Aggressive B and T cell lymphomas: Emerging therapies

John P. Leonard M.D.

Richard T. Silver Distinguished Professor of Hematology and Medical Oncology

Senior Associate Dean for Innovation and Initiatives

Executive Vice Chairman, Joan and Sanford I. Weill Department of Medicine

Disclosures

Consulting advice:

Gilead, Celgene/BMS, Sutro, Genentech/Roche, Bayer, ADC Therapeutics, MEI Pharma, AstraZeneca, Karyopharm, Miltenyi, Regeneron, Epizyme, Abbvie, Incyte, Janssen, GenMab, Eisai

FDA approved and non-FDA approved drugs/indications will be discussed

Learning Objectives

Understand standard management of patients with aggressive lymphoma

Assess new data on emerging therapies in aggressive lymphoma

Diffuse large B cell lymphoma

- Median age 60, usually with advanced stage disease
 - LAN, extranodal disease, symptoms
- Practical objective of treatment cure (70%)
- Reasonably good clinical prognostic tools
- Most patients treated same (R-CHOP)
- Unmet need more cures, reduce toxicity
- Who should we treat differently?
- If refractory to second-line therapy, prognosis is poor

When do I treat patients with DLBCL today with something other than R-CHOP x 6?

Double hit subtype

Data not robust in double protein subtype

Primary mediastinal

HIV associated

Testicular

Limited stage

CNS

Elderly

Double hit vs Double protein DLBCL 10-25% of DLBCL

- Double-hit lymphoma: High-grade B-cell lymphoma with translocations of MYC as well as BCL2, BCL6, or both ("triple-hit")
 - Histologically classified as DLBCL or B-cell lymphoma unclassifiable with intermediate features between DLBCL and Burkitt Lymphoma
 - Cell of origin: Virtually always germinal center subtype
 - Outcome poor with standard therapies
- Double-expressing lymphomas: DLBCL with dual immunohistochemical expression of MYC (≥40%) and BCL2 (≥70%) in the absence of translocations
 - Cell of origin: Usually activated B cell subtype
 - Outcome inferior to other DLBCLs, but not as poor as DHL

Double hit vs Double expression in DLBCL

Johnson et al JCO 2012; 30: 3452

DA-EPOCH-R in double hit lymphoma

- NewYork-Presbyterian

Weill Cornell Medicine

A51701 Intergroup trial of BCL-2 inhibitor Venetoclax with chemoimmunotherapy in DH/DE DLBCL

Ph I Investigator-initiated study (Alliance Foundation) WCM/NYP Coordinating Site (Rutherford) Phase II/III NCI/Alliance/Intergroup (Abramson MGH)

A51701 Intergroup trial of BCL-2 inhibitor Venetoclax with chemoimmunotherapy in DH/DE DLBCL

Ph I Investigator-initiated study (Alliance Foundation) WCM/NYP Coordinating Site (Rutherford) Phase II/III NCI/Alliance/Intergroup (Abramson MGH)

Weill Cornell Medicine

Electronic health record analysis of R-CHOP vs R-EPOCH in double hit lymphoma

- 6809 DLBCL patients (2011-2020), 154 with DHL/THL
- 43 received R-CHOP (median age 73)
- 111 received R-EPOCH (median age 67)
- Multivariable analysis ECOG 2+ and elevated LDH correlated with worse overall survival

Magnusson et al, EHA 2021

Electronic health record analysis of R-CHOP vs R-EPOCH in double hit lymphoma

Magnusson et al, EHA 2021

Weill Cornell Medicine

FLYER: Study Design

- Front-line treatment of aggressive B-cell lymphoma
- 18-60 years, stage I/II, aaIPI = 0, no bulk (max. diameter < 7.5 cm)

FLYER results N=588 patients (ITT)

PFS

OS

Poeschel et al, Lancet 2019

Weill Cornell Medicine

Intergroup NCTN S1001: Study design

 $^{\text{s}}$ n = 2 did not receive tx. Patients with stage I/II DLBCL by CT but stage III/IV by PET received R-CHOP x 6 cycles.

- Primary endpoint: 5-yr PFS rate
 - Historical estimate of 85% vs alternative hypothesis of 93%

 Secondary endpoints: PFS within PET-positive and PET-negative subgroups, toxicity of PET-directed therapy, response, OS

Persky et al, ASH 2019

Intergroup NCTN S1001: Survival

Persky et al, ASH 2019

Early PET response adapted therapy in localized diffuse large B cell lymphoma (LYSA LNH 09-1B)

- 650 patients, age 18-80, aalPI=0, median f/u 5.1 years
- Standard arm R-CHOP x 6
- Experimental arm PET2 neg 4 cycles vs PET2 pos 6 cycles
 - Deauville 1, 2, 3 = negative
- 44% age 60+, 4% bulky > 10 cm, 53% extranodal disease

