

Current Therapies in Aggressive B- and T-cell Lymphomas: An Update

Sonali Smith, MD Elwood V. Jensen Professor of Medicine Director, Lymphoma Program August 15, 2020

DISCLOSURES

Sonali M. Smith, MD

- I have the following relevant financial relationships to disclose:
 - Consultant for: Genentech/Roche, Celgene, TGTX, Karyopharm, Janssen, Bantam
 - Speaker's Bureau for: none
 - Stockholder in: none
 - Honoraria from: none
 - Employee of: none
 - Institutional research funding: Portola, Genentech, Acerta,
 Pharmacyclics, Celgene, Curis, BMS, TG Therapeutics, Merck, Forty-Seven, Novartis
- I may discuss off label use and/or investigational use in my presentation. I will disclose when they are being discussed in an offlabel manner.

Overview: new data and treatment options for aggressive lymphomas

Diffuse Large B-cell Lymphoma

- Most common non-Hodgkin lymphoma
 - 40% of global NHL burden is DLBCL
 - Approximately 25-30K new cases per year in US
- All ages
 - Increases with age
- Both genders
- All races
- All socioeconomic classes
- Can manifest in nearly any organ or body part

Variable cure rate: 30-90%

MANAGEMENT OF LIMITED STAGE DLBCL

Limited Stage Diffuse Large B-cell Lymphoma (DLBCL)

- About 25-30% of new DLBCL diagnosis
- SWOG S8736 CHOP x 3 + radiation had superior PFS and OS compared to CHOP x 8
 - Difference disappeared by year 9 due to late relapses¹⁻³
- Stage modified (Miller) IPI predicted outcome
 - Age > 60, Stage II (vs I), elevated
 LDH, WHO PS 2 (vs 0-1)

Stephens et al, JCO 2016

Clinical Trials in Limited Stage DLBCL in the Rituximab Era

Trial	Design	Patients	PFS	OS
SWOG S0014 Persky, JCO 2008	Ph II: R-CHOPx3 + IFRT	Stage-modified IPI≥1 (n=60)	4-y: 88%	4-y: 92%
SWOG S0313 Persky, Blood 2015	Ph II: CHOPx3 + IFRT + RIT	Stage-modified IPI≥1 (n=46)	5-y: 82%	5-y: 87%
MINT Trial, Pfreundschuh, Lancet 2011	Ph III: CHOPx6 v R-CHOPx6 (+IFRT for stage I bulky)	≤60y; aalPl=0, <7.5cm (n=101)	6-y: 90%	6-y: 95%
FLYER Trial Poeschel, ASH 2018	Ph III: R-CHOPx6 v R-CHOPx4+2R	≤60y; aalPl=0 <i>,</i> <7.5cm (N=588)	3-y: 94 <i>v</i> 96%	3-y: 98 v 99%
LYSA/GOELMS Lamy, Blood 2018	Ph III: PET-guided (PET-pos if >mediast) R-CHOPx4-6 v R-CHOPx4-6 + RT	Stage I/II, <7cm (n=319)	5-y EFS: 89 <i>v</i> 92%	5-y: 92 <i>v</i> 96%

Key Questions:

How much chemo is needed?

What is the role of radiation?

Does PET-adapted therapy maintain outcomes?

PET-Directed Therapy for Patients with Limited-Stage Diffuse Large B-Cell Lymphoma - Results of Intergroup NCTN Study S1001

Patient Characteristics: S1001

Patient Characteristic	S1001 (n=132)
Median Age (years, range)	62 (18-86)
Age > 60 years	71 (54%)
Male	70 (53%)
Performance status: 0 1 2	89 (67%) 39 (30%) 4 (3%)
Stage I (rest stage II)	82 (62%)
Median largest diameter (cm, range)	3.5 (1.0 - 9.7 cm)
Extranodal involvement	57 (43%)
Head and Neck-only involvement	87 (66%)
Stage modified (Miller) IPI (smIPI) 0 1 2 3	35 (27%) 55 (42%) 37 (28%) 5 (4%)

S1001: PFS and OS

Results: Median follow up 4.5 yrs (range 1:1 – 7:5 yrs)

