# Treatment Landscape of Waldenström's Macroglobulinemia







Steve Treon MD, PhD, FACP, FRCP
Professor of Medicine
Bing Center for Waldenstrom's Macroglobulinemia
Dana Farber Cancer Institute
Harvard Medical School

#### **Disclosures – Steven Treon**

| Research Support/P.I. | Janssen, Pharmacyclics, BMS          |
|-----------------------|--------------------------------------|
| Consultant            | Janssen, Pharmacyclics, Beigene, BMS |

#### **Manifestations of WM Disease**



≤20% at diagnosis; 50-60% at relapse.

Treon S., Hematol Oncol. 2013; 31:76-80.

# NCCN Guidelines for Initiation of Therapy in WM

- Hb ≤10 g/dL on basis of disease
- PLT <100,000 mm<sup>3</sup> on basis of disease
- Symptomatic hyperviscosity
- Moderate/severe peripheral neuropathy
- Symptomatic cryoglobulins, cold agglutinins, autoimmune-related events, amyloid.

#### **Primary Therapy of WM with Rituximab**

| Regimen                                                 | ORR    | CR    | Median PFS<br>(mo) |
|---------------------------------------------------------|--------|-------|--------------------|
| Rituximab x 4                                           | 25-30% | 0-5%  | 13                 |
| Rituximab x 8                                           | 40-45% | 0-5%  | 16-22              |
| Rituximab/thalidomide                                   | 70%    | 5%    | 30                 |
| Rituximab/cyclophosphamide i.e. CHOP-R, CVP-R, CPR, CDR | 70-80% | 5-15% | 30-36              |
| Rituximab/nucleoside analogues i.e. FR, FCR, CDA-R      | 70-90% | 5-15% | 36-62              |
| Rituximab/Proteasome Inhibitor i.e. BDR, VR, CaRD       | 70-90% | 5-15% | 42-66              |
| Rituximab/bendamustine                                  | 90%    | 5-15% | 69                 |

# WM-centric toxicities with commonly used therapies

| Agent        | WM Toxicities                                                                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rituximab    | <ul> <li>IgM flare (40-60%)-&gt; Hyperviscosity crisis,         Aggravation of IgM related PN, CAGG, Cryos.</li> <li>Hypogammaglobulinemia-&gt; infections, IVIG</li> <li>Intolerance (10-15%)</li> </ul> |
| Fludarabine  | <ul> <li>Hypogammaglobulinemia-&gt; infections, IVIG</li> <li>Transformation, AML/MDS (15%)</li> </ul>                                                                                                    |
| Bendamustine | <ul> <li>Prolonged neutropenia, thrombocytopenia<br/>(especially after fludarabine)</li> <li>AML/MDS (5-8%)</li> </ul>                                                                                    |
| Bortezomib   | <ul> <li>Grade 2+3 Peripheral neuropathy (60-70%);</li> <li>High discontinuation (20-60%)</li> </ul>                                                                                                      |

