

Gene Editing: The Next Frontier for CAR T

Edward A. Stadtmauer, MD Chief, Hematologic Malignancies Section Professor of Medicine Abramson Cancer Center University of Pennsylvania Philadelphia, Pa

T. HOWARD LEE KEYNOTE LECTURE 17th Annual Indy Hematology Review Saturday, August 15th 2020

Adoptive T cell therapy (three major approaches)

June et al Sci Trans Med 2015

CAR for B Cell Malignancy: Autologous T Cells Transduced w/ Anti-CD19 Receptor **Spliced to CD3 zeta and 4-1BB Signaling Domains**

to deliver

signaling domains augments proliferation and survival

4-1BB

AP

Anti-CD3/anti-CD28 mab coated bead stimulation (artificial DC) Expands the cells

Adapted from: Maus MV, et al. Blood. 2014;123:2625-35.

Successes of CART19 Therapy

Ref	Program/ CAR	Population	Response		
Acute Lymph	noblastic Leu	kemia			
Maude et al.	PENN	N=30(ALL)	CR=90%		
NEJM 2014	4-1BB	Peds&Adults			
Davila et al. SciTrMed 2014	MSK CD28	N=16 (ALL) Adults	CR=88%		
Lee et al.	NCI	N=21 (ALL)	CR=67%		
Lancet 2015	CD28	Peds&AYA	Intent to Treat		
Turtle et al.	Seattle	N=30	CR=93%		
JCI 2016	4-1BB	Adults			
Non-Hodgkins Lymphoma & Chronic Lymphocytic Leukemia					
Kochenderfer	NCI	N=15 (NHL/CLL)	CR=53%		
JCO 2015	CD28		PR=27%		
Porter et al.	PENN	N=14(CLL)	CR=29%		
SciTrMed2014	4-1BB		PR=29%		

ELIANA: CAR T-cell Therapy in ALL

- Phase II trial of CAR T-cell
 therapy: tisagenlecleucel
- 79 pediatric/young adult patients (age 3-23) with relapsed or refractory CD19+ B-cell acute lymphoblastic leukemia (ALL)
- Median duration of remission and median overall survival remain unreached

24 month follow up analysis \rightarrow

	Event Free Survival	Overall Survival
12 months	66%	76%
18 months	66%	70%
24 months	62%	66%

Grupp SA, et al. Presented at 60th American Society of Hematology Annual Meeting; December 1-4, 2018; San Diego, CA. Abstract 895. Maude SL, et al. N Engl J Med. 2018;378:439-448.

Adults wih ALL treated with CART-19

- Demographics:
 - Median age 34 YO (range 20-70)
 - Median of 3 prior regimens (blina/HSCT in >30%)
- 3 cohorts
 - Low dose (LD)
 - High dose, single (HDS)
 - High dose, fractionated (HDF)
- CR rate 69%
 - HDF 90% (18/20)
 - LD + HD = 40% (6/15)
 - All CRs MRD(-) by flow (<0.01%)

JULIET: Tisagenlecleucel in DLBCL

 Phase II trial of CAR T-cell therapy: tisagenlecleucel in 93 adult patients with relapsed or refractory DLBCL

TRANSCEND NHL 001: Study Design

Pivotal multicenter phase I study

 100×10^6 CAR+ T-cells

 150×10^6 CAR+ T-cells

DL2

DL3

- AEs, ORR by IRC
- Secondary endpoints
 - CR rate by IRC, DoR, PFS, OS, PK

 100×10^{6}

CAR+T-cells

DL2

DL3

TRANSCEND NHL 001: Response and Durability by IRC

Efficacy-Evaluable Patients (N = 256)				
ORR (95% CI)	73 (67-78)			
CR rate (95% CI)	53 (47-59)			
Time to first CR or PR, median mos (range)	1.0 (0.7-8.9)			
DoR at 6 mos, % (95% Cl) 60.4 (52.6-67.3)				
DoR at 12 mos, % (95% Cl) 54.7 (46.7-62.0)				

Slide credit: clinicaloptions.com

Overview of Patient Data

Baseline Characteristics

Characteristic	NHL (N=116) n (%)
Median Age (range)	65 (15-89)
Male / Female	70 (60) / 46 (40)
Double/triple hit lymphoma	48 (41)
Transformed lymphoma	31 (27)
Disease status prior to tisagenlecleucel	
Refractory/Relapsed	37 (32) / 71 (61)
Prior autologous / allogeneic HCT	28 (24) / 5 (4)
Time from diagnosis to CAR T therapy (median)	15 months
Time from manufacturing start to infusion (median)	32 days