NCI National Clinical Trials Network NCI Community Oncology Research Program

BCA: Long-term outcomes of PET-adapted treatment in limited stage DLBCL

PET Neg

N=254

PET Pos

N=59

- -Age ≥ 16 years
- -Newly diagnosed confirmed DLBCL
- -Between Mar 2005 and Feb 2019
- -Limited stage (Stage I/II, non-bulky <10cm, no B-symptoms,
- radiation encompassable)
- -PET after 3 cycles R-CHOP

- PET-positive if uptake
 >mediastinum
 - 2005-2013: IHP guidelines 2014-2019: Deauville criteria (D3-5 positive)
- Staging PET scans recommended since 2011

R-CHOP x 1

92% per study

XRT

93% per study

Outcomes According to PET Status (n=313)

MVA: Only Age > 60 y (p=0.002) and PET positivity (p=0.018) significant

Sehn Blood (2019) 134 (Supplement_1): 401.

Time-to-Progression in PET-Negative Patients According to Bulk of Disease

Bulk defined as ≥5cm

Bulk defined as ≥7.5 cm

Sehn Blood (2019) 134 (Supplement_1): 401.

DIFFUSE LARGE B-CELL LYMPHOMA: RELAPSED/REFRACTORY DISEASE

Many subsets of DLBCL are not cured with R-CHOP

If transplant is not an option...

Figure 1. OS at relapse

Van den Neste Bone Marrow Transplantation (2016) 51, 51–57 Kansara ASH 2014

Two Anti-CD19 CAR T-cell Constructs are Currently FDA Approved as 3rd Line Therapy for R/R DLBCL

FMC6 3

0000

CD2

8

4-1bb

CD3

Lisocabtagene maraleucel (liso-cel; JCAR017) Differs from Current CAR T-cell Products CD19-Directed, Defined Composition, 4-1BB CAR T Cell Product

Apheresis product undergoes a T-cell selection step (vs unselected mononuclear cells for Axi-cel, Tisagenlecleucel)

CD8+ and CD4+ CAR+ T cell components are administered separately at equal target doses of CD8+ and CD4+ CAR+ T cells

The defined composition of liso-cel results in:

- Consistent administered CD8+ and CD4+ CAR+ T cell dose
- Low variability in the CD8+/CD4+ ratio

Dose and ratio of CD8+ and CD4+ CAR+ T cells may influence the incidence and severity of CRS and neurological events

241: Pivotal Safety and Efficacy Results From TRANSCEND NHL 001, a Multicenter Phase 1 Study of lisocabtagene maraleucel (liso-cel) in Relapsed/Refractory (R/R) DLBCL (Abramson et al)

Baseline Characteristics

Characteristic	All liso-cel–Treated Patients (N=269)
Age, median (range), years	63 (18–86)
% ≥65	42
% ≥75	10
% NHL subtypes	
DLBCL NOS	51
Transformed from FL / other indolent lymphomas	22 / 7
HGBCL ^a / PMBCL / FL3B	13/ 16 / 1
% Secondary CNS lymphoma	3
% ECOG PS of 0–1 / 2 at screening	99 / 1
% High disease burden	38
% Creatinine clearance >30 to <60 mL/min	19
% LVEF ≥40% to <50%	5
Prior systemic therapies, median (range) % ≥4 prior therapies	3 (1–8) 26
% Received prior HSCT	35
Autologous / allogeneic HSCT	33/3
% Chemotherapy-refractory	67
% Never achieved CR with prior therapy	44
% Received bridging therapy	59

89% of patients had high-risk features known to portend a shortened overall survival

- HGBCL/double/tripl e hit lymphoma
- ECOG PS of 2
- Primary refractory disease
- Refractory to second-line or later therapy
- No prior ASCT
- Never a the vertical center medical center biological sciences

Patient Incidence and Management of CRS and NE

	All liso-cel—Treated Patients (N=269)	
CRS		_
Any grade, n (%)	113 (42)	2
Grade 3, n (%)	4 (1)	
Grade 4, n (%)	2 (1)	
Time to onset, median (range), days	5 (1–14)	
Time to resolution, median (range), days	5 (1–17)	
NE		
Any grade, n (%)	80 (30)	
Grade 3, n (%)	23 (9)	
Grade 4, n (%)	4 (1)	
Time to onset, median (range), days	9 (1–66)	
Time to resolution, median (range), days	11 (1–86)	
ICU admissions,n (%)	19 (7)	
For CRS and/or NE	12 (4)	
Other reasons	7 (3)	