### Pro-Survival Signaling by Mutated MYD88 in Waldenström's Macroglobulinemia



95-97% of WM patients have mutations in MYD88

### Mutated CXCR4 permits ongoing pro-survival signaling by CXCL12

30-40% of WM patients have mutations in CXCR4



# Multicenter study of Ibrutinib in Relapsed/Refractory WM (>1 prior therapy)



ClinicalTrials.gov Identifier: NCT01614821

### Ibrutinib Activity in Previously Treated WM: Update of the Pivotal Trial (median f/u 59 mos)

|                                     | All Patients | MYD88 <sup>MUT</sup><br>CXCR4 <sup>WT</sup> | MYD88 <sup>MUT</sup><br>CXCR4 <sup>MUT</sup> | MYD88 <sup>WT</sup><br>CXCR4 <sup>WT</sup> | P-value |
|-------------------------------------|--------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|---------|
| N=                                  | 63           | 36                                          | 22                                           | 4                                          | N/A     |
| Overall Response Rate-no. (%)       | 90.5%        | 100%                                        | 86.4%                                        | 50%                                        | <0.01   |
| Major Response Rate-no. (%)         | 79.4%        | 97.2%                                       | 68.2%                                        | 0%                                         | <0.0001 |
| Categorical responses               |              |                                             |                                              |                                            |         |
| Minor responses-no. (%)             | 11.1%        | 2.8%                                        | 18.2%                                        | 50%                                        | <0.01   |
| Partial responses-no. (%)           | 49.2%        | 50%                                         | 59.1%                                        | 0%                                         | 0.03    |
| Very good partial responses-no. (%) | 30.2%        | 47.2%                                       | 9.1%                                         | 0%                                         | <0.01   |
| Median time to response (months)    |              |                                             |                                              |                                            |         |
| Minor response (≥Minor response)    | 0.9          | 0.9                                         | 0.9                                          | 0.9                                        | 0.38    |
| Major response (≥Partial response)  | 1.8          | 1.8                                         | 4.7                                          | N/A                                        | 0.02    |

<sup>\*</sup>One patient had MYD88 mutation, but no CXCR4 determination and had SD.

#### **Ibrutinib in Previously Treated WM: Updated PFS**

#### All patients

# A. Number at risk 63 51 39 35 63 51 39 35 26 19 0 95% CI Survivor function

5 year PFS: 54%5 year OS: 87%

#### **MYD88 and CXCR4 Mutation Status**



Updated from Treon et al, NEJM 2015

#### **Long Term Toxicity Findings (grade >2)**





Increased since original report. 8 patients (12.7%) with Afib, including grade 1. 7 continued ibrutinib with medical management.

#### Responses in Innovate AB Study: Update



<sup>&</sup>lt;sup>a</sup>Following modified 6th IWWM Response Criteria (NCCN 2014); required two consecutive assessments.

| Median time to ≥PR,<br>months (range) | 2<br>(1–28) | 6<br>(2–26) | 2<br>(1–28) | 5<br>(2–17) | 3 (1–19) | 11 (4–18) | 6<br>(1–17) | 6<br>(5–26) |
|---------------------------------------|-------------|-------------|-------------|-------------|----------|-----------|-------------|-------------|
| Median time to ≥MR,                   | 1           | 3           | 1           | 3           | 1 (1–11) | 3         | 2           | 3           |
| months (range)                        | (1–18)      | (1–24)      | (1–18)      | (1–24)      |          | (1–8)     | (1-17)      | (2–17)      |

# Progression-Free Survival Benefit: Impact of MYD88/CXCR4 Genotype



# Ibrutinib induced response in a WM patient with Bing Neel Syndrome

Pretreatment







560 mg po one a day

Posttreatment







|           |                    | Ibrutinib (nM) |        |             |  |
|-----------|--------------------|----------------|--------|-------------|--|
| Study Day | Time post-dose (h) | CSF            | Plasma | %CSF/Plasma |  |
| Day 1     | 0                  | BLQ            | BLQ    | NA          |  |
|           | 2                  | 34             | 1133   | 3.0         |  |
| 1 Month   | 3                  | 16             | 463    | 3.5         |  |
| 4 Months  | 2.5                | 7              | 318    | 2.2         |  |