Lymphodepleting Therapy

Therapy	NHL (N=116) n (%)
Cyclophosphamide + <u>fludarabine</u>	103 (89)
Bendamustine	6 (5)
Cyclophosphamide + other ^a	4 (4)
Nitrosourea	1 (<1)
Cyclophosphamide	1 (<1)
Not reported	1 (<1)

^aOthers: cytarabine, monoclonal antibody

Responses and Duration

Safety

Frequency of Neurotoxicity by Grade (ICANS scale)

All Patients Antiepileptics Corticosteroids

Timing	CRS	Neurotoxicity
Median time to onset in days (range)	4 (2-14)	8 (4-27)
Median duration in days (range)	5 (4-8)	14 (5-25)

Use of Bendamustine for Lymphodepletion before Tisagenlecleucel (anti-CD19 CAR T cells) for Aggressive B-Cell Lymphomas

- 28 pts received commercially supplied tisa-cel with bendamustine as LD chemotherapy between June 2018 and June 2019
- Bendamustine dose was 90 mg/m2 intravenously daily for 2 days in 23/28 (82%) pts with remaining 5/28 (18%) pts receiving lower doses
- Our institutional experience demonstrates that bendamustine for LD chemotherapy prior tisa-cel:
 - Achieves adequate lymphodepletion
 - Allows outpatient administration
 - Performs well outside of clinical trial settings with comparable response rates to pivotal trials
 - Has a favorable safety profile

Use of Bendamustine leads to less grade 3/4 cytopenias and more lymphodepletion

Svoboda et al. ASH 2019, Abstract 1606

ZUMA-2 Study Design

*Administered after leukapheresis and completed < 5 days before initiating conditioning chemotherapy; PET-CT was required post-bridging.

^b Bone marrow biopsy was done at screening and if positive, not done, or indeterminate, a biopsy was needed to confirm CR.

AE, adverse event; CAR, chimeric antigen receptor, DOR, duration of response; EQ-5D, European Quality of Life-5 Dimensions; IRRC, Independent Radiology Review Committee; IWG, International Working Group; MCL, mantle cell lymphoma; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, oral; R/R, relapsed/refractory.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068. 2. Cheson BD, et al. J Clin Oncol. 2007;25:579-586.

ZUMA-2 Patient Eligibility

Key Inclusion Criteria

R/R MCL defined as

- Disease progression after last regimen or
- Failure to exhibit a CR or PR to the last regimen
- 1 5 Prior therapies that must have included
 - An anthracycline- or bendamustine-containing chemotherapy and
 - Anti-CD20 monoclonal antibody therapy and
 - Ibrutinib or acalabrutinib.
- > 1 Measurable lesion
- Age ≥ 18 years
- ECOG of 0 or 1
- Adequate bone marrow, renal, hepatic, pulmonary, and cardiac function
- ALC ≥ 100/µL

CAR, chimeric antigen receptor; CNS, central nervous system; CR, complete response; ECDG, Eastern Cooperative Oncology Group performance status; MCI, mantle cell lymphoma; PR, partial response; R/R, relapsed/refractory; SCT, stem-cell transplant,

Key Exclusion Criteria

Prior CD19-targeted therapy

Exclusion Criteria	Characteristic	N = 68
	Median no. of prior therapies (range)®	3 (1-5)
Prior allogeneic SCT	≥ 3, n (%)	55 (81)
	Anthracycline or bendamustine, n (%)	67 (99)
Prior CD19-targeted therapy	Anti-CD20 mAb, n (%)	68 (100)
Prior CAR T cell therapy	Relapsed after autologous SCT	29 (43)
ne en neere	BTKi, n (%)	68 (100)
Clinically significant infection	Ibrutinib ⁶	58 (85)
ister of a support one in the mark by Mol as	Acalabrutinib	16 (24)
History of or current CNS involvement by MCL or	Both	6 (9)
orner civo disolders	BTKi refractory, n (%)	46 (68)
	Refractory to ibrutinib	38 (56)
	Refractory to acalabrutinib	8 (12)
	BTKi relapsed, n (%)	22 (32)
	Relapse while on drug	14 (21)
	Relapse > 30 days after discontinuing drug	5 (7)
netformance status: M°1 mantle cell knochona: 00 nartial seconda: 0/0 rainned babasto	Intolerant but with evidence of PD	3 (4)

ORR by IRRC Assessment Was 93% (95% CI, 84 – 98) and CR Rate Was 67% (95% CI, 53 – 78)

Investigator-assessed ORR in N = 60 was 88% (CR rate 70%), with 95% and 90% concordance between IRRC- and investigator-assessed ORR and CR rate, respectively. IRRC-assessed ORR in ITT (N = 74) was 85% (CR Rate 59%). CR, complete response; IRRC, independent Radiology Review Committee; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Duration of Response

- The median DOR has not been reached after a median follow-up of 12.3 months
 - 57% of all patients and 78% of patients with a CR remain in remission
- The first 28 patients treated had a median follow-up of 27.0 months (range, 25.3 – 32.3)
 - 43% remain in continued remission without additional therapy

CR, complete response; DOR, duration of response.

