

Initial Therapy of Acute Myeloid Leukemia: Finally, A Trip Beyond 7+3

Harry P. Erba, MD, PhD
Professor, Department of Medicine
Director, Leukemia Program
Duke University
Durham, NC

Disclosures of Potential Conflicts of Interest

- Speaker Bureau: AbbVie, Agios, BMS/Celgene, Incyte, Jazz, Novartis
- Consultant: AbbVie, Agios, Astellas, BMS/Celgene, Daiichi Sankyo, Glycomimetics, Immunogen, Incyte, Jazz, Kura Oncology, MacroGenics, Novartis, Pfizer, Syros, Takeda, Trillium
- Contracted Research: AbbVie, ALX Oncology, Amgen, Daiichi Sankyo, Forma, Forty Seven / Gilead, Glycomimetics, Immunogen, Jazz, MacroGenics, Novartis, PTC
- Other: BMS/Celgene (Chair, AML Registry Steering Committee), AbbVie (Chair, IRC for VIALE A and VIALE C Phase III studies), Glycomimetics (Scientific Steering Committee)

The AML Treatment Algorithm, Pre 2018

AML-001 Study: Aza vs CCR in Older AML Patients

Overall Survival (ITT)

HR = 0.85 (p = 0.1009)

Overall Survival (censor at aubsequent AML Tx)

$$HR = 0.76 (p = 0.0190)$$

Median follow-up 24.4 months, with 193 deaths in AZA arm (80.1%) and 201 deaths in the CCR arm (81.4%). Stratified by ECOG PS and cytogenetic risk.

AZA CCR
 CR/CRi
 RBC TI
 PLT TI

 27.8%
 38.5%
 40.6%

 25.1%
 27.6%
 29.3%

Dombret H et al. Blood. 2015; 126: 291-299.

Survival of Older AML Patients: Population Based Study

	Study cohort (n=5480) N (%)	Untreated group (n=3367) N (%)	Treated group (n=2113) N (%)	P
Age, years				
65-69	763 (13.9)	251(7.5)	512 (24.2)	
70-74	1139 (20.8)	512 (15.2)	627 (29.7)	
75-79	1293 (23.6)	768 (22.8)	525 (24.8)	
≥80	2285 (41.7)	1836 (54.85	449(21.3)	< 0.01
Charlson comorbidity i	index (CCI) scor	re		
0	3017 (55.0)	1720 (51.1)	1297 (61.4)	
1	1324 (24.2)	835 (24.8)	489 (23.1)	
≥2	1139 (20.8)	812 (24.1)	327 (15.5)	< 0.01
Previous myelodysplas	tic syndrome			
No	4524 (82.5)	2698 (80.1)	1826 (86.4)	
Yes	959 (17.5)	669 (19.9)	287(13.6)	0.01
Use of hypomethylatin	g agents by diagi	nosis year**		
2005	18 (2.7)	-	18 (7.3)	
2006	41 (6.2)	-	41 (15.9)	
2007	69(10.4)	-	69 (24.3)	

SEER-Medicare 2000-2007

38.6% received therapy

Median age: 78 years

Median OS: 3 mos.

OS treated: 6 mos.

OS untreated: 2 mos.

Allo HSCT: 0.8%

Oran and Weisdorf. *Haematologica* 2012; 97 (12): 1916-1924

The Current AML Treatment Algorithm

VIALE-A Study Design

Eligibility

Inclusion

- Patients with newly diagnosed confirmed AML
- Ineligible for induction therapy defined as either
 - ♦ ≥75 years of age
 - ❖ 18 to 74 years of age with at least one of the co-morbidities:
 - CHF requiring treatment or Ejection Fraction ≤50%
 - Chronic stable angina
 - DLCO < 65% or FEV1 < 65%
 - ECOG 2 or 3

Exclusion

- Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic syndrome
- Favorable risk cytogenetics per NCCN
- Active CNS involvement

Endpoints

Primary

Overall survival

Secondary

- CR+CRi rate
- CR+CRh rate
- CR+CRi and CR+CRh rates by initiation of cycle 2
- CR rate
- Transfusion independence
- CR+CRi rates and OS in molecular subgroups
- Event-free survival