Bologna et al, ICML 2021

Early PET response adapted therapy in localized diffuse large B cell lymphoma (LYSA LNH 09-1B)

- NewYork-Presbyterian

Weill Cornell Medicine

CAR-T cell therapy Approved for multiply relapsed/refractory aggressive lymphoma

Weill Cornell Medicine

CAR-T cell constructs

Adapted from van der Steegen et al, Nat Rev Drug Discov 2015

3 FDA approved CAR-T for recurrent DLBCL patients

Study	Number & lympho- depletion	Construct	ORR / CR	1-yr PFS	Grade 3-4 CRS/CRES
Zuma-1 Axi-Cel	111 (101) / Flu/CY / bridge not allow	Retrovirus / CD3ζ / CD28	82% / 54%	44%	13% / 28%
JULIET Tisa-Cel	165 (111) / various LD regimens / 92% bridged	Lentiviral / CD3ζ / 4- 1BB	52% / 40%	~35%	22% / 12%
JCAR- 017 Liso-Cel	344 (269) / Flu/CY / 59% bridged	Lentiviral / CD3ζ / 4- 1BB	73% / 53%	44%	2% / 10%

Neelapu S. NEJM. 2017;377:2531-44. Schuster S. NEJM. 2019;380:45-56. Abramson J. Lancet. 2020;396:839-852.

CAR-T agents for recurrent DLBCL with meaningful PFS

Schuster SJ, et al. N Engl J Med. 2019

Locke FL, et al. Lancet Oncol. 2018

Abramson JS, et al. Lancet. 2020

Thieblemont et al, EHA 2021

BR ± Polatuzumab Vedotin-piiq in Relapsed DLBCL: Randomized Phase 2 CR 40% vs 17.5%

FDA approval 2019: +BR for relapsed/refractory DLBCL, >2 prior therapies

Sehn L et al JCO 2019

Weill Cornell –

Tafasitamab/Lenalidomide (RE-MIND) compared to matched Len alone in recurrent DLBCL pts ORR 67.1 vs 34.2%

Nowakowski GS, et al. ASCO 2020 (abstr 8020).

Selinexor

- Selective inhibitor of nuclear export (SINE), blocks XPO1
- Phase 2 SADAL study (preprint Lancet 2020)
- DLBCL (including tFL), 2-5 prior therapies (N=127)
- Selinexor oral 60 mg days 1 and 3 weekly
- ORR 28%, CR 12%
- Responses in both GCB and non-GCB (Hans)
- Common grade 3-4 AE cytopenias, fatigue, hyponatremia, nausea
- Median response duration 9.3 months

Kalakonda et al, Lancet Haematol 2020

Loncastuximab Tesirine-lypl in DLBCL

- Humanized anti-CD19 antibody conjugated to a PBD dimer toxin
- Administered IV every 3 weeks up to 1 year, then q 12 weeks
- N=145 subjects
- ORR 48.3%, CR rate 24.8%
- Most common toxicities liver enzymes, cytopenias, fatigue
 - Edema also noted in 20% of patients

Caimi et al, ASH 2020

Loncastuximab tesirine-lypl in DLBCL

Structure of selected BITE and bispecific antibodies

Bispecific Antibody	Targets	Design	Ig Fragment Formats	Ref.
blinatumomab	CD19 x CD3	San	 two murine scFv joined by a glycine-serine linker monovalent CD19 and monovalent CD3 binding cloned from anti-CD19 (clone HD37) and anti-CD3 (clone L2K-07) murine mAbs 	1, 2, 3
mosunetuzumab	CD20 x CD3		 humanized mouse heterodimeric IgG1-based antibody monovalent CD20 and monovalent CD3€ binding modified Fc devoid of FcyR and complement binding 	4
glofitamab	(CD20) ₂ × CD3		 humanized mouse IgG1-based antibody bivalent CD20 and monovalent CD3c binding modified Fc devoid of FcyR and complement binding 	5
odronextamab	CD20 x CD3	Ň	 fully human IgG4-based heterodimeric antibody monovalent CD20 and monovalent CD3€ binding Fc-dependent effector function-minimized antibody with Fc of the anti- CD3€ heavy chain modified to reduce Protein A binding common κ light chain from anti-CD3€ mAb 	6
epcoritamab	CD20 x CD3		 humanized mouse IgG1-based heterodimeric antibody monovalent CD20 and monovalent CD3 binding IgG1 Fc modified to minimize Fc-dependent effector functions and to control Fab-arm exchange of mAb half-molecules, resulting in high bispecific product yield 	7

- Ig, immunoglobulin; scEv, single-chain variable fragment; mAb, monoclonal antibody; Ec, fragment crystallizable; EcyR, Ec gamma receptor