Progression-Free Survival and Overall Survival

Median PFS and median OS were not reached after a median follow-up of 12.3 months

13

BCMA CAR T cells – initial studies, refractory pts

Trial	n	CAR	Condi- tioning	# lines	% hi risk†	Dosing	ORR	ORR (optimal doses)	VGPR/CR (optimal doses)
NCI ¹	26*	Murine, CD3/CD28	Cy/Flu	7.5	42%	0.3 – 9 x 10 ⁶ /kg	58%	81% (13/16)	63% (10/16)
Penn ²	25	Human, CD3/41BB	None or Cy	7	76%	0.5 – 5 x 10 ⁸	48%	64% (7/11)	36% (4/11)
Bluebird ³	43	Human, CD3/41BB	Cy/Flu	7.5	40%	0.5 – 8 x 10 ⁸	77% (30/39)	96% (21/22)	86% (19/22)

*2 treated twice; counted separately for response. ⁺ FISH +t(4;14), t(14;16), del 17p

Trial	n	CRS %	CRS G3-4 %	Neuro tox %	Neuro tox G3-4 %	Tocilizu mab
NCI ¹	26*	73%	23%	NR	12%	19%
Penn ²	25	88%	32%	32%	12%	28%
Bluebird ³	43	63%	5%	33%	2%	21%

*excluded high tumor burden in last 14 pts. NR = not reported

CANCER CENTER

BCMA Directed CAR T Studies: ASH 2019, ASCO 2020

CRR, complete response rate; Cy, cyclophoxphamide; DOR, duration of response; Fiu, fludarabine; GEP in BM, gene expression profile in bone marrow; HEOR, health economics and outcomes research MD, Immanomodulatory drug; MWG, International Mayloma Working Group; MBO, Iminimal residual disease; DRR, overall response rate; CS, overall survival; PD, progressive disease; PFS, progressive resurvival; PP, pharmacokinetic; Ogo, quality of lites. Defined a documented disease progression daring or within 60 d from last does of prior antimyeloma regimen. "Patients were required to be hospitalized for 14 d post-infusion. Ide-cel retreatment waillowed at disease progression for best response of at least stable disease. By next-generation sequencing.

EudraCT: 2017-002245-29 ClinicalTrials.gov: NCT03361748

EVOLVE: Study Design

Mailankody, ASCO 2020, Abstr 8504

CARTITUDE-1: Phase 1b/2 Study Design

Primary Objectives

- Phase 1b: Characterize safety and confirm phase 2 dose as informed by the LEGEND-2 study
- Phase 2: Evaluate efficacy of JNJ-4528

Key Eligibility Criteria

- Progressive MM per IMWG criteria
- ECOG PS <1
- Measurable disease
- Received ≥3 prior therapies or double refractory Prior PI, IMiD, anti-CD38 therapy
- Median administered dose = 0.73x10⁶ (0.52 - 0.89x10⁶) CAR+ viable T cells/kg
- Median follow-up at data cut-off = 6 mo (3 14)

Follow-up

the cure is wit

ABRAMSON CANCER CENTER

Similar approach in 3 studies:

R/R MM Steady state T cell collection CY/FLU lymphodepletion Single infusion

Patient Characteristics

	KarMMa: idecabtagene vicleucel (n=128)	EVOLVE: orvacabtagene autoleucel (n=62)	CARTITUDE-1: JNJ-4528 (n = 29)
Age	61 (33-78)	61 (33-77)	60 (50-75)
High Risk Cytogenetics, %	35	41*	27
Tumor Burden in BM, %	>50% PC = 51	-	≥60% PC = 24
Extramedullary PCs, %	39	23	10
Median prior lines of therapy	6 (3-16)	6 (3-18)	5 (3-18)
Triple refractory, %	84	94	86
Bridging therapy, %	88	63	79
Unique properties	Human BCMA, 4-1BB, CD3z	Modified spacer, CD4:CD8 enriched for CM	Median cell dose 0.72x10⁶ cells/kg 2 BCMA single chain antibodies

