Managing Drug Interactions with Oral Oncolytics in the Management of Hematologic Malignancies

David Reeves, PharmD, BCOP

Associate Professor of Pharmacy Practice Butler University

Clinical Pharmacy Specialist – Hematology/Oncology Franciscan Health Indianapolis

Objectives & Disclosure

Understand the importance of recognizing and managing drug interactions in patients receiving oral oncolytics for the treatment of hematologic malignancies

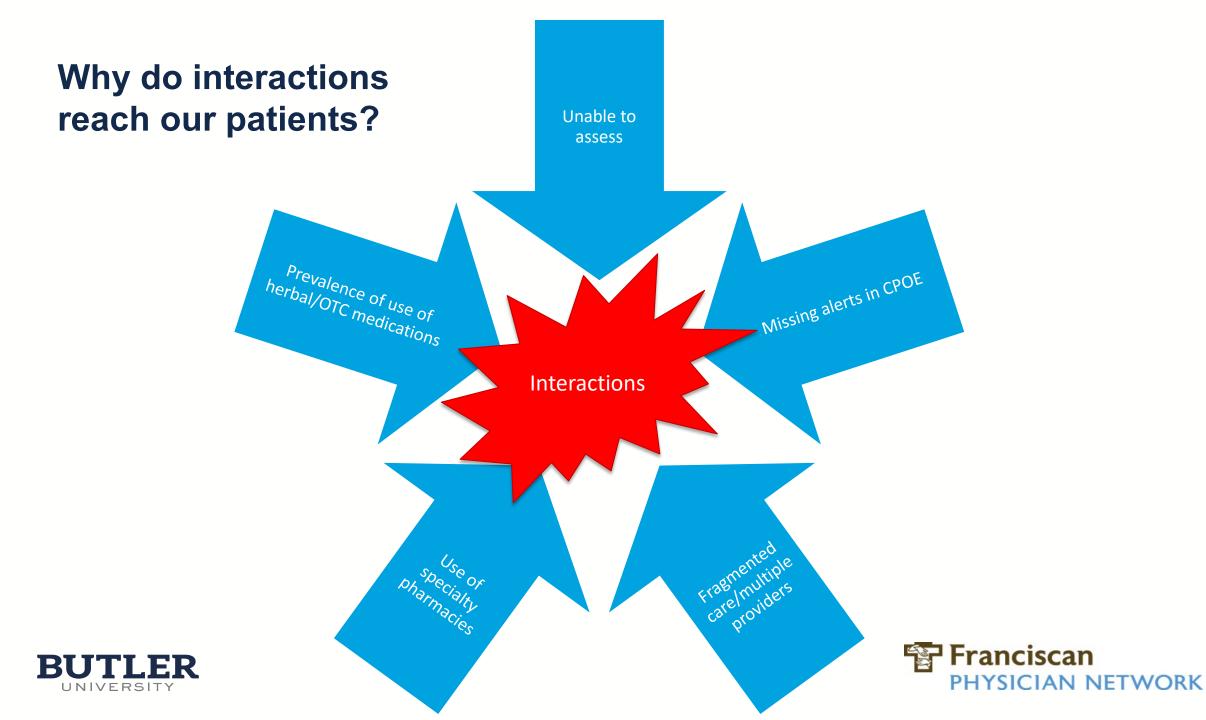
Evaluate a patient's drug regimen for the presence of common drug interactions with oral oncolytics for the treatment of hematologic malignancies

Develop a plan to mitigate drug interactions in patients receiving oral oncolytics for the treatment of hematologic malignancies

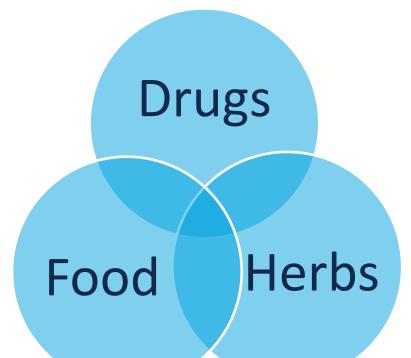
Disclosure

- I have no conflicts of interest to disclose
- All materials and content presented do not infringe or violate any copyright, trademark, patent or intellectual
 property rights of any person or entity, nor do they promote or endorse any product, service, or device which may or
 is at the time of the program not approved by any governing agency

