What we recommend for aggressive B and T cell lymphomas in 2022

John P. Leonard M.D.

Richard T. Silver Distinguished Professor of Hematology and Medical Oncology

Senior Associate Dean for Innovation and Initiatives

Executive Vice Chairman, Joan and Sanford I. Weill Department of Medicine

Disclosures

Consulting advice:

Abbvie, Astellas, Astrazeneca, Bayer, Beigene, BMS, Calithera, Constellation, Eisai, Lilly, Epizyme, Genmab, Grail, Incyte, Janssen, Karyopharm, Merck, Mustang Bio, Pfizer, Roche/Genentech, Second Genome, Sutro, Caribou Biosciences

FDA approved and non-FDA approved drugs/indications will be discussed

Learning Objectives

 Understand basics of the diagnosis and evaluation of various types of lymphoma

 Learn about the range of treatment options patients with lymphoma

 Become familiar with new therapies in development and clinical trials for lymphoma treatment

Diffuse large B cell lymphoma

- Median age 60, usually with advanced stage disease
 - LAN, extranodal disease, symptoms
- Practical objective of treatment cure (70%)
- Reasonably good clinical prognostic tools
- Most patients treated same (R-CHOP)
- Unmet need more cures, reduce toxicity
- Who should we treat differently?
- If refractory to second-line therapy, prognosis is poor

When have I treated patients with DLBCL today with something other than R-CHOP x 6?

Double hit subtype

Data not robust in double protein subtype

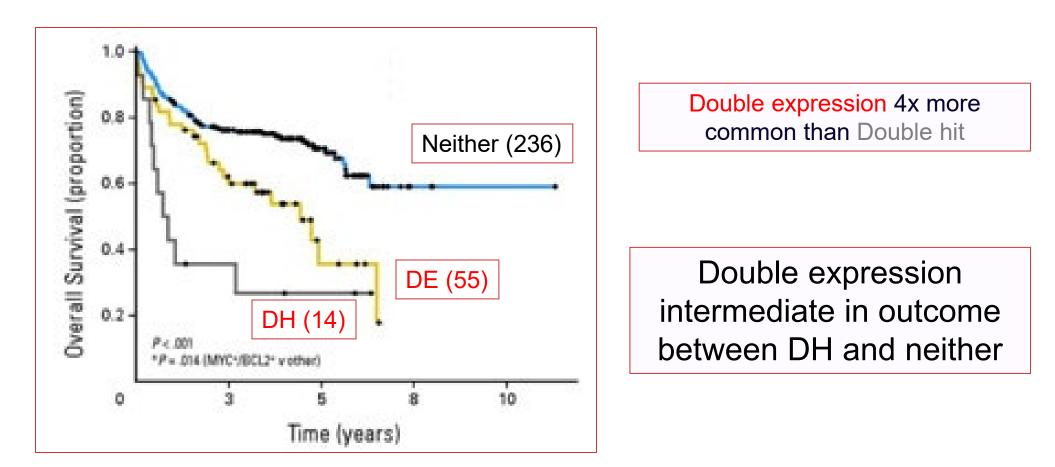
Primary mediastinal

HIV associated

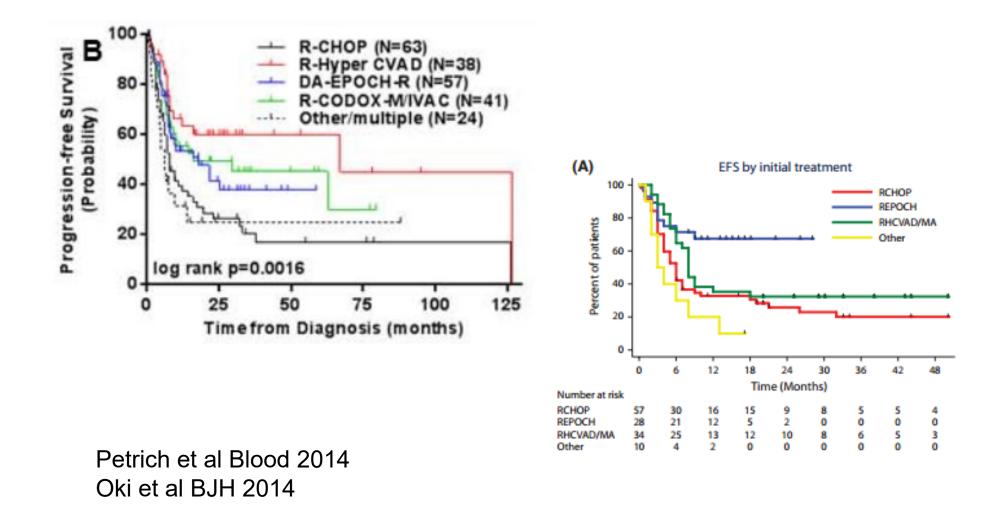
Testicular

Limited stage

CNS


Elderly

Double hit vs Double protein DLBCL 10-25% of DLBCL


- Double-hit lymphoma: High-grade B-cell lymphoma with translocations of MYC as well as BCL2, BCL6, or both ("triple-hit")
 - Histologically classified as DLBCL or B-cell lymphoma unclassifiable with intermediate features between DLBCL and Burkitt Lymphoma
 - Cell of origin: Virtually always germinal center subtype
 - Outcome poor with standard therapies
- Double-expressing lymphomas: DLBCL with dual immunohistochemical expression of MYC (≥40%) and BCL2 (≥70%) in the absence of translocations
 - Cell of origin: Usually activated B cell subtype
 - Outcome inferior to other DLBCLs, but not as poor as DHL

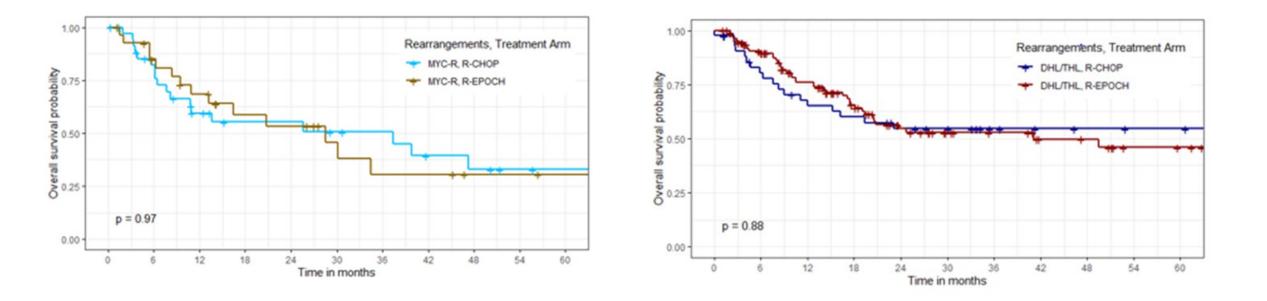
Double hit vs Double expression in DLBCL