BCMA Directed CAR T Studies: ASH 2019, ASCO 2020

Response Rates

	KarMMa	EVOLVE	CARTITUDE-1
↓ ANC ≥G3, %	89	90	100
↓ plts ≥G3, %	52	47	69
CRS: all, ≥G3,%	84,6	89, 3	93, 7
Med. time to CRS, duration, days	1 (1-12) 5 (1-63)	2 (1-4) 4 (1-10)	7 (2-12) 4 (2-64)
ICANS: all, ≥G3,%	17, 3	13, 3	10, 3
HLH/MAS, %		5	? 7 (lfts)
Infections: all, \geq G3 %	69,	40, 13	, 19
Toci/steroid/ anakinra use, %	52/15/0	76/52/23	79/21/ <mark>21</mark>

	KarMMa (n = 128)	EVOLVE (n = 62)	CARTITUDE-1 (n = 29)
ORR, %	73 (66-81)	92	100
sCR/CR, %	33	36	86
MRD neg ≥10 ⁻⁵ , % (of evaluable)	94	84	81
PFS/DoR, months	8.8/10.7	NR*	NR**
Screened Apheresed Treated	150 140 128		35 35 29

BCMA Directed CAR T Studies: KarMMa

Duration of Response, Progression Free and Overall Survival

CAR+ T Cell Expansion, Persistence, and Peak Exposure

8

	Mo 1	Mo 3	Mo 6	Mo 9	Mo 12
Evaluable patients, n	118	100	49	27	11
Patients with detectable vector, n (%)	117 (99)	75 (75)	29 (59)	10 (37)	4 (36)

Peak Vector Copies in Responders (≥PR) vs Nonresponders (<PR)

- Median peak CAR+ T cell expansion was at 11 d
- Median expansion increased at higher target doses with overlapping profiles
- Peak exposure higher in responders than nonresponders
- Durable persistence was observed up to 1 y

Data cutoff: 19 April 2019. Pharmacokinetic (PK) analysis population (N=127). One patient died on day 4 and had no evaluable PK samples and was therefore excluded. Error bars represent interquartile range. BL, baseline; C_{max}, maximum concentration; LLOQ, lower limit of quantitation; M, month.

EVOLVE: Tumor Burden Reduction According to Dose

- Serologic responses (serum or urine paraprotein, free light chains) were observed in all patients treated at 450 x 10⁶ and 600 x 10⁶ dose levels
- Orva-cel activity not impacted by high baseline sBCMA
 - 12/12 patients achieved \geq PR; 8/12 \geq VGPR

Mailankody. ASCO 2020. Abstr 8504..

CARTITUDE-1: Duration of Response

AML=acute myeloid leukemia (biphenotypic); PD=progressive disease; PFS=progression-free survival

BCMA CAR T cells – lessons from initial studies

• Probably not curative in refractory patients

ABRAMSON CANCER CENTER

🞇 Penn Medicine

Why not more durable responses?

CAR-intrinsic factors

- Binding affinity, epitopes
- Tonic signaling
- Co-stimulation

T-cell intrinsic factors

- Pre-manufacturing
- Post-manufacturing
- Post-infusion

Tumor-intrinsic factors

- Myeloma cell
- Microenvironment

Other

• Lymphodepletion regimen?

Background

- Autologous T cells genetically modified with a lentiviral vector to express affinity-enhanced T cell receptors (TCRs) or chimeric antigen receptors (CAR T cells) have shown great promise for the treatment of cancer
- Unfortunately, CAR T is not always successful. Lack of response to adoptive T cell therapy is due in some cases to intrinsic autologous T cell defects, poor expansion and persistence or the inability of these cells to function optimally in a strongly immunosuppressive tumor microenvironment
- By combining the tools of synthetic biology such as TCRs and CRISPR/Cas9, we have an unprecedented
 opportunity to optimally program T cells and improve adoptive immunotherapy

Big Questions in the Field

- Is it <u>feasible</u> to generate multiplexed CRISPRedited T cells at the scale needed for a clinical infusion product?
- Can patients receive such a T cell product <u>safely</u> following lymphodepletion?
- Will these cells <u>expand</u>, <u>persist</u> and <u>elicit</u> <u>anti-tumor activity</u> in patients?

First-in-Human Assessment of Feasibility and Safety of Multiplexed Genetic Engineering of Autologous T Cells Expressing NY-ESO -1 TCR and CRISPR/Cas9 Gene Edited to Eliminate Endogenous TCR and PD-1 (NYCE T cells) in Advanced Multiple Myeloma (MM) and Sarcoma