Randomization Stratification Factors

Venetoclax dosing ramp-up

Age (<75 vs. ≥75 years); Cytogenetic Risk (intermediate, Poor); Region

Cycle 1 ramp-up Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg Cycle 2 --- Day 1-28: 400 mg

VIALE A: Overall Survival

VIALE A: Overall Survival in Selected Subsets

VIALE A: Composite Response Rate (CR+CRi)

Aza: Azacitidine; Pbo: Placebo; Ven: Venetoclax; CR: Complete remission; CRi: CR with incomplete-count recovery; CR was defined as absolute neutrophil count >10³/ μ L, platelets >10⁵/ μ L, red cell transfusion independence (TI), and bone marrow with <5% blasts; CRi was defined as all criteria for CR, except for neutropenia $\leq 10^3/\mu$ L or thrombocytopenia $\leq 10^5/\mu$ L. CR + CRi rate was compared using Cochran-Mantel-Haenszel (CMH) test stratified by age (18 – < 75, \geq 75) and cytogenetic risk (intermediate, poor).

VIALE A: Serious Adverse Events and Dose Modifications

	Aza+Ven	Aza+Pbo
Serious AEs in ≥5% of patients, n (%)	N = 283	N = 144
All serious AEs	235 (83)	105 (73)
Febrile neutropenia	84 (30)	15 (10)
Anemia	14 (5)	6 (4)
Neutropenia	13 (5)	3 (2)
Atrial fibrillation	13 (5)	2 (1)
Pneumonia	47 (17)	32 (22)
Sepsis	16 (6)	12 (8)
Any AE leading to:		
Dose discontinuation	69 (24)	29 (20)
Dose interruption*	204 (72)	82 (57)
Dose reduction†	7 (3)	6 (4)
Deaths, n (%)		
≤30 days after first dose of study drug	21 (7)	9 (6)
≤60 days after first dose of study drug	43 (15)	24 (17)
Other, n (%)		
Tumor lysis syndrome††	3 (1)	0

^{*}Dose interruptions commonly due to neutropenia (19%/10%), febrile neutropenia (20%/4%), and thrombocytopenia (10%/4%); interruptions include delays between cycles and reduced duration from 28 to 21 days per cycle for count recovery after marrow leukemia clearance; †Dose reduction for AEs or other medications; †† 3 cases of TLS during ramp up.

Overall Survival from Venetoclax Initiation with Allo HSCT

- **68%** (21/31) of patients remained alive at 12 months posttransplant
- 55% (17/31) of patients that had SCT had posttransplant remission of ≥12 months and 71% (12/17) of those patients remained in remission for ≥2 years
- 69% (18/26) and 59% (13/22) of patients that achieved CR/CRi and CR/CRh, respectively, maintained remission for ≥12 months posttransplant

Pratz K et al. Outcomes after SCT in patients with AML treated with venetoclax-based therapies. ASH 2019

Phase II Study of LoDAC +/- Glasdegib: Overall Survival

Cortes J et al. Leukemia 2019; 33: 379-389.

Should therapy with HMA/venetoclax await mutational analysis in older, UNFIT, treatment-naïve AML patients?

VIALE A: Response and Survival in *IDH1/2*m+ AML

	Ven + Aza n = 79	Pbo + Aza n = 28		
CR+CRh: Median time to first response, mo. (min, max) Median DoR, mo. (95% CI)*	1.0 (0.7, 9.6) 29.6 (16.7, NE)	2.6 (2.1, 3.1) 15.5 (NE)		
CR + CRi: Median time to first response, mo. (min, max) Median DoR, mo. (95% CI)*	1.1 (0.7, 8.8) 29.5 (16.7, NE)	3.4 (2.1, 7.1) 9.5 (3.5, 15.5)		
Median treatment cycles (min,max)	8.0 (1, 37)	2.5 (1, 18)		

Month 6	Month 6 Month 12 Mon	
82.3 (71.9, 89.1)	69.3 (57.8, 78.3)	52.4 (40.4, 63.1)
50.0 (30.6, 66.6)	35.7 (18.9, 53.0)	12.2 (3.2, 27.8)

Pollyea DA et al. ASH 2020; Abstract 461.