Johnson et al JCO 2012; 30: 3452

DA-EPOCH-R in double hit lymphoma

- NewYork-Presbyterian

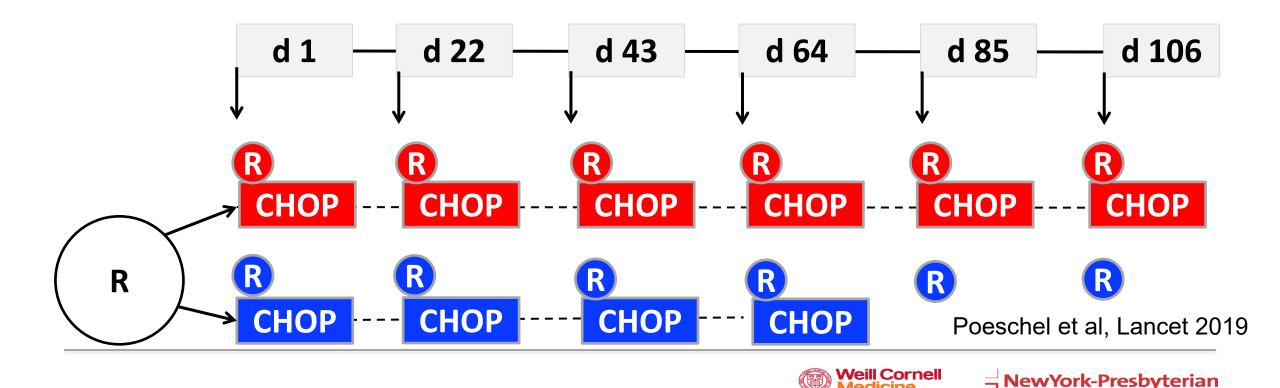
Weill Cornell Medicine


Electronic health record analysis of R-CHOP vs R-EPOCH in double hit lymphoma

- 6809 DLBCL patients (2011-2020), 154 with DHL/THL
- 43 received R-CHOP (median age 73)
- 111 received R-EPOCH (median age 67)
- Multivariable analysis ECOG 2+ and elevated LDH correlated with worse overall survival

Magnusson et al, Abstract #S224, EHA 2021

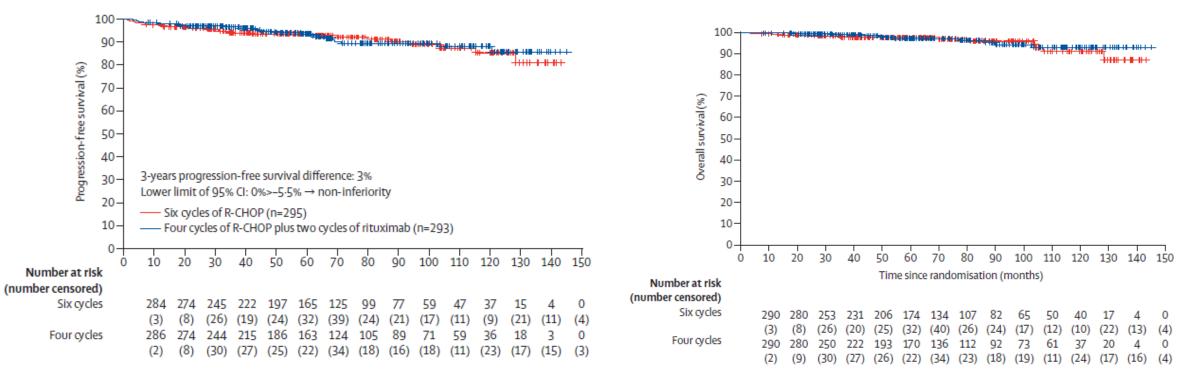
Electronic health record analysis of R-CHOP vs R-EPOCH in double hit lymphoma



Magnusson et al, Abstract #S224, EHA 2021

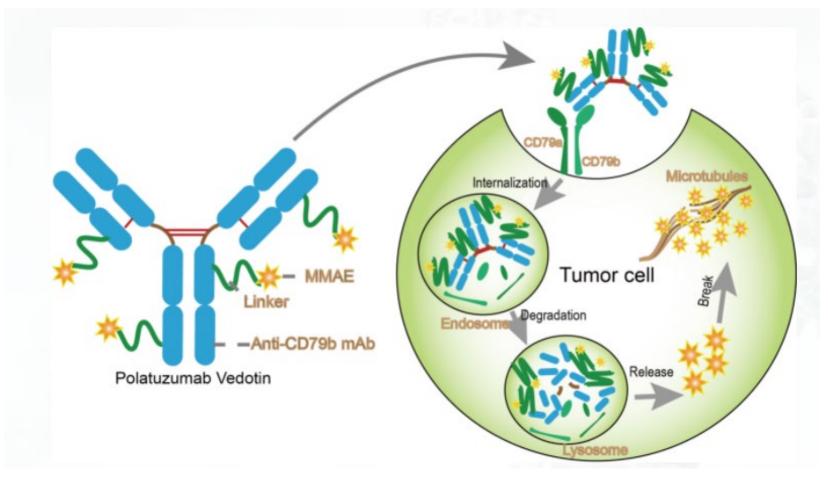
Weill Cornell Medicine

FLYER: Study Design


- Front-line treatment of aggressive B-cell lymphoma
- 18-60 years, stage I/II, aaIPI = 0, no bulk (max. diameter < 7.5 cm)

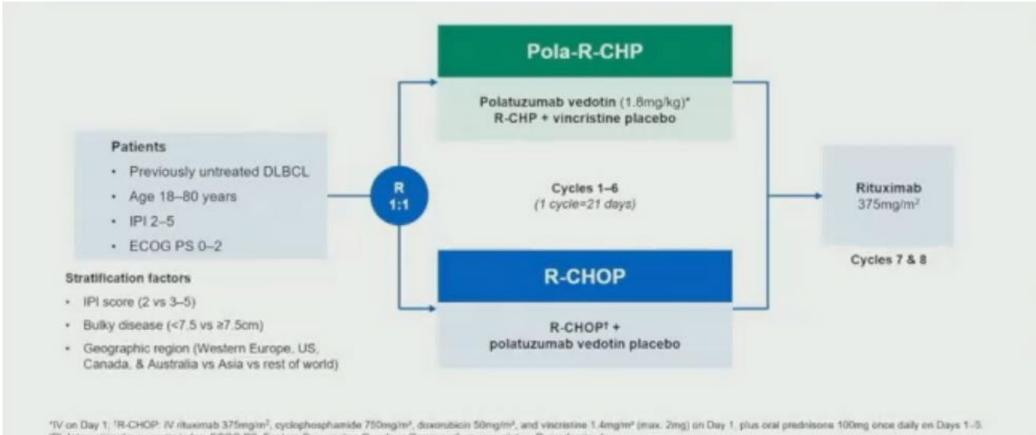
FLYER results N=588 patients (ITT)

PFS


OS

Poeschel et al, Lancet 2019

Weill Cornell Medicine


Polatuzumab vedotin (anti-CD79b antibody drug conjugate)

https://www.creativebiolabs.net/polatuzumab-vedotin-overview.htm

R-CHOP vs Polatuzumab-R-CHP in DLBCL (IPI 2-5) Tilly et al, NEJM 2021

IPI, International prognostic index; ECOG PS, Eastern Cooperative Oncology Group performance status; R, randomized

Weill Cornell Medicine

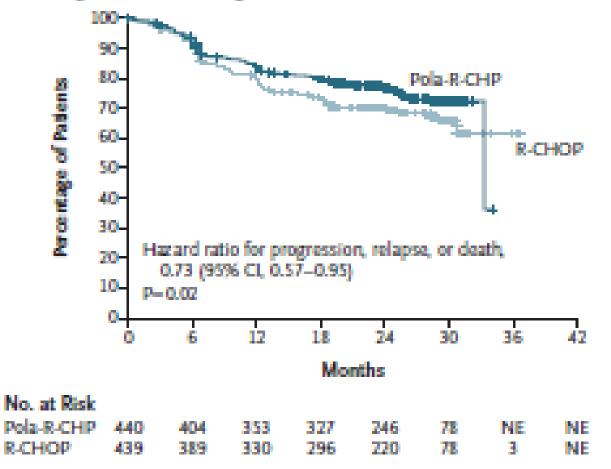
R-CHOP vs Polatuzumab-R-CHP in DLBCL

Tilly et al, NEJM 2021

Characteristic	Pola-R-CHP (N - 440)	R-CHOP (N-439)
Median age (range) — yr	65 (19-80)	66 (19-80)
Age category — no. (%)		
s=60 yr	140 (31.8)	131 (29.8)
>60yr	300 (68.2)	308 (70.2)
Female sex — no. (%)	201 (45.7)	205 (46.7)
Geographic region — no. (%)†		
Western Europe, United States, Canada, and Australia	302 (68.6)	301 (68.6)
Asia	81 (18.4)	79 (18.0)
Rest of world	57 (13.0)	59 (13.4)
Ann Arbor stage — no. (%)‡		
l or II	47 (10.7)	52 (11.8)
III or IV	393 (89.3)	387 (88.2)
No. of extranodal sites — no. (%)		
0 or 1	227 (51.6)	226 (51.5)
≥2	213 (48.4)	213 (48.5)
Bulky disease — no. (%)†§	193 (43.9)	192 (43.7)
2 0 212	- ()	()