Edward Stadtmauer, MD, Adam Cohen, MD, Kristy Weber, MD, Simon Lacey, PhD, Vanessa Gonzalez, J. Joseph Melenhorst, PhD, Joseph Fraietta, PhD, Gabriela Plesa, MD, PhD, Joanne Shea, Tina Matlawski, RN, Amanda Cervini, RN, Patricia Mangan, CRNP, Avery Gaymon, Stephanie Desjardins, Eric Lancaster, MD, January Salas-Mckee, Jun Xu PhD, Megan Suhoski, PhD, Andrew Fesnak, MD, Matthew O'Rourke, Anne Lamontagne, Don Siegel, MD, PhD, Regina Young, PhD, Anne Chew, PhD, Christopher Nobles, PhD, Frederic Bushman, PhD, Howard Chang, MD, PhD, Ansuman Satpathy, MD, PhD, Yangbing Zhao, PhD, MD, Bruce Levine, PhD, Wei-Ting Hwang, PhD, Elizabeth Hexner, MD, MS and Carl June, MD

Division of Hematology-Oncology, Department of Medicine Departments of Orthopedic Surgery, Microbiology, Neurology and Pathology Center for Cellular Immunotherapies Abramson Cancer Center, University of Pennsylvania Philadelphia, PA, USA

ASH December 7, 2019 and Science February 28, 2020

Generation of a Novel NY-ESO-1 Transgenic T cell Receptor (TCR)

- Expression of NY-ESO-1 and LAGE-1, cancer testis antigens, is limited to a variety of cancers and germ cells of the testis
- NY-ESO-1 and LAGE-1 genes encode very homologous proteins (common SLLMWTTQC epitope)
- Studies of NY-ESO-1 TCR-expressing T cells show safety and evidence of anti-tumor activity in melanoma, sarcoma and myeloma
- Lack of long-term durable responses underscores the need to improve the clinical efficacy of this approach

Robbins et al, Clin. Cancer Res. 2015; D'Angelo, et al, Can. Discov. 2018

- SLLMWITQC

Patient T cell

Hypothesis and Pre-clinical Work

- We hypothesized disease progression despite T cell therapy was associated with T cell exhaustion and lack of T cell persistence, which may be mediated by PD-1
- Therefore, knock-out of 3 genes would enhance the efficacy and persistence of the NY-ESO-1 directed T cells ٠
 - Removal of genes encoding the endogenous TCR, TCRα (TRAC) and TCRβ (TRBC), would reduce TCR mispairing, thereby enhancing NY-ESO-1 TCR activity and preventing autoimmunity
 - Removal of PD-1 (*PDCD1*) would increase expansion and anti-tumor potency, while reducing T cell hypofunction
- We previously demonstrated CRISPR/Cas9 and TRAC, TRBC and PDCD1 targeting gRNAs could be successfully ٠ introduced via electroporation in preclinical models to disrupt gene expression

CRISPR/Cas9 Editing of T cells

Overall Survival

Ren et al, Clin. Cancer Res. 2016

- Primary:
 - Determine <u>safety profile</u> of a single infusion of NYCE T cells
 - Evaluate manufacturing feasibility of NYCE T cells
- Secondary Clinical:
 - Describe <u>anti-tumor responses and survival</u> after infusion in advanced cancer
- Secondary Exploratory/Laboratory:
 - Characterize NYCE T cells with respect to their expansion, persistence, trafficking, phenotype and function
 - Describe the incidence of immunogenicity
 - Evaluate the bioactivity of NYCE T cells
 - Follow the dynamics of the T cell repertoire

Study Schema: <u>NY-ESO-1-redirected</u> <u>CRISPR</u> <u>Edited</u> T Cells (NYCE T Cells)

Stadtmauer et al, Science, 2020

Manufacturing NYCE T cells: Multiplexed Genomic Editing

- Autologous T cells
- Anti-CD3/CD28 bead stimulation
- Electroporation with ribonucleoprotein (RNP) complexes:
 - TRAC/TRBC/PDCD1 gRNAs + Cas9 Protein
- Transduction with NY-ESO-1 TCR lentiviral vector
- Expansion of engineered T cells

Cell Product Release Criteria

- Viability: ≥ 70%
- NY-ESO TCR Transduction Efficiency (V β 8 Flow Cytometry): \geq 2%
- NY-ESO TCR Transduction Efficiency (WPRE qPCR): \geq 0.02 \leq 5 Avg. copies / cell
- Residual Beads: ≤ 100 beads / 3 x 10⁶ cells
- Endotoxin Content: ≤ 3.5 EU / mL
- Microbial Contamination: Negative
- Long-term Culture: No growth in the presence of IL-2 (no cell transformation)
- Replication Competent Lentivirus (VSV-G): < 50 Avg. copies / µg DNA
- TRAC, TRBC, PDCD1 Disruption: Detectable
- Residual Cas9 Protein: Decreasing concentration from Day 0 to cell harvest