^{*}Results generated using data of responders only

Response with Ivo/Aza for Treatment Naïve, IC-Unfit AML

Response parameter	All patients N=23
CR, n (%) [95% CI] Time to CR, median (range), months Duration of CR, median [95% CI], months	13 (56.5) [34.5, 76.8] 3.5 (0.8–6.0) NE [7.7, NE]
CR+CRh, ^a n (%) [95% CI] Time to CR+CRh, median (range), months Duration of CR+CRh, median [95% CI], months CRh, n (%)	15 (65.2) [42.7, 83.6] 2.2 (0.8–6.0) NE [7.7, NE] 2 (8.7)
ORR, n (%) [95% CI] Time to response, median (range), months Duration of response, median [95% CI], months	18 (78.3) [56.3, 92.5] 1.8 (0.7–3.8) NE [9.5, NE]
Best response ^b CR, n (%) [95% CI] CRi/CRp, n (%) MLFS, n (%)	13 (56.5) [34.5, 76.8] 3 (13) 2 (8.7)
OS, 12-month rate, % [95% CI] ^c	82 [59, 93]
Duration of follow-up, median (range), months	9.5 (1.3–24.0)

Newly Diagnosed *IDH2*m AML Unfit for Intensive Chemotherapy: Responses in BEAT AML S3 Cohort

Parameter	Phase 2 Enasidenib 100mg/day N=60	Phase 1b Enasidenib + Azacitidine (n=17)
CR/CRi, n/N (%, 95% CI)	28/60 (47%, 34-60)	7/17 (41%, 18-67)
Overall Response Rate [CR/CRi/MLFS], n/N (%, 95% CI)	30/60 (50%, 37-63)	8/17 (47%, 23-72)
Duration of Response (months) Median, 95% CI	NR, 7.1-NR	NR, 2.5 – NR
Overall Survival (months) Median, 95% Cl	24.4, 10.6-NE	8.9, 5.2-NE

Stein EM et al. ASH 2020; abstract 636.

Enasidenib Plus Azacitidine versus AZA Monotherapy in *IDH2*m+ Newly Diagnosed AML

	ENA + AZA (n=68)	AZA Only (n=33)		
Overall response (CR, CRi/CRp, PR, MLFS), n (%)	48 (71)	14 (42)		
[ORR 95%CI]	[58, 81]	[26, 61]		
P value	0.00	064		
CR, n (%)	36 (53)	4 (12)		
[CR rate 95%CI]	[41, 65]	[3, 28]		
<i>P</i> value	0.00	0.0001		
CRi/CRp, n (%)	7 (10)	4 (12)		
PR, n (%)	3 (4)	4 (12)		
MLFS, n (%)	2 (3)	2 (6)		
Stable disease, n (%)	13 (19)	13 (39)		
Disease progression, n (%)	2 (3)	1 (3)		
Not evaluable / Missing, n (%)	5 (7)	5 (15)		
Time to first response, months, median (range)	1.9 (0.7–9.0)	2.0 (0.8–5.8)		
Time to CR, months, median (range)	5.5 (0.7–19.5)	3.7 (3.0–4.1)		
Duration of response, months, median [95%CI]	24.1 [11.1, NR]	12.1 [2.8, 14.6]		

DiNardo C et al. EHA 2019, presentation \$139

Enasidenib Plus Azacitidine versus AZA Monotherapy in *IDH2*m+ Newly Diagnosed AML

Data cutoff: August 19, 2019

EFS: time from randomization to AML relapse, disease progression (IWG AML 2003 criteria), or death from any cause, whichever occurred first.

VIALE A: Response and Survival in FLT3m+ AML

Median OS,

months (95% CI)

11.5 (6.4 – 23.5)

8.5(6.1-20.3)

Median OS,

months (95% CI)

19.2 (1.8 - NR)

10.0(0.2-14.7)

40 FLT3m+ pts (28 ITD) in AZA/VEN, 22 (13 ITD) in AZA/PBO

Median treatment duration of 7 mo median time to CR/CRh of 1 m (0.8-4.8 mo) Median DOR of CRh 18.3 mo (17.4 in ITD) Median OS 13.3 mo/11.5 ITD

VIALE-A: In all patients (not just FLT3) with composite complete remission, MRD neg occurred in 23.4% (95% CI, 18.6 to 28.8) MRD assessed by flow cytometry, with negativity defined according to ELN guidelines