R-CHOP vs Polatuzumab-R-CHP in DLBCL - Toxicity

Tilly et al, NEJM 2021


Adverse Event	Pola-R-CHP (N- 435)			R-CHOP (N-438)	
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	
		number of pe	atients (percent)		
Peripheral neuropathy†	230 (52.9)	7 (1.6)	236 (53.9)	5 (1.1)	
Nausea	181 (41.6)	5 (1.1)	161 (36.8)	2 (0.5)	
Neutropenia	134 (30.8)	123 (28.3)	143 (32.6)	135 (30.8)	
Diarrhea	134 (30.8)	17 (3.9)	88 (20.1)	8 (1.8)	
Anemia	125 (28.7)	52 (12.0)	114 (26.0)	37 (8.4)	
Constipation	125 (28.7)	5 (1.1)	127 (29.0)	1 (0.2)	
Fatigue	112 (25.7)	4 (0.9)	116 (26.5)	11 (2.5)	
Alopecia	106 (24.4)	0	105 (24.0)	1 (0.2)	
Decreased appetite	71 (16.3)	5 (1.1)	62 (14.2)	3 (0.7)	
Pyrexia	68 (15.6)	6 (1.4)	55 (12.6)	0	
Vomiting	65 (14.9)	5 (1.1)	63 (14.4)	3 (0.7)	
Febrile neutropenia	62 (14.3)	60 (13.8)	35 (8.0)	35 (8.0)	
Headache	56 (12.9)	1 (0.2)	57 (13.0)	4 (0.9)	
Cough	56 (12.9)	0	53 (12.1)	0	
Decreased weight	55 (12.6)	4 (0.9)	52 (11.9)	1 (0.2)	
Asthenia	53 (12.2)	7 (1.6)	53 (12.1)	2 (0.5)	
Dysgeusia	49 (11.3)	0	57 (13.0)	0	

R-CHOP vs Polatuzumab-R-CHP in DLBCL - PFS

Tilly et al, NEJM 2021

A Investigator-Assessed Progression-free Survival

24 mo PFS: 76.7% Pola-R-CHP 70.2% R-CHOP

R-CHOP vs Polatuzumab-R-CHP in DLBCL - OS

Tilly et al, NEJM 2021

D Overall Survival 100 -A REAL PROPERTY. Pola-R-CHP 90-80-Percentage of Patients 70-R-CHOP 60-50-40-30-Hazard ratio for death. 20-0.94 (95% CI, 0.65-1.37) 10 -P-0.75 0-12 18 74 30 36 42 6 0 Months No. at Risk Pola-R-CHP 440 473 397 384 362 14015 1 439 414 401 376 355 132 20 R-CHOP

Weill Cornell Medicine

Implications of POLARIX study

Positive trial (6.5% benefit in PFS), no OS benefit in IPI 2-5 DLBCL patients

Generally comparable toxicity

Older, male patients, higher risk and ABC subtype benefitted most

Saves 6.5% (1 of 15 patients) from relapse and more therapy

6 doses x \$15,669/dose/80kg pt x 15 patients

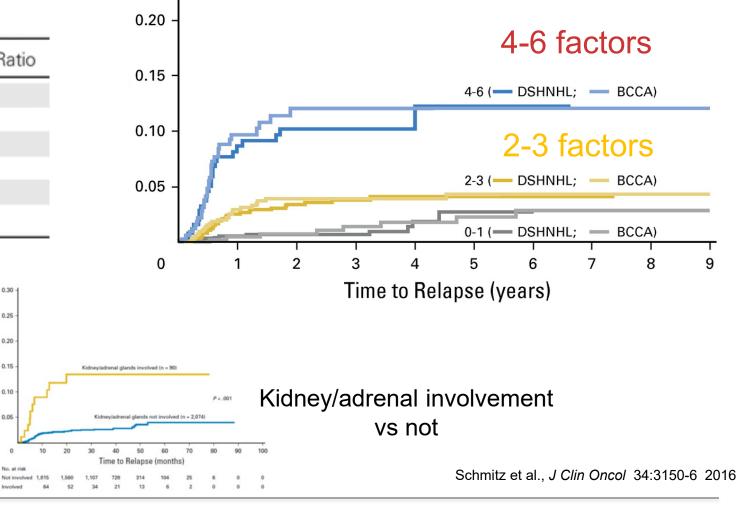
= \$1.4 million/relapse saved

Predicting risk of CNS progression: CNS IPI

0.30 -0.25 0.20

Lodord

0.10


0.05

0

No. at risi

Involved

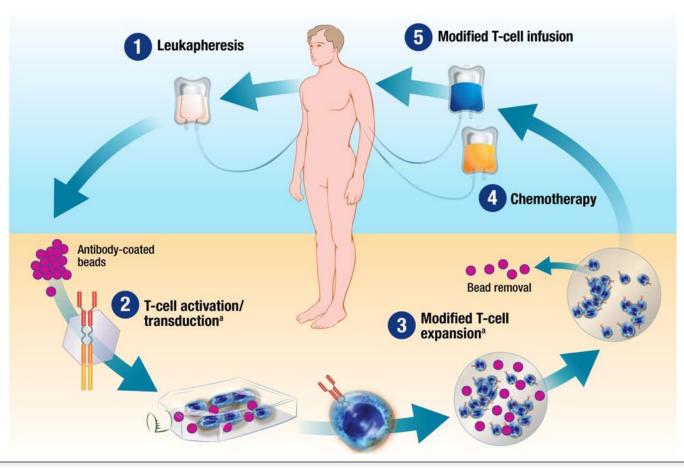
Factor	Hazard Ratio
Kidney and/or adrenal glands involved	2.8
Age > 60 years	2.5
LDH > normal	2.4
ECOG PS > 1	2.2
Stage III/IV disease	2.0
Extranodal involvement > 1	1.0

Timing of CNS prophylaxis

International, retrospective analysis of 1384 patients with DLBCL at high risk of CNS relapse

n=749 systemic MTX intercalated with R-CHOP/like, n=635 after R-CHOP/like

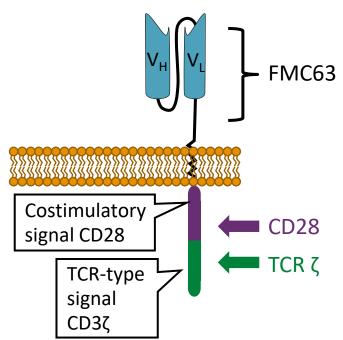
3 year rate of CNS relapses 5.7%, no difference in timing