¹Dufner V, et al. Blood Adv (2019) 3:2491; ²Goebeler ME, et al. J Clin Oncol (2016) 34:1104; ³Viardot et al. Blood (2016) 127(11):1410; ⁴Schuster SJ, et al. ASH 2019, Plenary Abstract 6;

⁵Hutchings M, et al. ASH 2020, Abstract 403; ⁶Bannerji R, et al. ASH 2020, Abstract 400; ⁷Hutchings M, et al. ASH 2020, Abstract 406

Schuster et al, ICML 2021

Data with BITE and bispecific antibodies in patients with recurrent DLBCL

target	Drug	Study	Study phase	No*	Efficacy	References
CD20/CD3	Blinatumomab	NCT01741792	2	25	ORR 43% CR 19%	Viardot et al. Blood 2016
CD20/CD3	RG6026	NCT03075696	1b	28	ORR 48% CR 43%	Morschhauser F ASH2019 # 1584
CD20/CD3	Mosunetuzumab	NCT02500407	1/1b	55	ORR 33% CR 21%	Buddle LI ASH 2018 #399
CD20/CD3	REGN1979 odronextamab	NCT02290951	1	53	ORR 33% CR 18%	Bannerji R ASH 2019 #762
CD20/CD3	REGN1979 odronextamab	NCT02290951	expansion	136	ORR no prior CART 55% CR 55% ORR prior CART 33% CR 21%	Bannerji R ASH 2020
CD19/CD3	Epcoritamab subcutaneous	NCT03625037	1/2	45	ORR 66.7% CR 13%	Hutchings M ASH 2020
CD20/CD3	Glofitamab (RG6026) D-7obinutuzumab	NCT03075696	Expansion	12	ORR 61% in all aNHL CR 54% in all aNHL	Hutchings M ASH 2020

* DI BCL only

Thieblemont et al, EHA 2021

T cell lymphoma

CHOP or CHOEP standard of care

Brentuximab vedotin if CD30+

Consideration of SCT in first remission

Various approaches and novel agents in relapsed setting

ECHELON-2 Study Design: CD30+ PTCL

Weill Cornell Medicine

ECHELON-2: Progression-free survival

Weill Cornell Medicine

ECHELON-2 Overall Survival

Weill Cornell Medicine

Oral Azacytidine + CHOP in upfront T cell lymphoma

- NewYork-Presbyterian

Weill Cornell Medicine

Oral Azacytidine + CHOP in upfront T cell lymphoma

Response	Interim*		EOT*			
	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)
ORR	17	85%	94%	15	75%	88%
CR	11	55%	59%	15	75%	88%
PR	6	30%	35%	0	0	0
SD	2	10%	0	1	5%	0
PD	1	5%	6%	2	10%	6%
Discontinuation	0	0	0	2	10%	6%
Median follow-up		15 months (range 9-23)				
"*": Interim – following 3 cycles of treatment; EOT following 6 cycles of treatment. "#": Discontinuation due to 1) disease progression; 2) strongyloides infection.						

Oral Azacytidine + CHOP in upfront T cell lymphoma Impact of mutational status on PFS

Ruan et al, ASH 2020

New Alliance/NCTN upfront T cell lymphoma study

 This active combination will be evaluated in the upcoming ALLIANCE Intergroup randomized study A051902, comparing oral azacitidine-CHO(E)P with duvelisib-CHO(E)P against CHO(E)P in patients with CD30-negative PTCL.

- NewYork-Presbyterian

Weill Cornell Medicine

Romidepsin + lenalidomide for previously untreated PTCL

- PTCL patients over 60 and/or with comorbidities
- Romidepsin 10 mg/m2 IV d1, 8, 15
- Lenalidomide 25 mg d 1-21 every 28 days up to 1 year
- 29 subjects, 55% AITL, 38% PTCL, median age 75
- 66% advanced stage, 79% elevated LDH
- Toxicities heme, hyponatremia, HTN, fatigue
- ORR 75%, CR 30% (higher in AITL), median DOR 4.2 mo

Ruan et al, ICML 2021

Romidepsin + lenalidomide for previously untreated PTCL

Ruan et al, ICML 2021

Duvelisib + romidepsin for recurrent PTCL

- 66 pts, D 75 mg BID, R 10 mg/m2 d1, 8, 15 every 28
- Toxicities heme, liver enzymes, diarrhea, infection
- PTCL ORR 58%, CR 42%
- 43% of responders proceed to AlloSCT

Horwitz et al, ICML 2021

Key take home points for aggressive lymphoma

- DLBCL
 - ? Role of intensive therapy for double hit
 - PET adapted therapy for limited stage
 - CAR-T clearly have a role (and may be evolving)
 - Multiple novel agents including bispecifics
- T cell
 - CD30-directed therapy of value upfront and relapse
 - Novel combinations under study