• 3% of patients received vasopressors for CRS or NE

2 patients received other anti-inflammatory/anticytokine agents

CRS and NE were reversible

- 1 patient had an unresolved NE (grade 1 tremor) at data cutoff
- 8 patients had ongoing CRS/NE at time of death from other reasons

PFS and OS by Objective Response

Probability of Overall Survival (%)

CR

PR

SD/PD

Total

PFS Median Follow-up (95% Cl): 12.3 (12.0–17.5) Months

44.1 (37.3-50.7)

65.1 (56.1-72.7)

100 -	-		-											-	+ Ce	nsored	
80-						╺╧┥		-	•∎+	Medi	an (98	5% C	:I): NR	(NR-	-NR) + (months	5
60 -		4	λ_{q}			╟╌┼┑			Me	dian	(95%	CI):	21.1 (13.3-	-NR)	months	;
40-			\sum	٦					•							Fotal	
20 -					╬		1	Me	diar	n (959	% CI):	5.1	(2.9–6	.5) m	onth	5	
0-								PR	Me	dian	(95%	CI):	9.0 (6	.0–10).4) m	onths	
	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	
								Mor	nths								

OS Median Follow-up (95% Cl): 17.6 (13.5–18.0) Months

6-month OS (95% CI), %						
All patients	74.7 (68.9–79.6)					
Patients with BOR of CR	94.1 (88.6–97.0)					
12-month OS (95% CI), %						
All patients	57.9 (51.3–63.8)					
Patients with BOR of CR	85.5 (78.2–90.5)					

Abramson Blood (2019) 134 (Supplement 1): 241.

12-month PFS (95% CI), %

Patients with BOR of CR

All patients

If CAR-T doesn't work...

Overall Survival

- N=51
- Initial progression did worse than delayed progression
 - Med OS 5.1 m vs. 13.6m

Chow ASH Abstract 94 Saturday, December 1, 2018: 10:15 AM Pacific Ballroom 20 (Marriott Marquis San Diego Marina)

Characteristic	Total (N=51)	Initial PD (N=27)	Delayed PD (N=24)
Gender			e for del
Female	17 (33.3%)	8 (29.6%)	9 (37.5%)
Male	34 (66.7%)	19 (70.4%)	15 (62.5%)
Histology	1.4 28 7	· · · · · · · · · · · · · · · · · · ·	
HGBCL	11 (21.6%)	3 (11.1%)	8 (33.3%)
DLBCL	29 (56.9%)	18 (66.7%)	11 (45.8%)
PMBCL	3 (5.9%)	2 (7.4%)	1 (4.2%)
tEL	8 (15.7%)	4 (14.8%)	4 (16.7%)
Median age (range)	60 (26-75)	60 (29-70)	59 (26-75)
Additional therapy after progression	39 (76.5%)	17 (63.0%)	22 (91.7%)
Next line of therapy			8
Allogeneic Transplant	1 (2.6%)	0 (0.0%)	1 (4.5%)
CAR T	14 (35.9%)	6 (35.3%)	8 (36.4%)
Chemotherapy	7 (17.9%)	5 (29.4%)	2 (9.1%)
Immunotherapy	3 (7.7%)	1 (5.9%)	2 (9.1%)
Intrathecal	1 (2.6%)	0 (0.0%)	1 (4.5%)
Radiation	3 (7.7%)	1 (5.9%)	2 (9.1%)
Targeted	10 (25.6%)	4 (23.5%)	6 (27.3%)
Next treatment on clinical trial	5 (9.8%)	3 (11.1%)	2 (8.3%)
Allogeneic transplant after	4 (7.8%)	1 (3.7%)	3 (12.5%)