Konopleva M et al. ASH 2020

0 3 6 9 12 15 18 21 24 27 30 33 36 39

Treatment-naïve *FLT3*m AML: LACEWING Study

Arm A (Gilt alone) closed by sponsor. Aza/Gilt CR 33% (5/15), CR/CRi 67% (10/15)

Trial stopped due to no survival difference between Aza/Gilt and Aza alone

Wang ES et al. ASH Meeting 2020, abstract 27

The Current AML Treatment Algorithm

Induction Therapy for IC-Eligible Adult AML

Randomized, Phase 3 Study of CPX-351 vs 7+3: Design

This analysis reports the prospectively planned final 5-year follow-up results

Subgroup analyses were conducted in patients who achieved remission, those aged 60 to 69 years and 70 to 75 years, and those who proceeded to HCT

 $^{\circ}$ Patients with documented complete remission (CR) or CR with incomplete neutrophil or platelet recovery (CRi) were eligible for consolidation if they had left ventricular ejection fraction of ≥50%, ECOG PS of 0-2, absolute neutrophil count recovered to >500/μL, and platelet count recovered to >50,000/μL. CR was defined as having bone marrow blasts <5%, absence of blasts with Auer rods, absence of extramedullary disease, absolute neutrophil count ≥1.0 × 10 $^{\circ}$ /L, platelet count ≥100 × 10 $^{\circ}$ /L, and independence from red cell transfusions; CRi was defined as having all CR criteria except residual neutropenia (<1.0 × 10 $^{\circ}$ /L) or thrombocytopenia (<100 × 10 $^{\circ}$ /L).

CPX-351^b

Administered as a 90-minute infusion

Induction: 100 units/m² on Days 1, 3, and 5

(Days 1 and 3 for 2nd induction)

Consolidation: 65 units/m² on Days 1 and 3

7+3

Cytarabine + daunorubicin

Cytarabine 100 mg/m²/day continuous infusion

+ daunorubicin 60 mg/m²/day

Induction: 7+3 schedule (5+2 for 2nd induction)

Consolidation: 5+2 schedule

5 Year Update of the Phase 3 Study of CPX-351 vs 7+3: Overall Survival

Lancet JE et al. Lancet Haemat 2021; 8(7): e481-491

Phase 3 Study of CPX-351 vs 7+3: Overall Survival Landmark from HSCT

Lancet JE et al. Lancet Haemat 2021; 8(7): e481-491

Induction Therapy for IC-Eligible Adult AML

ALFA 0701: Update Event free and Overall Survival

- 280 patients with treatment naïve de novo AML, age 50-70
- Induction: DNR 60 mg/m²/d x 3 and Ara-C 200 mg/m²/d x 7 +/- GO 3 mg/m² d 1, 4, 7
- Consolidation: DNR 60 mg/m² d 1 and Ara-C 1 gram/m² q12 hr d 1-4 +/- GO 3 mg/m² d 1
- Only 11 patients proceeded to allo HSCT in CR1 during consolidation

Lambert J, et al. Haematologica 2018

Addition of Gemtuzumab Ozogamicin (GO), an anti CD33 ADC, to AML Induction Chemotherapy

A Meta-Analysis of Data from 3325 Individual Patients in Phase 3 Studies of GO with chemotherapy

Hills RK et al. Lancet Oncol 2014; 15: 686-96.

Induction Therapy for IC-Eligible Adult AML

RATIFY (CALGB 10603): Chemotherapy + Midostaurin or Placebo Newly Diagnosed Patients < 60 Years With FLT3-Mutated AML

- Collaboration with 13 international cooperative groups; 225 sites from 17 countries
 - Alliance, SWOG, ECOG, NCIC CTG, GIMEMA, EORTC, AMLSG, SAL, OSHO, PETHEMA, CETLAM
 - 9 academic FLT3 screening laboratories worldwide

Chemotherapy plus Midostaurin/Placebo for Treatment-Naïve *FLT3*m AML: RATIFY (CALGB 10603)

Median OS

Stone RM, et al. N Engl J Med. 2017;377:454-464.