In high CNS IPI (n=600), rate 9.1%, no difference in timing

In intercalated group, 19.6% of subjects had delays in R-CHOP/like

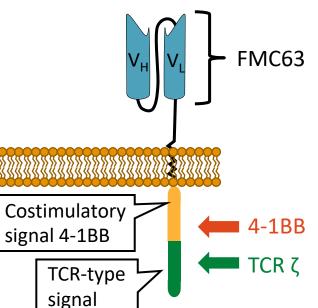
Wilson M et al, Blood 2022

CAR-T cell therapy Approved for multiply relapsed/refractory aggressive lymphoma



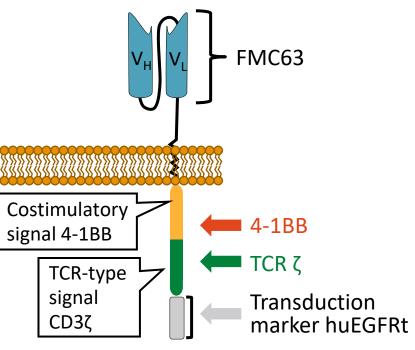
Weill Cornell Medicine

CD19-directed CAR T-cell products in DLBCL


Axicabtagene ciloleucel (Axi-cel)

- CD28 costimulation
- Second generation

Tisagenlecleucel (Tisa-cel)


- 4-1BB costimulation
- Second generation

CD37

Lisocabtagene maraleucel (Liso-cel)

- 4-1BB costimulation
- Second generation


3 approved CAR-T for recurrent DLBCL patients

	ZUMA-1 ^[1,2]	JULIET ^[3,4]	TRANSCEND CORE ^[5]
Product	Axi-cel	Tisa-cel	Liso-cel
# pheresed	111	165	344
# treated	101	111	269 (294*)
ORR (%)	82	54	73
CR (%)	54	40	53
6m ORR (%)	41	37	NR
mOS	25.8m	11.1m	21.1m

1. Jacobson, et al. *Blood*. 2020;136 (Supplement 1): 40–42. 2. Locke FL, et al. *Lancet Oncol*. 2019;20(1):31-42. 3. Schuster S, et al. *N Engl J Med*. 2019;380(1):45-56. 4. Maziarz RT, et al. *Blood Adv*. 2020;4(4):629-637. 5. Abramson JS, et al. *Lancet*. 2020;396(10254):839-852.

Weill Cornell Medicine

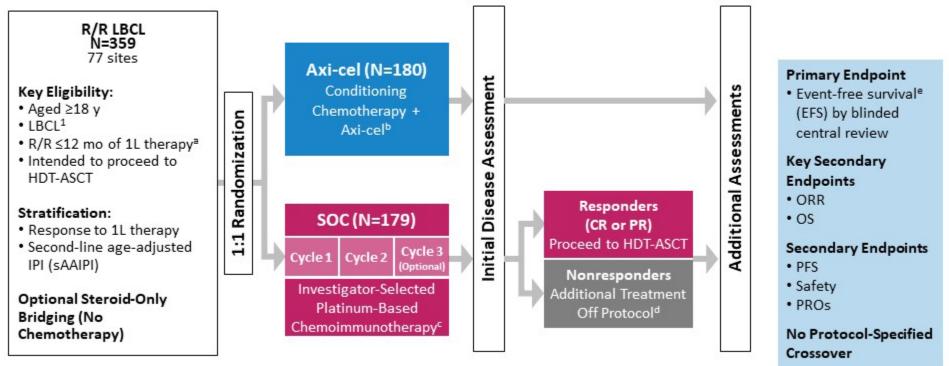
CAR-T agents for recurrent DLBCL with meaningful PFS

Schuster SJ, et al. N Engl J Med. 2019

Locke FL, et al. Lancet Oncol. 2018

Abramson JS, et al. Lancet. 2020

Thieblemont et al, EHA 2021

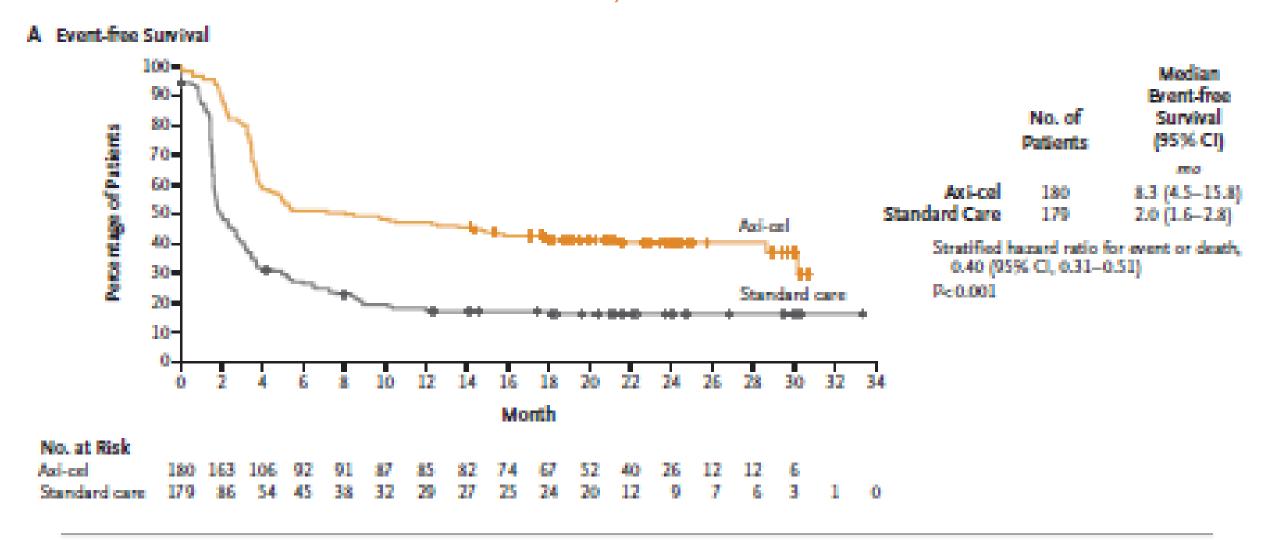

Initial clinical trial data with CAR-T cells

- Studies are generally non-comparative, single arm
- Time in preparing the T cells creates some biases
- Significant responses have been seen (some extending several years) in ALL, CLL and NHL of various types with refractory disease
- Toxicity (cytokine release) involving transient mental status changes/encephalopathy and ICU stays can occur
- ORR about 60-70%, CR about 30% (tend to be more durable)
- About 1/3 non-respond, 1/3 short response, 1/3 longer response
- Cytopenias, immunoglobulin depletion occur

Axicabtagene Ciloleucel for 2nd line (<12m) relapsed DLBCL

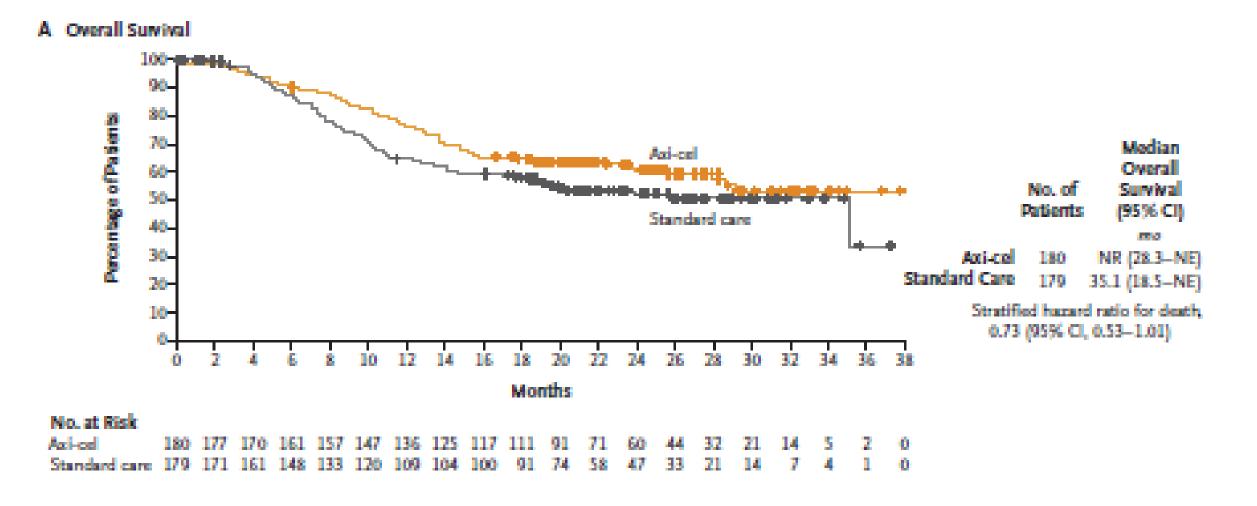
Locke et al, NEJM 2021

ZUMA-7 Study Schema and Endpoints: Axi-cel Versus SOC as Second-Line Therapy in Patients With R/R LBCL