Clinical Impact of Drug Interactions


Reference	Interacting Drugs	Mechanism of Interaction	Impact of Interaction	Outcome
J Clin Pharm Pract. 2017;23:470	Idelalisib Diazepam	Idelalisib potent CYP3A4 inhibitor	Altered mental status Progressive weakness Respiratory acidosis Hospital admission Placed on BiPAP	Discharged 3 days later Lorazepam substituted for diazepam
J Clin Pharm Ther. 2016;41:104	Ibrutinib Verapamil	Verapamil moderate CYP3A4 inhibitor	Severe diarrhea Fall/LOC Hospital admission	Discharged 3 days later Olmesartan substituted for verapamil
Isr Med Assoc J. 2016;18:433	Ibrutinib Amiodarone Ioad	Amiodarone moderate CYP3A4 inhibitor	SOB/Volume overload Echo: restrictive LV filling pattern, EF 50-55% BNP 376	Held amiodarone x 2 days and restarted at 200 mg/d Symptoms resolved
Leuk Lymphoma. 2014;55:2213	Bosutinib Warfarin Dilitiazem Lovastatin	Bosutinib inhibition of PgP led to increased levels of diltiazem/lovastatin leading to inhibition of warfarin metabolism (CYP3A4/2C9)	2 weeks after starting bosutinib – hypoxia/hemoptysis INR > 15 Pulmonary hemorrhage	Reversal of anticoagulation and methylprednisolone led to improvement
Am J Hematol. 2012;87:338	Lenalidomide Itraconazole	Itraconazole potent PgP inhibitor	Neutropenia despite dose reductions Elevated lenalidomide concentrations	Not reported
Intern Med J. 2009;39:708	Imatinib Amlodipine	Amlodipine inhibition of ABCG2 and CYP3A4	Nausea, edema Numbness in chin, b/l pain and numbness in feet	Amlodipine stopped Symptoms resolved Mild residual neuropathy resolved over 9 months

Impact of Drug Interactions


- Increased adverse effects
 - Observed in practice
 - Reported in literature

- Decreased efficacy
 - Difficult to pinpoint
 - Not reported in case reports

Reference	Study Design	Results	Hem Meds
Br J Cancer. 2013;108:1071	Retrospective review of oral anti-neoplastic drugs	N=898 patients 1359 Potential drug interactions (426 patients) 16% major or moderate severity	Imatinib – 30 Dasatinib – 9 Nilotinib – 8 Tretinoin - 3
Eur J Cancer Care. 2018;e12994	Prospective study of oral anti-neoplastic drugs	N=219 patients 736 concomitant medications 34 drug-drug interactions (15.5% of patients) 15 considered to be of little relevance (6.8% of patients)	Nilotinib – 4 Thalidomide - 7
J Oncol Pharm Pract. 2018;24:110	Retrospective review of oral TKI	N=356 patients 224 potential interactions 109 (44.7%) considered severe (30.6% of patients) Most common: PPI (decreased absorption), CYP3A4 Potential consequences: QTc prolongation (48.6%), decreased TKI concentration (48.6%), increased TKI concentration (2.8%)	Dasatinib – 16 Nilotinib – 10 Imatinib – 5 Ibrutinib - 3
BMC Cancer. 2018;18:1155	Retrospective review of patients enrolled on NCTN oncology trials	N=128 Moderate/major DDI based on LexiComp: 24.2% 9.4% clinically relevant based on pharmacist evaluation	Dasatinib – 1 Pomalidomide - 10

Types of Drug Interactions

J Oncol Pract. 2019;15:81-90

Pharmacokinetic

- Absorption/Distribution/Metabolism/Elimination
 - CYP, UGT, PgP, etc.
 - Decreased/increased absorption with food
 - Decreased absorption with drugs

Pharmacodynamic

- Active compounds change each others pharmacologic effect – Synergistic, additive, antagonistic
 - Increased QTc
 - Increased bleeding risk Ibrutinib

Drug – Food Interactions

- Food increases GI secretions Decreases gastric pH
 - Increased dissolution and absorption of basic drugs
 - Increased degradation of acid-labile drugs
- High fat meal
 - Decreased gastric empting rates
 - Increased dissolution of fat soluble drugs

- Chelation by polyvalent metal ions
- Grapefruit (pomegranate and star fruit too) inhibit gut CYP 3A4 and Pgp

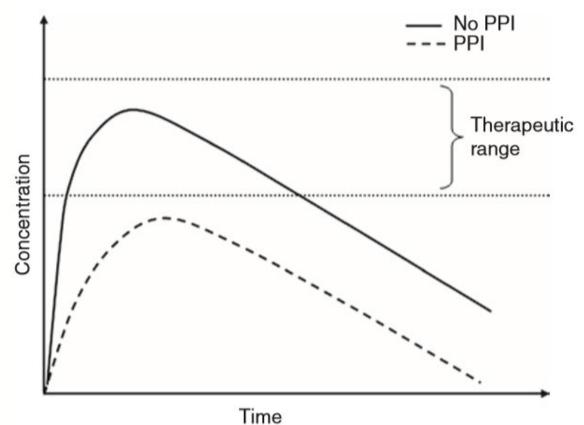
Eur J Pharm Sci. 2019; 134:31-59.