No standard of care—goal is palliation

• Clinical trials

- Chemoimmunotherapy
 - Gemcitabine-based regimens
 - Pola-BR
- Non-chemotherapy options
 - Selinexor
 - Tafasitamab-lenalidomide (FDA-approved 7/31/2020)
 - Ibrutinib (preferential activity in non-GC DLBCL)*
 - Len/rituximab (preferential activity in non-GC DLBCL)*
- Best supportive care

Pola-BR: anti CD79b ADC plus BR

- Primary endpoint CR rate at EOT
- Med f/u 22.3 months

Sehn *Journal of Clinical Oncology* 36, no. 15_suppl (May 20, 2018) 7507-7507. Figure courtesy of Roche.com

RP2: Pola-BR vs. BR

	Pola-BR (n=40)	BR (n=40)
Median age	67y (33-86)	71y (30-84)
Male	70%	62.5%
PS 0-1	83%	78%
ABC-DLBCL	48%	48%
GCB-DLBCL	38%	43%
Med prior Rx	2 (1-7)	2 (1-5)
Ref to last Rx	75%	85%
DOR to last Rx <u><</u> 12 m	45%	48%

Main reasons for transplant ineligibility include advanced age and insufficient response to prior salvage therapy

Sehn Journal of Clinical Oncology 36, no. 15_suppl (May 20, 2018) 7507-7507.

Pola-BR vs. BR Results

Sehn Journal of Clinical Oncology 36, no. 15_suppl (May 20, 2018) 7507-7507.

Selinexor: oral XPO1 inhibitor

Selinexor: Mechanism of Action

Exportin I (XPOI or CRMI) mediates the nuclear export of proteins, mRNAs, rRNAs, snRNAs and impacts

- Tumor suppressor proteins (p53, IκB, FOXO etc.)
- eIF4E (Translational initiation factor) bound oncogenic mRNAs (c-Myc, Bcl-xL, cyclins etc.)

Selinexor is an oral selective XPOI inhibitor; preclinical data support that XPOI inhibition:

- Reactivates multiple TSPs relevant to NHL, (p53, p21, IκB, FOXO etc.)
- Disrupts localization of eIF4e (overexpressed in most B-cell lymphomas¹
- Reduces c-Myc, Bcl-2, and Bcl-6 levels²⁻³

1. Kodali 2011 2. Kuruvilla 2014 3. Schmidt 2013

SADAL: Phase 2b trial of selinexor monotherapy

Oral Selinexor 60 mg twice-weekly Days 1, 3 – 28 day cycle

Treatment until PD or intolerable toxicity; Response assessed every 8 weeks per Cheson 2014

mITT Population for all Analysis and Safety (>Protocol Version 6 patients)

Objectives:

- Primary Endpoint: Overall response rate (ORR): Independent Central Radiological Review (ICRR); Lugano Classification (2014)
- Secondary Endpoints: Duration of response (DOR), Overall survival (OS), Safety

Modified Intent to Treat (mITT) Population: All patients who were randomized to the 60 mg Arm

Characteristic	N
Enrolled* as of April 3, 2019	127
Median Age, Years (Range)	67 (35–87)
Males (%) : Females (%)	75 (59%) : 52 (41%)
Median Years from DLBCL Diagnosis (Range)	2.6 yrs (<1–26.2)
De novo DLBCL : Transformed DLBCL : Unknown	96 (76%) : 30 (24%) : I (< I %)
GCB Subtype : Non-GCB Subtype : Unclassified	59 GCB : 63 Non-GCB : 5
	Unclassified
Median Prior Treatment Regimens (Range)	2 (1–6)
Prior Transplantation	39 (31%)

SADAL: Results

•Selinexor dosing is 60mg BIW with 17% stopping due to A/Es

- •ORR 29% (CR 13%)
- •Median DOR 9.3 months and for CR 23 months
- •Main toxicities: asthenia, nausea, weight loss, cytopenias

Tafasitamab MOA

+

MOR208 Fc-enhanced, anti-CD19 mAb

- ADCC [†]
- ADCP 1
- Direct Cell Death
- Encouraging single agent activity in NHL patients with long DoR in R/R DLBCL

Lenalidomide

- T and NK Cell Activation/Expansion
- Direct Cell Death
- Demonstrated activity as an anti-lymphoma agent, alone or in combination
- Approved for treatment of MCL and FL/MZL

Potentiation of activity by combining Tafasitamab & LEN in vivo and in vitro

Salles et al. ICML 2019. #124. Hortonet al., 2008; Awanet al., 2010; Richter et al., 2013; MorphoSys data on file; Wu et al., 2008; Lapalombella et al., 2008; Zhang et al., 2013, Wiernik et al., 2008; Witzig et al., 2011; Czuczman et al., 2017; Jurczak et al, 2018

L-MIND: Study Design

biomarker-based analyses

Salles et al. ICMI 2019, #124.