Study flow: Study course for participants from pretreatment consent to treatment

🞇 Penn Medicine

Stadtmauer et al, Science, 2020

Pretreatment History of Infused Subjects

Patient	Gender/ Age	Diagnosis	Clinical Sites	Prior Therapy	Prior Transplant/Surgery	LAGE-1/NY-ESO-1 (qPCR)/ NY-ESO-1 (IHC)
25416-35	Female/ 66 years	IgG kappa MM 2004	BM, lytic bone lesions	Lenalidomide, pomalidomide, bortezomib, carfilzomib, daratumumab, panabinostat (8 lines)	ASCT x 3	Pos/Pos/Neg
25416-39	Male/ 66 years	Myxoid/round cell lipo- sarcoma 2012	Abdominal /pelvic masses	Doxorubicin, ifosfamide, XRT 60-Gy, trabectedin, gemcidabine, taxol, XRT	Resection/debulking x 2, left nephrectomy and partial sigmoid resection	Not Done (ND)/ ND/Pos
25416-07	Female/ 62 years	Kappa light chain MM 2009	BM, lytic bone lesions	Lenalidomide, pomalidomide, bortezomib, carfilzomib, daratumumab, anti-CD38 immunoconjugate (6 lines)	ASCT x 2	Pos/Pos/Neg

Stadtmauer et al, Science, 2020

All photos used with permission 39

NYCE T cell Infusion Product Characteristics: Feasible

Α

Penn Medicine

NYCE T cell Infusion Product Potency, Residual Cas9 Content or Immunogenicity

в

А

🐺 Penn Medicine

Stadtmauer et al, Science, 2020

В

A

• Results show that translocations are present at day 5, but significantly <u>decrease</u> in frequency at harvest

•Suggests translocations decrease T cell fitness

Fidelity of CRISPR-Cas9 gene editing.

Levels: All Align, Pileup Align, Target Matched Flanking Pairs

С

TRAC gRNA + Cas9

T <mark>gt gct agacat gaggt ct a</mark> ngg	Target	Abund.	Gene ID
	On	7,778	TRA*~
GA A A A	Off	7	CLIC2*
. TA T TA TT. T	Off	6	LINC00583
C. G G. AT A. GA.	Off	5	C10orf67
. T. AG T. CA. C	Off	5	LOC100131939
. C TT T. A. A CT.	Off	5	ANKS1B*
ATA G T G. G. T	Off	3	IQCJ-SCHIP1*
TT C A. C G	Off	3	ADCY10*
AA T	Off	2	LDAH*
<mark>G.</mark> СА Т. ТС <mark>С</mark> .	Off	2	MRPS27*

•The targeted double stranded breaks/cleavage sites are on chromosomes 2, 7, and 14.

•93.91% is an estimate of the number of incorporations associated with the on-target site.

•Most off target insertions were at a site within the transcription unit of the specific gene and not on the allOnco cancer-associated gene list.

Clinical Responses and Outcome Following NYCE T cell Infusion

UPN39

- All patients received out-patient T cell infusion (at protocol-specified dose) and required no hospitalization by day 28
- No CRS or Neurotoxicity, 39 required TXN 1 U PRBC
- Best response: SD
- Subject 35 PD day 28, responding to elotuzumab, pomilidomide and dexamethasone
- Subject 07 PD despite D-ACE \$\frac{1}{2}\$ (transient response),
- Subject 39 PD day 120, progressing on doxil but did have approximately 50% shrinkage in a large pelvic lesion

SD.

🐺 Penn Medicine

Stadtmauer et al, Science, 2020

Safety: Most Adverse Events Attributed to Lymphodepleting Chemotherapy

AE Category	Toxicity	All Grades	Grade 1/2	Grade 3/4		
Hematologic	Anemia Leukopenia Neutropenia Thrombocytopenia Lymphopenia	2 4 4 6 1	1 - 1 3 -	1 4 3 3 1	No CRS	
Infection	Upper Respiratory Febrile Neutropenia	1 2	1 -	- 2	• No neurological loxicity	
Electrolyte	Hypercalcemia Hyperphosphatemia Hypoalbuminemia Hypocalcemia Hypokalemia Hypomagnesemia Hyponatremia Hypophosphatemia	1 1 3 1 1 1 1	1 1 2 1 1 1	- - 1 - - - 1	 Most AEs Low Grade 	
Neurologic	Dysgeusia Headache Paresthesia Syncope Pain	1 1 2 1 3	1 1 2 - 3	- - - 1 -	Hematologic or Electrolyte	
Renal	Acute kidney injury Urinary obstruction	1 1	1 -	- 1	depleting therapy	
Respiratory	Aspiration Nasal congestion Cough	1 1 2	- 1 2	1 - -	or disease	
Gastrointestinal	Lower GI bleed Vomiting	1 1	1 1	:	 Syncope, urinary 	
Other	Alopecia Phelbitis LE edema	1 1 1	1 1 1	-	obstruction, and aspiration were	
TOTAL		50	30	20	unrelated to 1 cells	