Examples of Food Effects on Drug Absorption

	Bosutinib	Dasatinib	Imatinib	Nilotinib	Ponatinib	Gilteritinib	Midostaurin	Enasidenib	lvosidenib	Glasdegib	Venetoclax	Acalabrutinib	Ibrutinib	Zanubrutinib	Duvelisib	Idelalisib	Lenalidomide	Pomalidomide	Thalidomide	lxazomib	Panobinostat	Selinexor	Vorinostat	Tazemetostat
Take with food	Х	Х	X*		X	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х		Х	Х	Х	Х
Take on empty stomach		х		x	x	х		х	х	х		Х	х	x	х	х	х	х	Х	х	х	х		х
High fat meal effects on Cmax	↑ 80%					↓ 26%	↓ 27%		↑ 98%	↓ 31%		↓ 73%	个 200-400%		↓ 37%		↓ 50%	↓ 27%	<10%	↓ 69%	↓ 44%		个 33%	
High fat meal effects on AUC	个 70%	个 14%		↑ 82%		↓ 10%	个 60%		个 25%	↓ 16%	个 510%	No effect	个 200%		↓ 6%	↓ 40%	↓ 20%	↓ 8%	<10%	↓ 28%	↓ 16%			
High fat meal effects on Tmax							↓ 2h					↓ 1-2h						↓ 2.5h	↓ 6h		↓ 2.5h		↓ 2.5h	

Interaction potential and recommendations based on information included in Prescribing Information for each medication as of 1/2020 (6/2020: selinexor and tazemetostat)

* To decrease gastritis


Acid Suppressing Medications and Drug Absorption

Commonly Used Acid-Reducing Agents Proton pump inhibitors Esomeprazole Lansoprazole Omeprazole Pantoprazole Rabeprazole H₂-receptor antagonists Cimetidine Famotidine Nizatidine Ranitidine

Other agents

UNIVERSIT

Antacids, e.g., aluminum hydroxide/carbonate Calcium hydroxide/carbonate Bismuth subsalicylate Buffered medications, e.g., didanosine

Anticipated outcome of interaction between PPI and a targeted agent with pH-dependent solubility.

Interactions with Gastric Acid Reducing Medications

PHYSICIAN NETWORK

	Proton Pump Inhibitors	Histamine 2 Receptor Antagonists	Antacids
Bosutinib	Avoid (AUC ↓ 26%)	Separate dosing by 2 hours	Separate dosing by 2 hours
Dasatinib	Avoid (AUC ↓ 43%)	Avoid (AUC ↓ 61%)	Separate by 2 h (AUC \downarrow 55% with concomitant use)
Nilotinib	Avoid (AUC ↓ 34%)	Take 10 h after or 2 h prior H2RA	Separate by 2 h
Acalabrutinib	Avoid (AUC ↓ 43%)	Take 2 h prior to H2RA	Separate by 2 h (AUC \downarrow 53% with concomitant use)
Ponatinib	Not significant (AUC \downarrow 6%, Cmax \downarrow 25%)		
Glasdegib	Not significant (AUC \downarrow 0%, Cmax \downarrow 20%)		
Tazemetostat	Not Significant (AUC ↓ 26%, Cmax ↓ 25%		
			🐨 Franciscan

Interaction potential and recommendations based on information included in Prescribing Information for each medication as of 1/2020 (6/2020 tazemetostat)

Clinical Impact of Interactions with Gastric Acid Reducing Medications

• Clinical trials lacking

Retrospective review of nilotinib use for CML^1

Newly diagnosed CML, n=492

• Major molecular response at 12 months: 50% if received at least one PPI or H2RA vs. 41% without co-medication

Imatinib-resistant or –intolerant CML, n=256

- Major cytogenetic response by 12 months: 64% vs. 58%, respectively
- Complete cytogenetic response by 12 months: 45% vs. 38.2%, respectively

• Management:

Avoid useIf PPI unavoidable, use
less potent PPI in
morningConsider
administration with an
acidic beverage (cola)2
prior to oral oncolytic