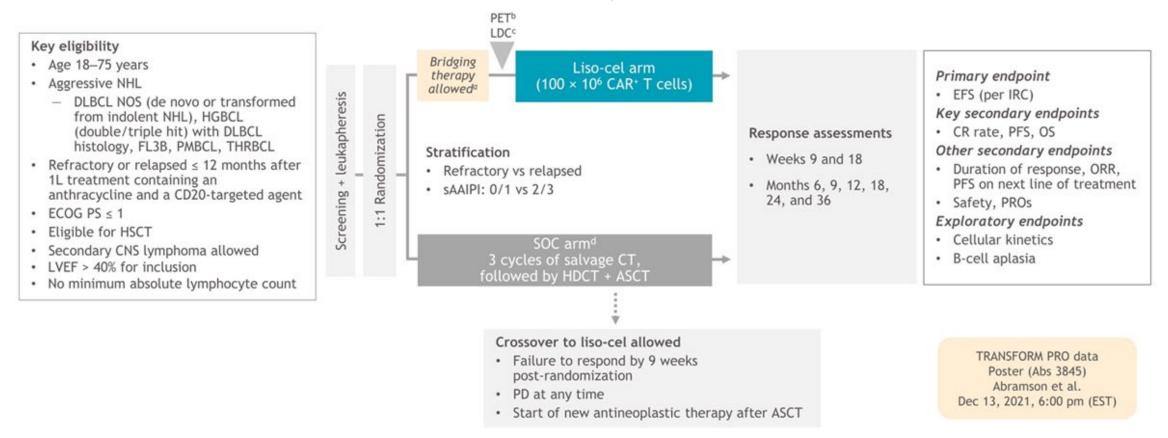
*Refractory disease was defined as no CR to 1L therapy; relapsed disease was defined as CR followed by biopsy-proven disease relapse <12 months from completion of 1L therapy. ^b Axi-cel patients underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide (500 mg/m²/day) and fludarabine (30 mg/m²/day) 5, 4, and 3 days before receiving a single axi-cel infusion (target intravenous dose, 2×10⁶ CAR T cells/kg). ^c Protocol-defined SOC regimens included R-GDP, R-DHAP, R-ICE, or R-ESHAP. ^d 56% of patients received subsequent cellular immunotherapy. ^e EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification, ² commencement of new lymphoma therapy, or death from any cause.

1. Swerdlow SH, et al. Blood. 2016;127:2375-2390. 2. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

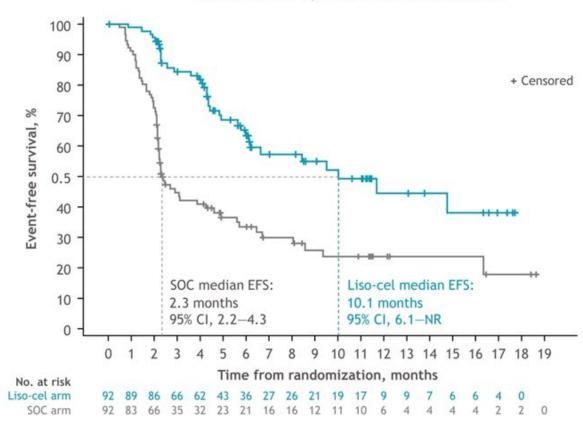


Axicabtagene Ciloleucel for 2nd line (<12m) relapsed DLBCL Locke et al, NEJM 2021

Weill Cornell Medicine


Axicabtagene Ciloleucel for 2nd line (<12m) relapsed DLBCL Locke et al, NEJM 2021

Weill Cornell Medicine

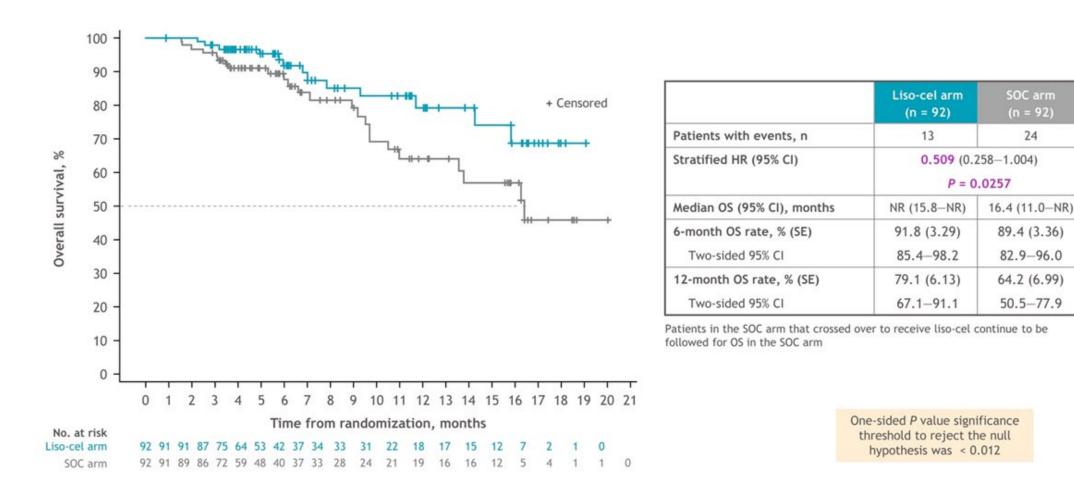

Lisocabtagene maraleucel for 2nd line (<12m) relapsed DLBCL

Kamdar et al, ASH 2021

• EFS is defined as time from randomization to death due to any cause, progressive disease, failure to achieve CR or PR by 9 weeks post-randomization, or start of a new antineoplastic therapy, whichever occurs first

Lisocabtagene maraleucel for 2nd line (<12m) relapsed DLBCL Kamdar et al, ASH 2021

Median follow-up in both arms: 6.2 months


	Liso-cel arm (n = 92)	SOC arm (n = 92)
Patients with events, n	35	63
Stratified HR (95% CI)	0.349 (0.229–0.530) P < 0.0001	
6-month EFS rate, % (SE) Two-sided 95% CI	63.3 (5.77) 52.0–74.7	33.4 (5.30) 23.0–43.8
12-month EFS rate, % (SE)	44.5 (7.72)	23.7 (5.28)
Two-sided 95% CI	29.4-59.6	13.4-34.1

One-sided P value significance threshold to reject the null hypothesis was < 0.012

EFS is defined as the time from randomization to death due to any cause, progressive disease, failure to achieve CR or PR by 9 weeks post-randomization or start of a new antineoplastic therapy due to efficacy concerns, whichever occurs first.

Weill Cornell Medicine

Lisocabtagene maraleucel for 2nd line (<12m) relapsed DLBCL Kamdar et al, ASH 2021

OS is defined as the time from randomization to death from any cause.