-ASCT, autologous stem cell transplant; HDCT, high-dose chemotherapy; SD, stable disease, p.o., per os.

L-MIND: Baseline Characteristics

Characteristic	Specification	n=81 (%)
Sex	Male Female	44 (54) 37 (46)
Age [years]*	median (range)	72 (41-86)
Risk (IPI)*	0-2 3-5	40 (49) 41 (51)
Ann Arbor Stage*	1-11 111-1V	20 (25) 61 (75)
Elevated LDH*	Yes No	45 (56) 36 (44)
Prior Lines*	median 1 2 3 4	2 40 (49) 35 (43) 5 (6) 1(1)
Primary Refractory	Yes No	15 (18) 66 (82)
Refractory to last prior therapy*	Yes No	36 (44) 45 (56)
Prior SCT	Yes No	9 (11) 72 (89)
Cell of Origin (Centrally assessed - Hans algorithm)	GCB Non-GCB Unknown	37 (46) 20 (25) 24 (30)

*at study entry

L-MIND: Treatment-Emergent AEs

- 5 infusion-related reactions in 5 patients (6%) were reported for Tafasitamab (all grade 1)
- Treatment-related SAEs occurred in 15 (18.5%) patients (primarily infections [10%] or neutropenic fever [5%])

4 treatment-emergent deaths (sudden death, respiratory failure, cerebrovascular accident, PML) were reported as unrelated to study drugs N=81. TEAEs, treatment-emergent adverse events, numbers represent % patients

L-MIND: Efficacy

Median DoR 21.7 mo (95% CI 21.7 - NR)

Median Follow-up Time 17.3 months 39 PFS events recorded 28 patients still ongoing with study treatment Median Follow-up Time: 19.6 months 29 deaths recorded

Key Outcomes: ORR 60%** CR 42.9% Med DR 21.7m Med PFS 12.1m 12m OS 73.7%

Salles et al. ICML 2019. #124; Lancet Oncology 2020.

RELAPSED/REFRACTORY MCL

Zanubrutinib monotherapy in rel/ref MCL

Rel/ref MCL Zanubrutinib 160mg BID

Primary endpoint: ORR

•	Second	generation	BTKi
---	--------	------------	------

 Lower off-target inhibitory activity on other kinases (ITK, JAK3, EGFR)

	N=86
Male	67 (77.9)
Chinese	86 (100)
Med age	60.5y (34-75y)
<u>></u> 65 y	22 (25.6)
Refractory disease	45 (52.3)
TP53-mutated (n=54)	15 (27.8)

No new TEAEs Less HTN, a.fib, bleeding

Zanu monotherapy in rel/ref MCL

- Med PFS 22.1m
- EFS at 12m 76%

CAR-T in rel/ref MCL: ZUMA-2

- R/R MCL defined as
 - Disease progression after last regimen or
 - Failure to exhibit a CR or PR to the last regimen
- 1 5 Prior therapies that must have included
 - An anthracycline- or bendamustine-containing chemotherapy and
 - Anti-CD20 monoclonal antibody therapy and
 - Ibrutinib or acalabrutinib

MCL, mantle cell lymphoma; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, oral; R/R, relapsed/refractory.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068. 2. Cheson BD, et al. J Clin Oncol. 2007;25:579-586.

^a Administered after leukapheresis and completed < 5 days before initiating conditioning chemotherapy; PET-CT was required post-bridging.

^b Bone marrow biopsy was done at screening and if positive, not done, or indeterminate, a biopsy was needed to confirm CR.