¹Cancer Chemother Pharmacol. 2012;70:345-350 ²J Clin Oncol. 2016;34:1309-14. Eur J Clin Pharmacol. 2009;65:19-31 Clin Pharmacokinet. 2017;56:683-699

Interactions in Drug Metabolism

Most commonly via hepatic cytochrome P450 enzymes

 Account for ~75% of drug metabolism¹ Impact of many transporters may be underappreciated

- Limited number of drugs whose disposition depends on a single transporter
- Drugs are frequently not specific to a single transporter
- Not all combinations of drugs tested for transportermediated drug interactions

Intestinal transporters

• P-gp

- Breast cancer resistance protein (BCRP)
- Multidrug resistance protein 2 (MRP2)

Hepatic transporters

- Organic anion transporting polypeptide (OATP)
- Organic cation transporter (OCT)

Renal transporters

• Multidrug and toxin extrusion (MATE), OCT, OAT

¹Chem Res Toxicol. 2008;21:70-83 Gessner A, et al. Clin Pharmacol Ther. 2019;105:1386-1394

Table of Pharmacokinetic Interactions

Enzyme	Bosutinib	Dasatinib	lmatinib	Nilotinib	Ponatinib	Gilteritinib	Midostaurin	Enasidenib	lvosidenib	Glasdegib	Venetoclax	Acalabrutinib	Ibrutinib	Zanubrutinib	Duvelisib	Idelalisib	Lenalidomide	Pomalidomide	Thalidomide	lxazomib	Panobinostat	Selinexor	Vorinostat	Tazemetostat	
CYP 1A2							l/Ind	S/I				Ind						S		S					
CYP 2B6				Ind			Ind	S/I/Ind	Ind			Ind								S					1
CYP 2C8				Ind/I	S		l/Ind	S/I	Ind		I	I				I				S				_	
CYP 2C9							I/Ind	S/I	Ind			I								S					S =
CYP 2C19							Ind	S/I				I		Ind		Ι		S		S	S/I				=
CYP 2D6			1	I	S		I	S/I					S	Ind				S		S	I/S				Inc
CYP 2E1							I																		_
CYP 3A	8	5	S/I	S/I	5	S/1	S/L/ind	S/I/Ind	S/Ind	S	8	S/I/Ind	8	S/Ind	S	S		S		S	S/1	S		S/Ind	
P-gp				I	I	S	I	I	S/I	S/I	S/I	S	Ι	S/Ind	S	S	S	S		S	S			S	. =
UGT 1A1				I				S/I			I					Ι					S	S			=
UGT 1A4								S								S						S			
BCRP					Т	I	I	1		S/I	S/I	S/I	1		S	S									1
OCT1						I															I				
OCT2								I																	
OATP 1B1							I	I			S/I														
OATP 1B3																									
OAT1																									
OAT3									I																1
BSEP					1																				
MATE 1						Ind																		I	
MATE-2K										I														1	1

trate tor ucer

inducers inhibitors substrates ubstrates with n

P-gp = P-glycoprotein, BCRP = Breast cancer resistance proteins, OCT = organic cation transporter, OATP = Organic anion transporting polypeptide, OAT = Organic anion transporter, BSEP = Bile salt export pump, MATE = Multidrug and toxin extrusion

Interaction potential and recommendations based on information included in Prescribing Information for each medication as of 1/2020 (6/2020 selinexor and tazemetotat)

Recommended Dose Adjustments

Drugs with Dose Adjustments to Manage Interactions in Prescribing Information

Dasatinib	Nilotinib	Ponatinib	Ponatinib Ivosidenib		Acalabrutinib					
Ibrutinib	Duvelisib	Pomalidomide	Panobinostat	Zanubrutinib	Tazemetostat					
	Example: Venetoclax Dose Adjustment Recommendations									
	Co-administered Drug	Venetoclax Ramp-Up	Phase I	Daily Dose (After Ramp-Up Phase)						
	Posaconazole	<u>CLL/SLL:</u> Contraindicat <u>AML:</u> Day 1 – 10 mg D Day 3 – 50 mg Day 4 -	0ay 2 – 20 mg	<u>AML</u> 70 mg						
	Other strong CYP3A inhibitor	r <u>CLL/SLL:</u> Contraindicat <u>AML:</u> Day 1 – 10 mg D Day 3 – 50 mg Day 4 -	Day 2 – 20 mg	<u>AML</u> 100 mg						
	Moderate CYP3A inhibitor of P-gp inhibitor	r Reduce dose by 50%	I	Reduce dose by 50%						