OS Subgroup Analysis

Toxicity

No difference in early mortality
Higher rate of rash and anemia with mido

Chemotherapy/midostaurin for older FLT3 ITD + AML: Event free survival compared with historical controls

Age 61-70

Age 61-70, censor at HSCT

Induction: 7+3, midostaurin 50 mg bid day 8 -

Consolidation: Cytarabine bid days 1, 3, 5 (3 gm/m² age 61-65, 1 gram/m² age 66-70), midostaurin 50 mg bid day 6 - Maintenance: Midostaurin 50 mg bid for 365 days (after consolidation or after allo HSCT)

Schlenk R, et al. *Blood* 2019; 133(8): 840-851

QUAZAR AML-001: Study design

International, multicenter, placebo-controlled, double-blind, randomized, phase III study that enrolled patients from 148 sites in 23 countries (NCT01757535)

Wei A et al. N Engl J Med 2020; 383: 2526-37. Wei A et al. Blood 2019;134(Supplement2):LBA-3.

QUAZAR: Overall and Relapse-free Survival

Oral AZA 300 mg QD was associated with significantly improved overall survival (OS) (P = 0.0009) and relapse-free survival (RFS) (P = 0.0001) vs. PBO

Wei A et al. N Engl J Med 2020; 383: 2526-37. Wei A et al. Blood 2019;134(Supplement2):LBA-3.

QUAZAR AML-001: RFS by Number of Consolidation Cycles

^{*}RFS estimates were derived using Kaplan—Meier methods and compared for Oral-AZA vs. placebo using log-rank test. Hazard ratios (HRs) and 95% CIs were generated using a stratified Cox proportional hazards model.

Wei A, et al. ASH 2020. Abstract 1036

QUAZAR: Overall survival by baseline MRD status and treatment arm

Treatement with Oral AZA (CC-486) resulted in improved OS from time of randomization compared with PBO in pts who were MRD+ or MRD- at study entry

Roboz GR et al. ASH 2020; abstract 692

QUAZAR: Effect of AZA/PBO on OS and RFS by NPM1 mutation status

Median OS (months) Median RFS (months)

	AZA	РВО	р	AZA	РВО	р
NPM1 mutated	<mark>46.1</mark>	<mark>15.9</mark>	<mark>0.0138</mark>	<mark>23.2</mark>	<mark>6.9</mark>	<mark>0.0098</mark>
NPM1 wild type	19.6	14.6	0.0365	7.7	4.6	0.0029

Dohner H, et al. EHA 2021, abstract S131

QUAZAR: Safety

- Gastrointestinal adverse events (AEs) in the CC-486 arm were most common during the first 2 treatment cycles
- Serious AEs were reported for 34% and 25% of patients in the CC-486 and placebo arms, respectively
- No treatment-related deaths

Wei A et al. *N Engl J Med* 2020; 383: 2526-37. Wei A et al. *Blood* 2019;134(Supplement2):LBA-3.

	CC-486 n = 236		Placebo n = 233		
	All Grades	Grade 3-4	All Grades	Grade 3–4	
Preferred term		n (%)		
Patients with ≥1 AE	231 (98)	169 (72)	225 (97)	147 (63)	
Gastrointestinal					
Nausea	153 (65)	6 (3)	55 (24)	1 (0.4)	
Vomiting	141 (60)	7 (3)	23 (10)	0	
Diarrhea	119 (50)	12 (5)	50 (22)	3 (1)	
Constipation	91 (39)	3 (1)	56 (24)	0	
Hematologic					
Neutropenia	105 (45)	97 (41)	61 (26)	55 (24)	
Thrombocytopenia	79 (34)	53 (23)	63 (27)	50 (22)	
Anemia	48 (20)	33 (14)	42 (18)	30 (13)	
Other					
Fatigue	70 (30)	7 (3)	45 (19)	2 (1)	
Asthenia	44 (19)	2 (1)	13 (6)	1 (0.4)	
Pyrexia	36 (15)	4 (2)	44 (19)	1 (0.4)	
Cough	29 (12)	0	39 (17)	0	

Treatment of AML in Adults

- First, determine the goal of therapy based on patient's clinical status, disease biology, and wishes.
- Some older patients may be cured with time-limited therapy without allo HSCT.
 - Oral azacitidine maintenance therapy delays relapse and can improve survival.
- Older patients may be candidates for allo HSCT after either intensive or less intensive therapies.
- HMA/venetoclax has changed the treatment options for older AML patients.
 - Clinical trials with anti CD47 antibodies, IDHm inhibitors, FLT3m inhibitors, and other targeted therapies may further improve the outcome of these patients