Mason et al, BJH 2016; ;179(2):339-341

#### **Covalent BTK-inhibitors in WM (Cys481)**









**Ibrutinib** 

**Acalabrutinib** 

Zanubrutinib

**Tirabrutinib** 

|       |               |               | IC <sub>50</sub> /EC <sub>50</sub> (nM) |              |              |
|-------|---------------|---------------|-----------------------------------------|--------------|--------------|
|       | acalabrutinib | ibrutinib     | spebrutinib                             | zanubrutinib | tirabrutinib |
| втк   | 5.1 ± 1.0     | 1.5 ± 0.2     | 2.3 ± 0.5                               | 0.5 ± 0.0    | 5.6 ± 1.0    |
| TEC   | 126 ± 11      | 10 ± 12       | 16 ± 4                                  | 44 ± 19      | 77 ± 7       |
| ITK   | >1000         | 4.9 ± 1.2     | 24 ± 2                                  | 50 ± 5       | >1000        |
| TXK   | 368 ± 141     | 2.0 ± 0.3     | 9.1 ± 2.7                               | 2.2 ± 0.6    | 116 ± 35     |
| вмх   | 46 ± 12       | $0.8 \pm 0.1$ | 1.6 ± 0.4                               | 1.4 ± 0.4    | 4.3 ± 0.4    |
| EGFR  | >1000         | 5.3 ± 1.3     | 199 ± 35                                | 21 ± 1       | >1000        |
| ERBB2 | ~1000         | 6.4 ± 1.8     | >1000                                   | 88 ± 26      | >1000        |
| ERBB4 | 16 ± 5        | 3.4 ± 1.4     | 49 ± 12                                 | 6.9 ± 0.6    | 991 ± 274    |
| BLK   | >1000         | $0.1 \pm 0.0$ | 131 ± 27                                | 2.5 ± 0.4    | 1133 ± 767   |
| JAK3  | >1000         | 32 ± 15       | 5.4 ± 1.1                               | 1377 ± 218   | >1000        |
| hPBMC | 2.9 ± 0.2     | 0.6 ± 0.0     | 7.4 ± 0.7                               | 0.9 ± 0.3    | 6.2 ± 1.9    |
| hWB   | 9.2 ± 4.4     | 5.8 ± 3.0     | 140 ± 85                                | 2.4 ± 0.4    | not assessed |

BLK, B lymphocyte kinase; BMX, bone marrow tyrosine kinase gene in chromosome X; ERBB2, erb-b2 receptor tyrosine kinase; ERBB4, erb-b4 receptor tyrosine kinase; ITK, interleukin-2-inducible T-cell kinase; JAK3, Janus kinase 3: TEC, tyrosine kinase expressed in hepatocellular carcinoma; TXK. T and X cell expressed kinase.

Kaptein et al, ASH 2018; Abstract 1871.

# Acalabrutinib in Treatment Naïve and Previously Treated WM



20 -

14%

MYD88W

group (n=14)

MYD88<sup>L265P</sup>

group (n=36)

21%

group (n=14)

MYD88<sup>L265P</sup> group (n=36) Owen et al., Lancet Hematology 2020

# Acalabrutinib in Treatment Naïve and Previously Treated WM

|                                   | Grade 1–2 | Grade 3 | Grade 4  |
|-----------------------------------|-----------|---------|----------|
| Headache                          | 41 (39%)  | 0       | 0        |
| Diarrhoea                         | 33 (31%)  | 2 (2%)  | 0        |
| Contusion                         | 31 (29%)  | 0       | 0        |
| Dizziness                         | 27 (25%)  | 0       | 0        |
| Fatigue                           | 22 (21%)  | 2 (2%)  | 0        |
| Nausea                            | 22 (21%)  | 2 (2%)  | 0        |
| Upper respiratory tract infection | 23 (22%)  | 0       | 0        |
| Constipation                      | 22 (21%)  | 0       | 0        |
| Arthralgia                        | 20 (19%)  | 1 (1%)  | 0        |
| Back pain                         | 18 (17%)  | 1 (1%)  | 0        |
| Cough                             | 18 (17%)  | 0       | 0        |
| Lower respiratory tract infection | 13 (12%)  | 5 (5%)  | 0        |
| Neutropenia                       | 1 (1%)    | 6 (6%)  | 11 (10%) |
| Pyrexia                           | 17 (16%)  | 1 (1%)  | 0        |
| Vomiting                          | 17 (16%)  | 1 (1%)  | 0        |
| Decreased appetite                | 14 (13%)  | 2 (2%)  | 0        |
| Rash                              | 16 (15%)  | 0       | 0        |
| Pain in extremity                 | 12 (11%)  | 1 (1%)  | 0        |
| Epistaxis                         | 11 (10%)  | 1 (1%)  | 0        |
| Sinusitis                         | 12 (11%)  | 0       | 0        |
| Skin lesion                       | 12 (11%)  | 0       | 0        |
| Dyspepsia                         | 11 (10%)  | 0       | 0        |
| Dyspnoea                          | 10 (9%)   | 1 (1%)  | 0        |
| Erythema                          | 11 (10%)  | 0       | 0        |
| Increased tendency to bruise      | 11 (10%)  | 0       | 0        |

**Afib: 5%** 

No atrial brillation event led to acalabrutinib withholding or discontinuation.

