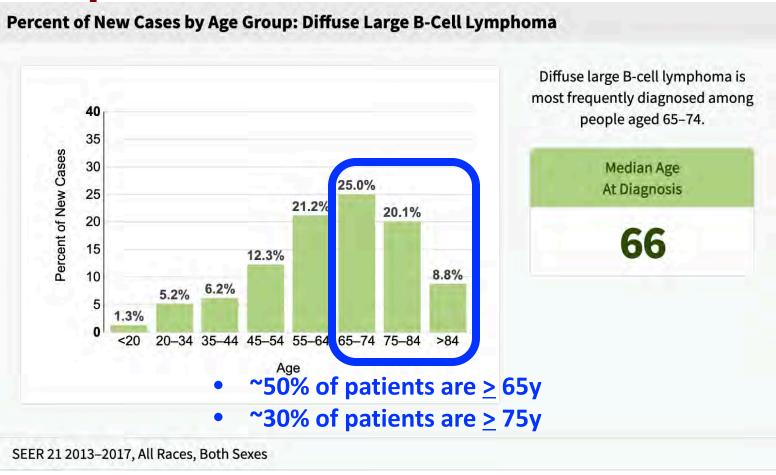
...and MANY more

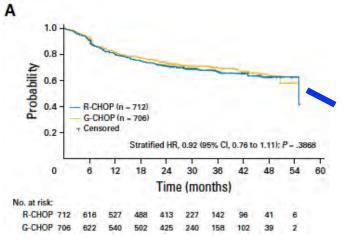
Cell-of-origin is not a dichotomous distinction



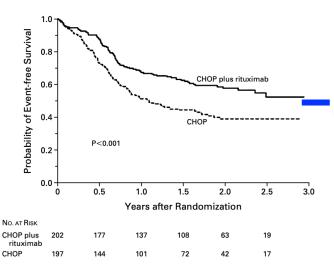

Rethinking biologic heterogeneity in DLBCL

Can biology direct treatment in rel/ref DLBCL?

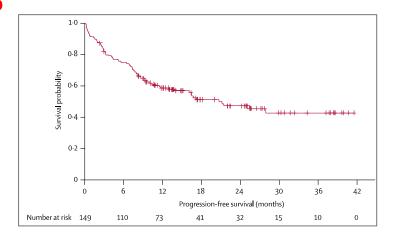



Godfrey Blood 2019 May 23;133(21):2279-2290; Rushton Blood Adv 2020 Jul 14;4(13):2886-2898; Wise Blood Adv 2020 May 12;4(9):1859-1866

What about clinical heterogeneity? Most patients are older



Relapse risk by age group


And these are just trial-eligible GOYA trial: patients!!

Med age 62y PFS @3y 70%

LNH98.5 trial: Med age 69y

EFS @2y 57%

R-miniCHOP trial: Med age 83y EFS @2y 47%

Vitolo J Clin Oncol. 2017 Nov 1;35(31):3529-3537; Coiffier N Engl J Med 2002 Jan 24;346(4):235-42; Peyrade Lancet Oncol. 2011 May;12(5):460-8

S1918: First US Intergroup Study in older adults with DLBCL

Available to you via NCTN!!

TN DLBCL
Age \geq 75y with
comorbidities or \geq 80 yrs

RminiCHOP

RminiCHOP + oral azacitidine

- All patients have baseline frailty assessment
- Serial comprehensive geriatric assessment
- Primary endpoint of phase II: PFS and go/no-go for phase III
- Primary endpoint of phase III: OS

NCT04799275 clinicaltrials.gov

TARGETED AND CELLULAR THERAPY FOR DIFFUSE LARGE B-CELL LYMPHOMA: THE END OF A JOURNEY? NOT YET...

Aim for precision therapy

Matching patients to the best treatment

We have yet to capitalize on the genomic and transcriptomic features of DLBCL

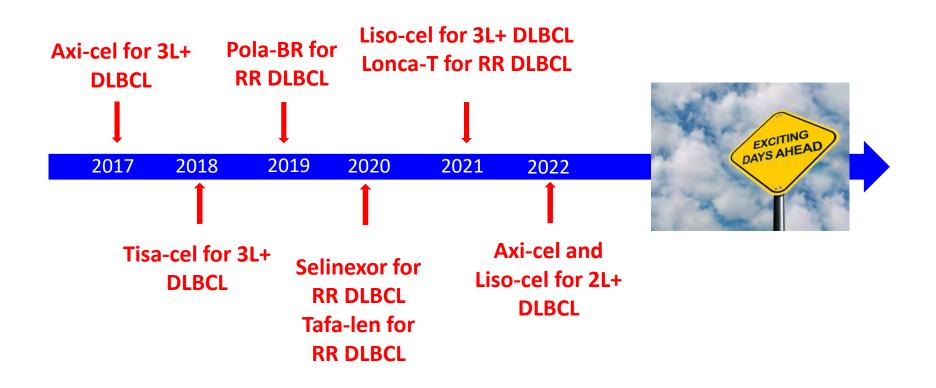
Populations with unmet needs

Older patients

CNS recurrence

Patients with comorbidities

Ensure equitable inclusion and access of treatment advances
 Enroll ALL patient groups who reflect our country


LETTER | AUGUST 35, 2023

Practical strategies for creating diversity, equity, inclusion, and access in cancer clinical research: DRIVE

Maya Nicole Birhiray, Ruemu Ejedaleta Birhiray -

Major milestones in DLBCL Treatment

LYMPHOMA PROGRAM: The University of Chicago cancer@uchospitals.edu