AE, adverse event; CAR, chimeric antigen receptor, DOR, duration of response; EQ-5D, European Quality of Life-5 Dimensions; IRRC, Independent Radiology Review Committee; IWG, International Working Group;

Baseline Disease Characteristics

Characteristic	N = 68
Median age (range), years	65 (38 – 79)
≥ 65 years, n (%)	39 (57)
Male, n (%)	57 (84)
Stage IV disease, n (%)	58 (85)
ECOG 0/1, n (%)	100 (100)
Intermediate/high-risk MIPI, n (%)	38 (56)
Ki-67 proliferation index \geq 50%, n/n (%) ^a	34/49 (69)
TP53 mutation, n/n (%)	6/36 (17)
Bone marrow involvement, n (%)	37 (54)
Extranodal disease, n (%) ^b	38 (56)
MCL morphology, n (%) ^c	
Classical	40 (59)
Pleomorphic	4 (6)
Blastoid	17 (25)

^a Ki-67 data were available for 49 patients at diagnosis. ^b Excludes bone marrow and splenic involvement. ^C Morphology was unknown for 10 patients.

BTKi, Bruton tyrosine kinase inhibitor; ECOG, Eastern Cooperative Oncology Group performance status; MCL, mantle cell lymphoma; MIPI, Mantle Cell Lymphoma International Prognostic Index.

ORR by IRRC Assessment Was 93% (95% CI, 84 – 98) and CR Rate Was 67% (95% CI, 53 – 78)

Investigator-assessed ORR in N = 60 was 88% (CR rate 70%), with 95% and 90% concordance between IRRC- and investigator-assessed ORR and CR rate, respectively. IRRC-assessed ORR in ITT (N = 74) was 85% (CR Rate 59%). CR, complete response; IRRC, Independent Radiology Review Committee; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

ORR Was Consistent Across Key Subgroups

	Evaluable Patients	Responding Patients	I											ORR (95% CI)
Overall	60	56									F			0.93 (0.84, 0.98)
Age														
< 65 Years	28	26												0.93 (0.76, 0.99)
≥ 65 Years	32	30												0.94 (0.79, 0.99)
MCL morphology														
Classical MCL	35	32									H	•		0.91 (0.77, 0.98)
Pleomorphic	4	4												1.00 (0.40, 1.00)
Blastoid	14	13										•		0.93 (0.66, 1.00)
Ki-67 index														
< 50%	14	14									—			1.00 (0.77, 1.00)
≥ 50%	32	30												0.94 (0.79, 0.99)
Disease stage														
I-II	2	2			 									1.00 (0.16, 1.00)
III-IV	58	54									\vdash	•	—	0.93 (0.83, 0.98)
Simplified MIPI														
Low risk	25	23								F		•		0.92 (0.74, 0.99)
Intermediate/high risk	33	31												0.94 (0.80, 0.99)
Steroid use for AE manageme	ent											1		
Yes	35	33												0.94 (0.81, 0.99)
No	25	23								F		•		0.92 (0.74, 0.99)
Tocilizumab use														
Yes	42	40									H			0.95 (0.84, 0.99)
No	18	16								H				0.89 (0.65, 0.99)
Bridging therapy use												Ì		
Yes	21	19												0.90 (0.70, 0.99)
No	39	37									F			0.95 (0.83, 0.99)
		(0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	

Objective Response Rate

- The median DOR has not been reached after a median follow-up of 12.3 months
 - 57% of all patients and 78% of patients with a CR remain in remission
- The first 28 patients treated had a median follow-up of 27.0 months (range, 25.3 – 32.3)

CR, complete response; MCL, mantle cell lymphoma; MIPI, MCL International Prognostic Index; ORR, objective response rate.

Wang N Engl J Med 2020; 382:1331-1342

Progression-Free Survival and Overall Survival

Median PFS and median OS were not reached after a median follow-up of 12.3 months

OS, overall survival; PFS, progression-free survival.