12

Summary of second line CAR-T studies

Randomized trials of CAR T-cells vs. SOC in 2nd line transplant-eligible DLBCL with primary refractory disease or relapse within 1 year of 1st line therapy

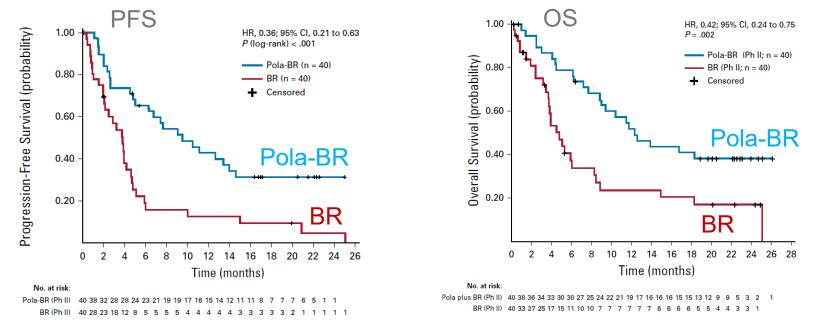
	ZUMA-7	TRANSFORM	BELINDA
CAR T-cell	Axicabtagene Ciloleucel	Lisocabtagene Maraleucel	Tisagenlecleucel
n	359	184	322
% infused in CAR arm	94%	98%	96%
Median EFS	8.3 mo vs. 2 mo	10.1 mo vs. 2.3 mo	3 mo vs. 3 mo
Hazard ratio	0.398 (<i>P</i> <0.0001)	0.349; (<i>P</i> < 0.0001)	1.07 (<i>P</i> =0.69)
Median follow-up	25 months	6 months	10 months
CR rate	65% vs 32%	66% vs 39%	28% vs 28%
Grade ≥3 CRS/NT	6% / 21%	1% / 4%	5% / 3%
	Locke, et al. Abstract 2	Kamdar, et al. Abstract 91	Bishop, et al. Abstract LBA-6

Toby Eyre

Implications of second line CAR-T studies

In patients with chemoresistant disease (short first remission), more chemo (and AutoSCT) is not effective

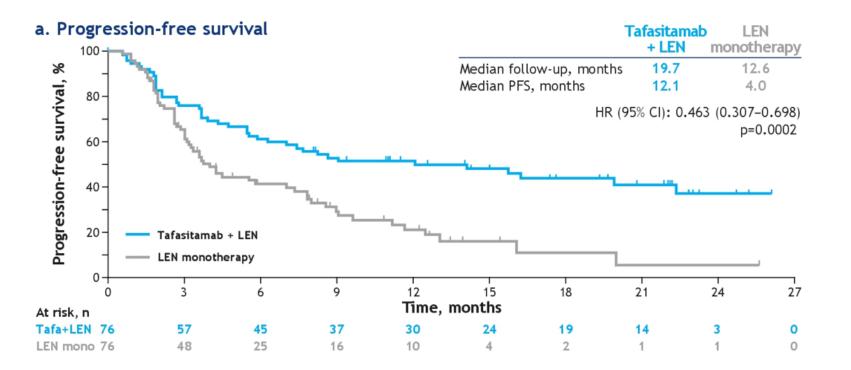
Why different outcome in BELINDA study with Tisagenlecleucel? - chemotherapy bridging (sicker patients), additional chemo cycles for standard group, longer time (52d) to get CAR-T (and 25.9% pre-infusion PD), different agent, less lymphodepletion, event definitions


CAR-T will be SOC for those with PD < 1 year

- for practical reasons seems likely there will still be 2nd line chemo for many patients

AutoSCT remains SOC for those with later relapses

BR ± Polatuzumab Vedotin-piiq in Relapsed DLBCL: Randomized Phase 2 CR 40% vs 17.5%



FDA approval 2019: +BR for relapsed/refractory DLBCL, >2 prior therapies

Sehn L et al JCO 2019

Weill Cornell –

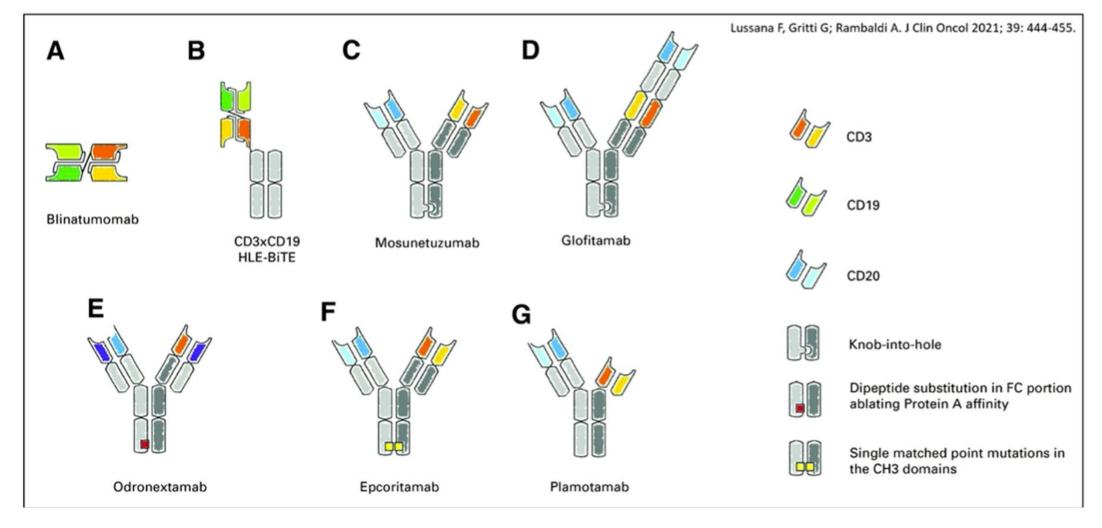
Tafasitamab/Lenalidomide (RE-MIND) compared to matched Len alone in recurrent DLBCL pts ORR 67.1 vs 34.2%

Nowakowski GS, et al. ASCO 2020 (abstr 8020).

Selinexor

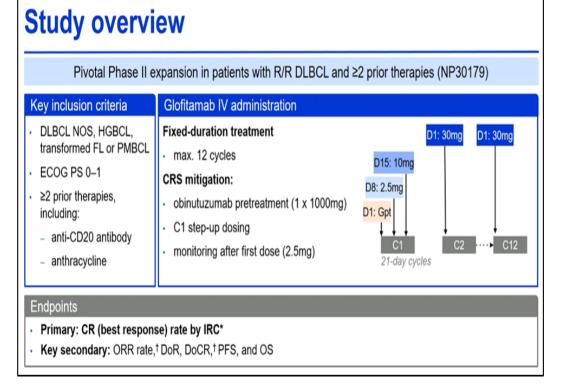
- Selective inhibitor of nuclear export (SINE), blocks XPO1
- Phase 2 SADAL study (preprint Lancet 2020)
- DLBCL (including tFL), 2-5 prior therapies (N=127)
- Selinexor oral 60 mg days 1 and 3 weekly
- ORR 28%, CR 12%
- Responses in both GCB and non-GCB (Hans)
- Common grade 3-4 AE cytopenias, fatigue, hyponatremia, nausea
- Median response duration 9.3 months

Kalakonda et al, Lancet Haematol 2020


Loncastuximab Tesirine-lypl in DLBCL

- Humanized anti-CD19 antibody conjugated to a PBD dimer toxin
- Administered IV every 3 weeks up to 1 year, then q 12 weeks
- N=145 subjects
- ORR 48.3%, CR rate 24.8%, median PFS about 6 months
- Most common toxicities liver enzymes, cytopenias, fatigue
 - Edema also noted in 20% of patients

Caimi et al, ASH 2020



Structure of selected BITE and bispecific antibodies

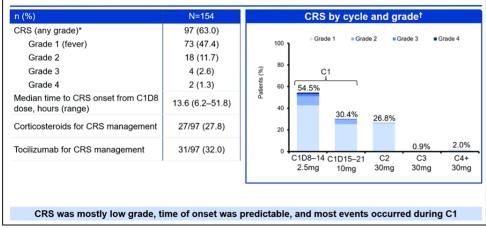
Glofitamab in R/R DLBCL pts with 2+ prior therapies