Median follow-up: 27.4 months

#### Zanubrutinib in WM: Phase 2 data in TN and previously treated pts.

| Best Response in WM              | zanubrutinib |                                                      |         |  |  |
|----------------------------------|--------------|------------------------------------------------------|---------|--|--|
|                                  | Overall      | TN                                                   | RR      |  |  |
| Evaluable for efficacy, n        | 73           | 24                                                   | 49      |  |  |
| Median Follow-up                 | 23.9 mo      | 24.8 mo                                              |         |  |  |
| Response Criteria                | (IgM decreas | Mod. 6 <sup>th</sup> IWWM<br>es only, and not extrar | =       |  |  |
| Median Prior Lines of<br>Therapy |              | 0                                                    | 2 (1-8) |  |  |
| ORR                              | 92%          | 96%                                                  | 90%     |  |  |
| MRR                              | 82%          | 87%                                                  | 78%     |  |  |
| CR/VGPR <sup>1</sup>             | 42%          | 29%                                                  | 49%     |  |  |
| PR                               | 40%          | 58%                                                  | 31%     |  |  |

#### **Progression Free Survival (PFS)**



Trotman et al, EHA 2019

#### ASPEN Study Design: Zanubrutinib vs Ibrutinib in MYD88<sup>MUT</sup> WM



BID, twice daily; BTK, Bruton tyrosine kinase; CXCR4, C-X-C Motif Chemokine Receptor 4; MYD88<sup>MUT</sup>, myeloid differentiation primary response gene 88 mutant; PD, progressive disease; QD, daily; R, randomization; R/R, relapsed/refractory; TN, treatment naïve; WM, Waldenström Macroglobulinemia; WT, wild-type.

\*Up to 20% of the overall population.

<sup>1.</sup> Dimopoulos MA, et al. Blood. 2014;124:1404-1411.

#### **ASPEN Study Objectives**

#### **Primary Objective**

- To compare the efficacy of zanubrutinib vs ibrutinib
  - Primary endpoint was CR + VGPR rate in patients with activating mutations (MYD88<sup>MUT</sup>) WM

#### **Secondary Objectives**

- To further compare the efficacy, clinical benefit, and anti-lymphoma effects of zanubrutinib vs ibrutinib
- To evaluate safety and tolerability of zanubrutinib versus ibrutinib as measured by the incidence, timing, and severity of TEAEs according to NCI-CTCAE (version 4.03)

#### **Exploratory Objectives**

- To characterize the PK of zanubrutinib in patients with WM
- To compare QoL by EORTC QLQ-C30 and EQ-5D

AE, adverse event; EORTC QLQ-C30, EORTC Quality of Life Questionnaire - Core Questionnaire; EQ-5D, EuroQoL-5D; MYD88<sup>MUT</sup>, myeloid differentiation primary response gene 88 mutant; NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; PK, pharmacokinetics; QoL, quality of life; TEAE, treatment-emergent AE.

#### **ASPEN:** Demographics and Disease Characteristics

|               |                                                                                                                            | Overall                                        | ITT                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
|               | Characteristics, n (%)                                                                                                     | lbrutinib<br>(n = 99)                          | Zanubrutinib<br>(n =102)                       |
| *             | Age, years median (range) > 65 years > 75 years                                                                            | 70.0 (38, 90)<br><b>70 (70.7)</b><br>22 (22.2) | 70.0 (45, 87)<br>61 (59.8)<br><b>34 (33.3)</b> |
|               | Gender, n (%)<br>Male<br>Female                                                                                            | 65 (65.7)<br>34 (34.3)                         | 69 (67.6)<br>33 (32.4)                         |
|               | Prior Lines of Therapy, n (%) 0 1-3 >3                                                                                     | 18 (18.2)<br>74 (74.7)<br>7 (7.1)              | 19 (18.6)<br>76 (74.5)<br>7 (6.9)              |
|               | Genotype by central lab*, n (%)  MYD88 <sup>L265P</sup> /CXCR4 <sup>WT</sup> MYD88 <sup>L265P</sup> /CXCR4 <sup>WHIM</sup> | 90 (90.9)<br>8 (8.1)                           | 91 (89.2)<br>11 (10.8)                         |
|               | IPSS WM¹ Low Intermediate High                                                                                             | 13 (13.1)<br>42 (42.4)<br>44 (44.4)            | 17 (16.7)<br>38 (37.3)<br>47 (46.1)            |
| $\Rightarrow$ | Hemoglobin ≤ 110 g/L                                                                                                       | 53 (53.5)                                      | 67 (65.7)                                      |

CXCR4, C-X-C Motif Chemokine Receptor 4; ITT, intention-to-treat; IPSS WM, International Prognostic Scoring System for Waldenström macroglobulinemia; MYD88, myeloid differentiation primary response gene 88; NGS, next-generation sequencing.