🐺 Penn Medicine

Stadtmauer et al, Science, 2020

Expansion, Persistence and Trafficking of NYCE T cells: NY-ESO-1 TCR T cells (PCR)

• There is rapid expansion and stable persistence of T cells expressing the NY-ESO-1 transgenic TCR as measured by qPCR in all 3 patients

- The stable PK of NY-ESO-1 expressing T cells is very different from the PK of CAR T cells which tends to decrease more quickly

• Clear trafficking of T cells to the tumor

- The levels of T cells expressing the NY-ESO-1 TCR in bone marrow and tumor is similar to blood

Expansion, Persistence and Trafficking of NYCE T cells: NY-ESO-1 TCR T cells (PCR)

• There is rapid expansion and stable persistence of T cells expressing the NY-ESO-1 transgenic TCR as measured by qPCR in all 3 patients

- The stable PK of NY-ESO-1 expressing T cells is very different from the PK of CAR T cells which tends to decrease more quickly

• Clear trafficking of T cells to the tumor

- The levels of T cells expressing the NY-ESO-1 TCR in bone marrow and tumor is similar to blood С

- CRISPR edited T cells expand rapidly and can persist
 - TRAC (TCRα) and PDCD1 edited T cells have highest frequency: 5% to 10%
 - TRBC (TCRβ) edited T cells were lowest in frequency *in vitro*, and also *in vivo*
- Subject 35 has long-term engraftment of NY-ESO-1 TCR-expressing T cells, but low frequencies of edited cells by 30 days

Cytolytic capacity of NY-ESO-1–specific CD8+ T cells recovered at the indicated month after infusion and expanded in vitro in the presence of NY-ESO-1 peptide and interleukin-2.

- The ability of expanded effector cells to recognize antigen and elicit cytotoxicity was tested in a 4-hour 51Cr release assay incorporating Nalm-6 (B-cell ALL) NY-ESO-1+, A375 melanoma cells (NY-ESO-1+) and parental Nalm-6 (NY-ESO-1-) as control.
- All target cell lines were HLA-A*02 positive.

Expansion, Persistence and Trafficking of NYCE T cells: CRISPR Edited T cells (PCR) 39

NYCE T cell Infusion Product (IP) NY-ESO-1 TCR*

A) In the infusion product cells with all 3 mutations were found.
TRAC most common, 40% 1 mutation, 20% 2 mutations 10% 3 mutations 30% no mutations

D) UMAP plots highlighting NY-ESO-1 TCR-expressing and TCF7-expressing cells sampled from each time point (infusion product, Day 0 – post-infusion, Day 113).

E) Heat map showing scaled expression of discriminative gene sets in NY-ESO-1 TCRpositive T cells over time.

The heat map and UMAP plots show increased expression of gene associated with central memory (IL7R,TCF7) over time rather than T cell exhaustion

Penn Medicine

B) Frequency of gene edited cells is stable between day 10 and 4 months after infusion

Stadtmauer et al, Science, 2020

Analysis of NY-ESO-1 TCR positive (right) and –negative (left) cells without mutations (wild-type) or with single, double or triple mutations at Day 0 (NYCE T cell infusion product) and Day 113 post-NYCE T cell infusion.

A decline in the frequency of gene-edited T-cells at 4 months from levels in the infusion product is seen, but a remarkable 40% of circulating T cells at 4 months are still mutated in at least 1 of the target genes.

Conclusions

- Generation of multiplexed genetic engineering of autologous T cells expressing NY-ESO-1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (NYCE T cells) is <u>feasible</u>
- Three patients with advanced cancer have <u>safely</u> received NYCE T cells after lymphodepletion
- Engineered T cells <u>expand</u>, <u>survive</u> and <u>persist long-term</u> in patients
- Best overall response achieved after NYCE T cell infusion to date is <u>stable</u> <u>disease</u>
- •So, where do we go from here?

NEXT: Allogeneic CAR T Cell Therapies for Cancer

- Allows for an 'off the shelf' product for timely therapy
- Genome modified CAR T cells to prevent alloreactivity:
 - Disruption of T cell receptor
 - alpha (TRAC) or beta chains (TRBC1/2).
 - Simultaneous editing of targets to address host mediated rejection
 - (HLA class I and possibly class II molecules)
- TALEN or CRISPR Cas9 gene editing

Molecular remission of infant B-ALL after TALEN gene-edited CAR T cells

Qasim et al., generated universal CAR19 (UCART19) T cells by lentiviral transduction of HLA mis-matched donor cells and simultaneous TALEN-mediated gene editing of T cell receptor a chain and CD52 gene loci.