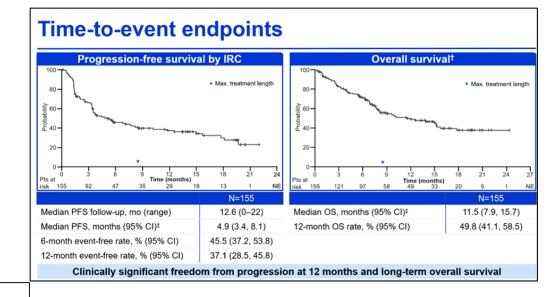
Baseline characteristics

n (%)*		N=154 [†]	n (%)*	N=154
Median age, years (range)		66.0 (21–90)	Median no. of prior lines, n (range)	3 (2–7)
Male		100 (64.9)	2 prior lines	62 (40.3)
ECOG PS [‡]	0	69 (44.8)	≥3 prior lines	92 (59.7)
	1	84 (54.5)	Prior anti-CD20 Ab	154 (100.0
Ann Arbor stage	I	10 (6.5)	Prior anthracycline	149 (96.8)
	II	25 (16.2)		· , ,
	111	31 (20.1)	Prior CAR-T	51 (33.1)
	IV	85 (55.2)	Prior ASCT	28 (18.2)
NHL subtype	DLBCL	110 (71.4)	Refractory to any prior therapy	139 (90.3)
	trFL	27 (17.5)	Refractory to last prior therapy	132 (85.7)
	HGBCL	11 (7.1)	Primary refractory	90 (58.4)
	PMBCL	6 (3.9)		. ,
Bulky disease	>6cm	64 (41.6)	Refractory to prior CAR-T	46 (29.9)
	>10cm	18 (11.7)	Refractory to any prior anti-CD20	128 (83.1)
	Heavily pre-	treated, high	nly refractory population	

Dickinson et al, EHA 2022 # S220

Glofitamab in R/R DLBCL pts with 2+ prior therapies

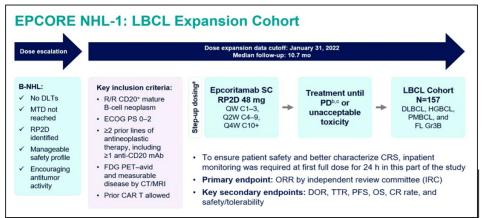

Response rates – primary endpoint met


Efficacy endpoint ¹	Glofitamab 2.5/10/30mg (n=155)
CR rate*	61 (39.4%) [95% Cl: 31.6%, 47.5%]
ORR⁺	80 (51.6%) [95% Cl: 43.5%, 59.7%]

- Median duration of follow-up: 12.6 months (range: 0–22)
- Responses were achieved early: median time to first CR was 42 days (95% CI: 42, 44)
- At time of primary analysis, primary endpoint met in the primary efficacy population (n=108)[†]: 35.2% CR rate by IRC significantly greater (p<0.0001) than 20% historical control CR rate[‡]

High CR/ORR rate at RP2D

Cytokine release syndrome

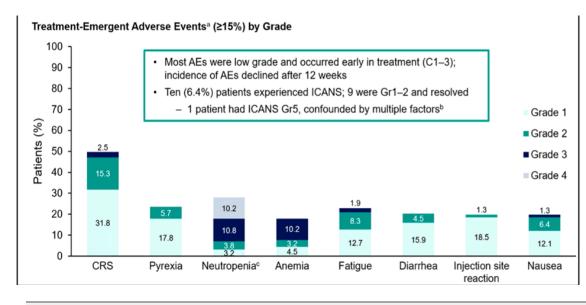


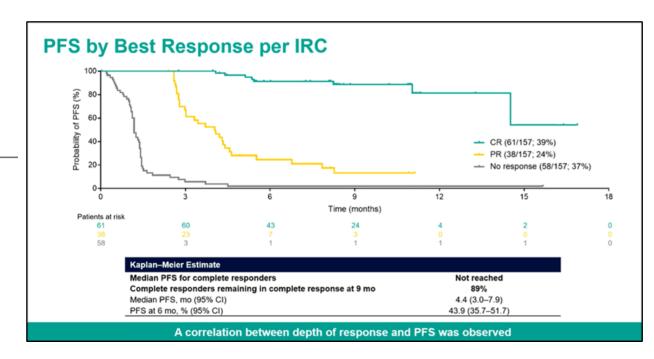
Dickinson et al, EHA 2022 # S220

Epcoritamab in R/R DLBCL pts with 2+ prior therapies

Demographics	LBCL, N=157	
Median age (range), y	64 (20-83)	
<65 y, n (%)	80 (51)	
65 to <75 y, n (%)	48 (31)	
≥75 y, n (%)	29 (18)	
ECOG PS, n (%)		
0	74 (47)	
1	78 (50)	
2	5 (3)	
Disease Characteristics ^a	LBCL, N=157	
Disease type, n (%)		
DLBCL	139 (89)	
De novo	97/139 (70)	
Denovo	011100 (10)	
Transformed	40/139 (29)	
Transformed	40/139 (29)	
Transformed Unknown	40/139 (29) 2/139 (1)	

Prior Treatments	LBCL, N=157
Median time from initial diagnosis to first dose, y	1.6
Median time from end of last therapy to first dose, mo	2.4
Median prior lines of therapy (range)	3 (2–11)
≥3 Lines of therapy, n (%)	111 (71)
Primary refractory ^b disease, n (%)	96 (61)
Refractory ^b to last systemic therapy, n (%)	130 (83)
Refractory ^b to ≥2 consecutive lines of therapy, n (%)	119 (76)
Prior ASCT, n (%)	31 (20)
Prior CAR T therapy, n (%)	61 (39)
Progressed within 6 mo of CAR T therapy	46/61 (75)


Thieblemont et al, EHA 2022 #LBA 2364



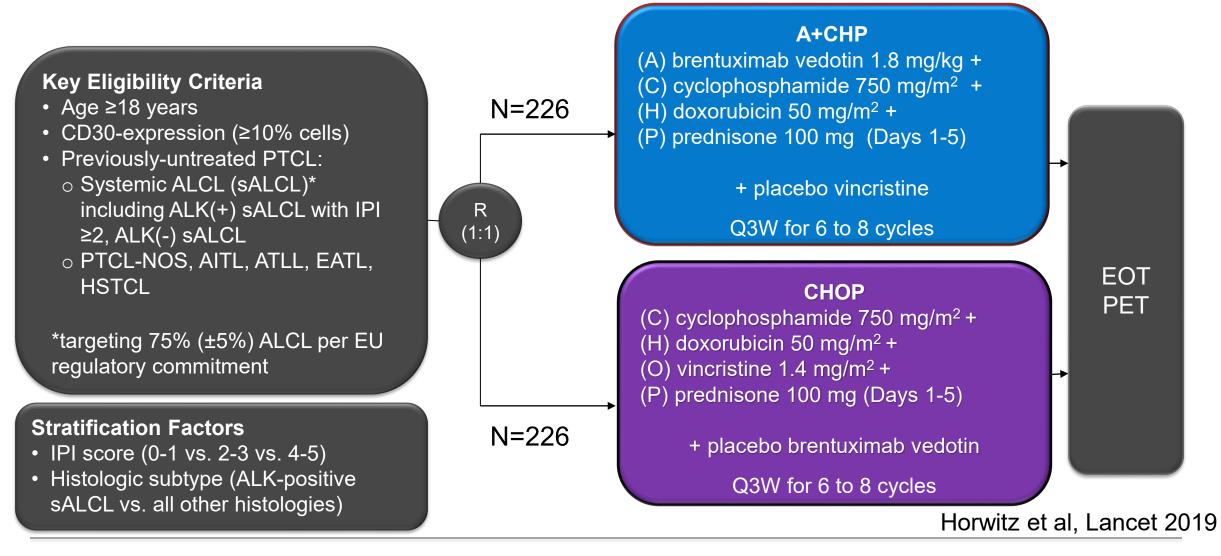
Epcoritamab in R/R DLBCL pts with 2+ prior therapies

Best Overall Response by IRC, n (%) ^a	LBCL N=157
Overall response	99 (63) [95% CI: 55–71]
Complete response	61 (39) [95% CI: 31–47]
Partial response	38 (24)
Stable disease	5 (3)
Progressive disease	37 (24)

^aBased on Lugano criteria.