<sup>\*&</sup>quot;Wildtype-blocking PCR" for MYD88 and Sanger sequencing for CXCR4 using bone marrow aspirates. One patient had local NGS testing results of MYD88 L265P/ CXCR4 Unknown.

1. Morel et al. Blood. 2009;113:4163-4170.

#### ASPEN: Efficacy – Response by IRC (Data cutoff: 31 August 2019)

Superiority in CR+VGPR rate compared to ibrutinib in relapsed/refractory population (primary study hypothesis) was not significant\*



CR, complete response; IRC, independent review committee; ITT, intention-to-treat; MRR, major response rate; MR, minor response; ORR, overall response rate; PD, progressive disease; PR, partial response; R/R, relapsed/refractory; SD, stable disease; VGPR, very good PR.

Overall concordance between Independent review and investigators = 94%

\* All other *P* values are for descriptive purposes only. †Adjusted for stratification factors and age group.

Tam et al, ASCO 2020

### ASPEN: Secondary Efficacy Endpoints Assessment of Response According to Investigator and IgM Analysis

#### **Investigator-Assessed Response**





#### **IgM Reduction**

• Area-under-the-curve (AUC) for IgM reduction over time was significantly greater for zanubrutinib vs ibrutinib (p=0.037)

CR, complete response; EMD, extramedullary disease; IgM, Immunoglobulin M; IRC, independent review committee; MRR, major response rate; MR, minor response; ; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; SPEP, serum protein electrophoresis; VGPR, very good PR.

\*Excluded two patients with VGPR by IRC: MR (EMD present) and PR (IgM assessment by local SPEP M-protein)

\*Adjusted for stratification factors and age group. *P* value is for descriptive purpose only.

#### ASPEN: Progression-Free and Overall Survival in ITT population



#### **ASPEN: AE Categories of Interest (BTKi Class AEs)**

|                                                | All C                 | Grades                    | Grad                  | de ≥ 3                    |
|------------------------------------------------|-----------------------|---------------------------|-----------------------|---------------------------|
| AE <i>Categori</i> es, n (%)<br>(pooled terms) | Ibrutinib<br>(n = 98) | Zanubrutinib<br>(n = 101) | lbrutinib<br>(n = 98) | Zanubrutinib<br>(n = 101) |
| Atrial fibrillation/ flutter <sup>†</sup>      | 15 (15.3)             | 2 (2.0)                   | 4 (4.1)               | 0 (0.0)                   |
| Diarrhea (PT)                                  | 31 (31.6)             | 21 (20.8)                 | 1 (1.0)               | 3 (3.0)                   |
| Hemorrhage                                     | 58 (59.2)             | 49 (48.5)                 | 8 (8.2)               | 6 (5.9)                   |
| Major hemorrhage <sup>a</sup>                  | 9 (9.2)               | 6 (5.9)                   | 8 (8.2)               | 6 (5.9)                   |
| Hypertension                                   | 17 (17.3)             | 11 (10.9)                 | 12 (12.2)             | 6 (5.9)                   |
| Neutropenia <sup>b†</sup>                      | 13 (13.3)             | 30 (29.7)                 | 8 (8.2)               | 20 (19.8)                 |
| Infection                                      | 66 (67.3)             | 67 (66.3)                 | 19 (19.4)             | 18 (17.8)                 |
| Second Malignancy                              | 11 (11.2)             | 12 (11.9)                 | 1 (1.0)               | 2 (2.0)                   |

Higher AE rate in bold blue with ≥ 10% difference in any grade or ≥ 5% difference in grade 3 or above.

No tumor lysis syndrome was reported. Opportunistic infection ibrutinib (n=2), zanubrutinib (n=1).

AE, adverse event, BTKi, Bruton tyrosine kinase inhibitor, PT, preferred term.