Wang N Engl J Med 2020; 382:1331-1342

Cytokine Release Syndrome

• No Grade 5 CRS occurred

Parameter	N = 68
CRS, n (%)ª	
Any grade	62 (91)
Grade ≥ 3	10 (15)
Most common any grade symptoms of CRS, n (%)	
Pyrexia	62 (91)
Hypotension	35 (51)
Нурохіа	23 (34)
AE management, n (%)	
Tocilizumab	40 (59)
Corticosteroids	15 (22)
Median time to onset (range), days	2 (1-13)
Median duration of events, days	11
Patients with resolved events, n (%)	62/62 (100)

^a CRS was graded per Lee DW, et al. *Blood*. 2014;124:188-195. Individual symptoms of CRS were graded per National Cancer Institute's Common Terminology Criteria for Adverse Events, v 4.03. AE, adverse event; CRS, cytokine release syndrome.

Neurologic Events

Parameter	N = 68
Neurologic events, n (%) ^a	
Any grade	43 (63)
Grade ≥ 3	21 (31)
Most common any grade symptoms, n (%)	
Tremor	24 (35)
Encephalopathy	21 (31)
Confusional state	14 (21)
AE management, n (%)	
Tocilizumab	18 (26)
Corticosteroids	26 (38)
Median time to onset (range), days	7 (1-32)
Median duration of events, days	12
Patients with resolved events, n (%)	37/43 (86) ^b

- No Grade 5 neurologic events occurred
- One patient had Grade 4 cerebral edema confirmed by MRI of the brain
 - The patient was intubated and treated with aggressive multimodality therapies including tociluzumab, siltuximab, high-dose steroids, intrathecal Ara C plus dexamethasone, mannitol, ventriculostomy and IV ATG^c
 - The neurotoxicities fully resolved and the patient remains in CR 24 months later
 - This is the first reported use of ATG in treating CAR T cell-related toxicities

^a Neurologic events were graded per National Cancer Institute's Common Terminology Criteria for Adverse Events, v 4.03. ^b Four patients had ongoing neurologic events at data cutoff: Grade 1 tremor (n = 3), Grade 2 concentration impairment (n = 1), and Grade 1 dysesthesia (n = 1). Two patients died from unrelated AEs (organizing pneumonia and staphylococcal bacteremia) prior to the resolution of the neurologic events. ^cRabbit ATG. AE, adverse event; ALT, alanine aminotransferase; ATG, anti-thymocyte globulin; CRS, cytokine release syndrome; IV, intravenous.

Conclusions

- KTE-X19, in a single infusion, demonstrates high rates of durable responses in R/R MCL
 - The 93% ORR, which includes a 67% CR rate, is the highest reported rate of disease response in patients with prior BTKi failure
 - Of the initial 28 patients treated, 43% are in remission after ≥ 2 years of follow-up
- The safety profile is consistent with that reported in prior studies of anti-CD19 CAR T cell therapies in aggressive NHL
 - No deaths due to CRS or neurologic events; most symptoms occurred early and were generally reversible
- The efficacy, reliable and rapid manufacturing, and manageable toxicities identify an important and promising role for KTE-X19 in treating patients with R/R MCL who have an urgent unmet medical need

BTKi, Bruton tyrosine kinase inhibitor; CAR, chimeric antigen receptor; CR, complete response; CRS, cytokine release syndrome; MCL, mantle cell lymphoma; NHL, non-Hodgkin lymphoma; ORR, objective response rate; R/R, relapsed/refractory.

T-CELL LYMPHOMAS: ROLE OF CONSOLIDATIVE ASCT AFTER BV-CHP

ECHELON-2: BV-CHP vs CHOP

- BV-CHP improves PFS (HR 0.71)
 - 3 year PFS: BV-CHP: 57% vs. CHOP: 44%
 - 34% reduction in risk of death
- Difference was most pronounced in ALCL
 - Less pronounced with AITL (HR 0.87) or PTCL (HR 0.83)
- BV approved in combination with chemotherapy for frontline use in CD30+ PTCL
- 19% patients underwent a consolidative autologous transplant in CR

Horwitz Lancet 2019

Treatment of Patients with CD30+ Peripheral T-Cell Lymphomas (ECHELON-2):

The use of consolidative SCT was infrequent in Asian countries, suggesting regional practice differences.

Numerical PFS estimates favor the use of consolidative SCT in patients with PCTL in a CR at EOT after frontline BV+CHP.

Overview: new data and treatment options for aggressive lymphomas

OLOGICAL SCI

in 2019-2020 for lymphomas!

Questions?