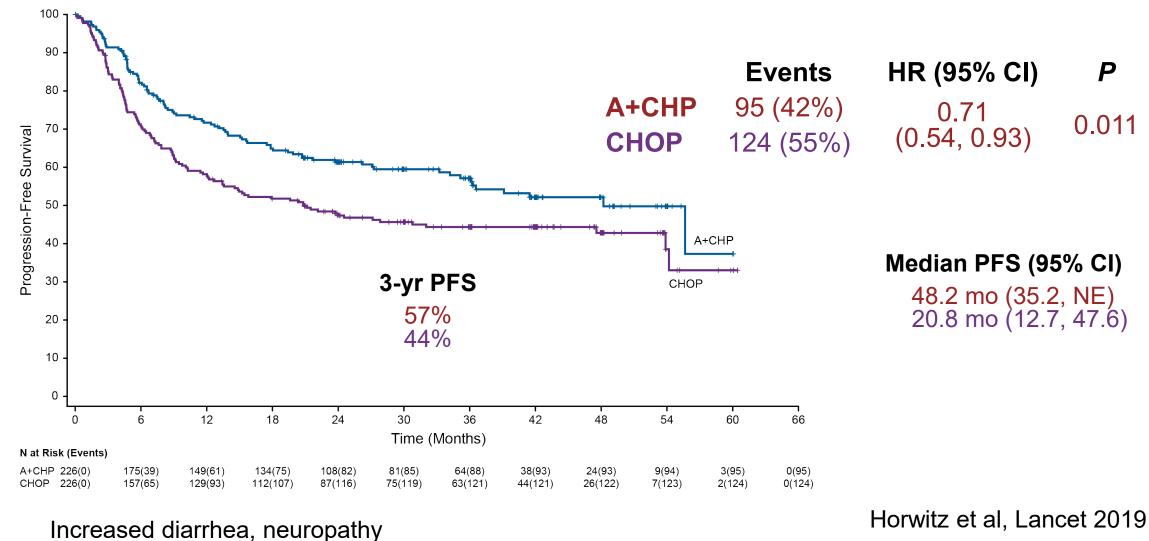
Thieblemont et al, EHA 2022 #LBA 2364

Overall survival in PTCL


Vose et al: J Clin Oncol. 2008;26:4124.

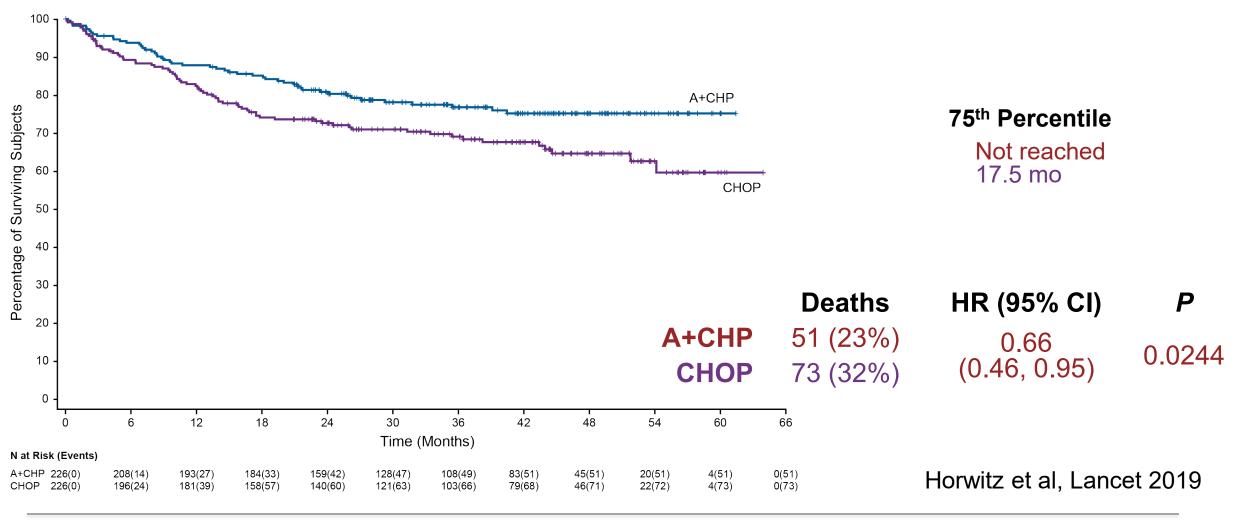
Approach to PTCL

- CHOP vs CHOEP (? Addition of etoposide of value in age <60)
- Unclear value of auto vs allo SCT in first remission vs observation
- Add/use brentuximab vedotin (Anti-CD30 ADC) if CD30+ (>10%)
 - Anaplastic large cell lymphoma (ALCL) is the key CD30+ subtype
- In relapse multiple options (HDAC inhibitors, hypomethylating agents)
 - HDAC inhibitors romidepsin, vorinostat, belinostat
 - Antimetabolite pralatrexate
 - Angioimmunoblastic (AITL) azacitidine with activity


ECHELON-2 Study Design: CD30+ PTCL

Weill Cornell Medicine

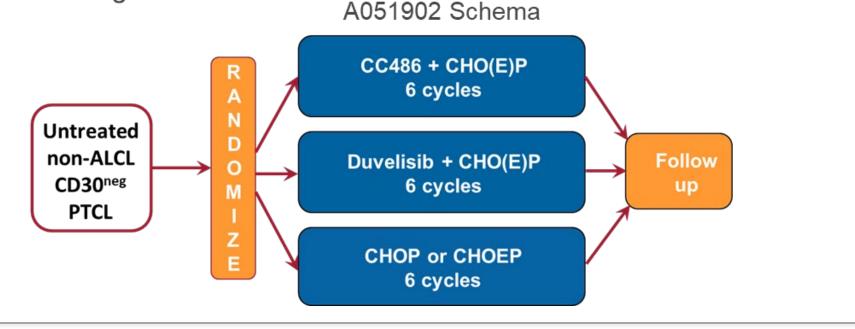
- NewYork-Presbyterian


ECHELON-2: Progression-free survival

Weill Cornell Medicine

- NewYork-Presbyterian

ECHELON-2 Overall Survival



Weill Cornell Medicine

- NewYork-Presbyterian

New Alliance/NCTN upfront T cell lymphoma study

 This active combination will be evaluated in the upcoming ALLIANCE Intergroup randomized study A051902, comparing oral azacitidine-CHO(E)P with duvelisib-CHO(E)P against CHO(E)P in patients with CD30-negative PTCL.

- NewYork-Presbyterian

Weill Cornell Medicine

Key take home points for aggressive lymphoma

- DLBCL
 - ? Role of intensive therapy for double hit
 - PET adapted therapy for limited stage
 - CAR-T clearly have a role (evolving)
 - Multiple novel agents including bispecifics
- T cell
 - CD30-directed therapy of value upfront and relapse
 - Novel combinations under study