<sup>&</sup>lt;sup>a</sup>Defined as any grade ≥ 3 hemorrhage or any grade central nervous system hemorrhage.

blncluding PT terms of neutropenia, neutrophil count decreased, febrile neutropenia, agranulocytosis, neutropenic infection and neutropenic sepsis.

<sup>†</sup> Descriptive two-sided P-value < 0.05.

### Strategies to Enhance BTK Inhibitors



# Phase I/II Trial of Ulocuplumab and Ibrutinib in CXCR4 mutated patients with symptomatic WM





| Dose Level             | Ibrutinib   | Ulocuplumab Cycle 1 | Ulocuplumab Cycles 2-6   |
|------------------------|-------------|---------------------|--------------------------|
| Level 1 –Starting dose | 420mg PO DQ | 400 mg weekly       | 800 mg every other week  |
| Level 2                | 420mg PO DQ | 800 mg weekly       | 1200 mg every other week |
| Level 3                | 420mg PO DQ | 800 mg weekly       | 1600 mg every other week |

ClinicalTrials.gov Identifier: NCT03225716

### Responses to Ibrutinib and CXCR4 Inhibitor Ulucuplomab in Symptomatic CXCR4 mutated WM patients



**Median prior therapies: 0 (range 0-1)** 

**DFCI Unpublished Data** 

### Mavorixafor in combination with ibrutinib in CXCR4 mutated WM



- Non-competitive, allosteric, small molecule antagonist of CXCR4
- Orally Bioavailable; mean t<sub>1/2</sub> of ~23 hours
- High volume of distribution

### Venetoclax (ABT-199) augments ibrutinib induced apoptosis





Higher BCL2 levels in MYD88 mutated WM







### Phase II Study of Venetoclax in Previously Treated WM

J. Castillo

Multicenter Study: Cornell (John Allan, Rick Furman); City of Hope (Tanya Siddiqi)

|                   | All patients | Prior BTK inhibitor |            | CXCR4 mutations |            |
|-------------------|--------------|---------------------|------------|-----------------|------------|
| Response          | n=31         | No (n=15)           | Yes (n=16) | No (n=14)       | Yes (n=17) |
| Overall (≥Minor)  | 27 (90%)     | 14 (93%)            | 13 (81%)   | 13 (93%)        | 14 (82%)   |
| Major (≥Partial)  | 25 (83%)     | 13 (87%)            | 12 (75%)   | 12 (86%)        | 13 (76%)   |
| Very good partial | 6 (20%)      | 5 (33%)             | 1 (6%)     | 4 (29%)         | 2 (12%)    |
| Partial           | 19 (63%)     | 8 (54%)             | 11 (69%)   | 8 (54%)         | 11 (69%)   |
| Minor             | 2 (7%)       | 1 (6%)              | 1 (6%)     | 1 (6%)          | 1 (6%)     |
| Time to response  | 1.9 months   | 1.1 months          | 3.8 months | 1.3 months      | 2.1 months |

**BM** involvement

At baseline, median 40% (4-95%). At best response, median 3% (0-50%).

Castillo et al, 17<sup>th</sup> IMW 2019

### Phase II Study of Venetoclax in Previously Treated WM





Median 18 months. Range 1-30 months.

Castillo et al, 17th IMW 2019

#### Ibrutinib and Venetoclax in Treatment Naïve WM

24 months



Jorge Castillo, PI (DFCI)

or off study

#### **Genomic Based Treatment Approach to Symptomatic Treatment Naïve WM**



- Rituximab should be held for serum IgM ≥4,000 mg/dL
- Benda-R for bulky adenopathy or extramedullary disease.
- PI based regimen for symptomatic amyloidosis, and possible ASCT as consolidation.
- Rituximab alone, or with ibrutinib if MYD88<sup>Mut</sup> or bendamustine for IgM PN depending on severity and pace of progression.
- Maintenance rituximab may be considered in patients responding to rituximab based regimens.

### Genomic Based Treatment Approach to Symptomatic Relapsed or Refractory WM



- Nucleoside analogues (NA) should be avoided in younger patients, and candidates for ASCT.<sup>1</sup>
- ASCT may be considered in patients with multiple relapses, and chemosensitive disease.

Treon et al, JCO 2020