🞇 Penn Medicine

TALEN gene-edited CAR T cells Treatment Protocol

Two infants with relapsed refractory CD19+ B cell ALL despite allogeneic HSCT received lymphodepleting chemotherapy and anti-CD52 serotherapy (Alemtuzumab), followed by a single-dose infusion of UCART19 cells.

Protracted multilineage cytopenias were induced but molecular remissions were achieved within 28 days and UCART19 cells persisted until conditioning ahead of successful second allogeneic stem cell transplant.

GVHD of skin was treated with prednisolone (1 mg/kg) and four doses of rituximab (375 mg/m2).

TALEN gene-edited CAR T cells Treatment Results

🐺 Penn Medicine

(B) PCR quantification for ALL was positive after the first allo-SCT and became negative after UCART19 therapy.

(C) Chimerism studies detected the original allo-SCT donor and UCART19 cells until the second allo-SCT.

(D) UCART19 cells were detected, peaking in the third week after infusion, and persisting at low levels until conditioning ahead of second allo-SCT at 10 weeks after infusion.

(E) Almost all circulating T cells that expressed CAR19 were CD52– and CD3– on flow cytometric analysis.

Genetic inactivation of CD33 in HSCs enabling CAR-T for AML

- Generated CD33-deficient human HSPCs with normal function in NSG mice
- Autologous CD33 KO HSPC in rhesus macaques provided long-term multi-lineage engraftment and normal myeloid function
- CD33 KO HSPCs were protected from CD33targeting CAR T cells
- IND filed for ACC first-in-human study
- IMPACT: Novel strategy to target AML with CAR T cells while avoiding on-target, offtumor toxicity

Making CD33 a tumor specific CAR target

Kim et al., *Cell*, 2018 Kenderian et al., *Leukemia*, 2015

Other Applications of CRISPR in CAR T Therapeutics

Production of allogeneic universal CAR T cells

- ZFNs and TALENs were successfully used to knock-out TCRα (TRAC) and TCRβ (TRBC) to generate TCR negative CAR T cells to prevent GVHD without compromising CAR-mediated cytotoxicity
- Disruption of inhibitory signaling molecules to overcome T cell exhaustion
 - Disruption of multiple inhibitory factors is expected to improve the potency of CAR T cells.
- Reduction of cytokine release from CAR T
 - Blocking relevant cytokines signaling is a strategy to ameliorate toxicity and CRISPR/Cas9 can effectively knock-out related molecules. CRISPR/Cas9 mediated knock-out of GM-CSF and showed GM-CSF-negative CAR T cells produced less GM-CSF without weakening antitumor activity.

Overcoming barriers to CAR T therapy

- A novel approach to circumvent the problem with potent anti-CD33 CAR T cells followed by infusions of CRISPR/Cas9-modified CD33-knockout normal HSCs, thus allowing persistent antigen-specific cytotoxicity along with reconstitution of hematopoiesis.
- Targeted disruption of the CD7 gene using CRISPR/Cas9 prior to CAR expression minimized fratricide in T cells and allowed the expansion of the CD7-knock-out anti-CD7 CAR T cells with robust antitumor activity in preclinical models.

How to improve clinical outcomes?

the cure is w

ABRAMSON CANCER CENTEI

CAR T cells vs. Bispecific Antibodies (BsAbs)

Cohen et al, Clin Can Res 2019

Serial treatment with BCMA-targeted therapies

Cohen et al, Blood Advances 2019

What's Happening 2020 for Engineered T cells for Myeloma?

BCMA CAR registration trials in rel/ref MM

- Not perfect, still lots of relapses within 1 year, but remarkable responses in R/R MM without other options
- Ongoing ph 1/2 for next-gen CAR products

• CAR T cells against CD38, SLAMF7 (CS1), GPRC5D, NY-ESO-1

• These are all reasonable targets, but much more limited experience

BCMA CAR trials for less-heavily treated patients

- 1-3 priors
- Post-induction in hi risk
 - CART-BCMA +/- CART-19 (PI: AI Garfall)
- Post-autoSCT
 - BMT CTN ASCT + CAR T in High Risk or Poor Response

BCMA CAR combo trials

- Other CAR T cells, IMiDs, checkpoint inhibitors
- Gene-edited T cells
 - "Off-the-shelf" allogeneic CAR T cells
 - PD-1 deficient, endogenous TCR edited T cells (Science 2020)

🐺 Penn Medicine

Acknowledgements

- We thank the patients and their caregivers for taking part in these trials
- We thank the investigators and their teams at the University of Pennsylvania who participated in this work
- This study was funded by Tmunity Therapeutics and the Parker Institute for Cancer Immunotherapy

ΤΜυΝΙΤΥ

PARKER INSTITUTE FOR CANCER