Venclexta (venetoclax) Prescribing Information. AbbVie, Inc. North Chicago, Il. 11/2018

🐨 Franciscan

PHYSICIAN NETWORK

Pharmacokinetic Interactions with Anticoagulants

Drug	Inhibitors	Inducers
Apixaban	P-gp or strong CYP 3A4 inhibitors: Reduce dose or avoid	P-gp or strong CYP 3A4 inducers: Avoid
Dabigatran	P-gp inhibitor with CrCl 30-50 ml/min: Reduce dose or avoid P-gp inhibitor in patients with CrCl < 30 ml/min: Avoid	P-gp: Avoid
Edoxaban	P-gp: No dose reduction recommended	P-gp inducers: Avoid
Rivaroxaban	P-gp or strong CYP 3A inhibitors: Avoid	P-gp or strong CYP 3A inducers: Avoid
Warfarin	CYP 2C9, 1A2, or 3A4 inhibitors: Reduce dose/increase monitoring or avoid	CYP 2C9, 1A2, or 3A4 inducers: Reduce dose/increase monitoring or avoid
Low Molecular Weight Heparin	No Interactions	No Interactions

information included in Prescribing Information for each medication as of 1/2020

PHYSICIAN NETWORK

Ibrutinib-induced Atrial Fibrillation

- Ibrutinib: 16% incidence of atrial fibrillation
- Commonly used treatments have significant interactions – CYP3A4, PgP
- Pharmacodynamic interactions
 - Inhibits platelet signaling and aggregation
 - 55% experience grade 2 or less bleeding over 24 month period¹

¹Haematologica. 2015;100:1571-78. J Thromb Haemost. 2017;15:835-47.

Ibrutinib-induced Atrial Fibrillation

- Recommendations:
 - Rate control: Metoprolol
 - Antiplatelet stroke prevention: None recommended due to increased bleeding risk
 - Warfarin: Not recommended
 - Direct oral anticoagulants:
 - Least potential for interaction: apixaban, dabigatran and edoxaban
 - Avoid antiplatelet agents, vitamin E, and fish oil

• Acalabrutinib and zanubrutinib not associated with platelet effects

Rao VU, Buck M, Reeves D, Skurka K, Rubenstein S. Clinical Challenges Associated with Management of Ibrutinib-induced Atrial Fibrillation. Global Cardio Oncology Summit 2018. Sept 2018

Agents	CYP 3A4	P-glycoprotein	Potential Impact on Ibrutinib Conc.	Potential Impact on Cardiac Medication Conc.	Pharmacodynamic* Interaction	Co-Administer
lbrutinib	s	INH				
Rate Control	Agents					
Metoprolol						Y
Verapamil	S, INH	INH	1			N
Diltiazem	S, INH		\uparrow^+			N
Digoxin	S	S		±/↑		N
Rhythm Contr	rol Agent	s				
Flecainide						Y
Propafenone	S	INH				?
Sotalol						Y
Dofetilide	S					?
Dronedarone	S, INH	INH	↑			N
Amiodarone	S, INH	S, INH	↑	1		N
Stroke Preven	tion Age	nts				
Dabigatran		S		↑	Х	?
Rivaroxaban	S	S		±/↑	х	?
Apixaban	S	S		±/↑	х	?
Edoxaban		S		1	Х	?
Betrixaban		S		1	Х	?
Warfarin	S			±	Х	?
Antiplatelet A	gents					
Clopidogrel					Х	N
Prasugrel					Х	N
Ticagrelor	S	INH			Х	N
Aspirin						N

Footnotes: Conc: Concentrations; **INH:** Inhibitor; **S**: substrate; <u>†</u>: Increase; <u>†</u>: Decrease; **±**: Effect unknown of potential impact of competition for metabolism by CYP 3A4 among drugs with a narrow therapeutic index. *Additive bleeding risk

Combination of diltiazem and ibrutinib contraindicated

QT Prolongation

- Risk with targeted therapies: 0 5.2%¹
- Arrhythmia/sudden cardiac death as a result of QT prolongation is rare: 0.1%²
- Risk factors
 - Electrolyte disturbances (mucositis, emesis, diarrhea, decreased intake)

Strategies to Minimize Cancer Therapy Related QTc Prolongation

Avoid QTc-prolonging drugs if pretreatment QTc >450 ms

Discontinue QTc-prolonging drug(s) if QTc prolongs to >500 or >550 ms if baseline widening of QRS

Reduce dose or discontinue QTc-prolonging drug(s) if QTc increases ≥60 ms from baseline

Maintain potassium, magnesium, and calcium within normal range

Avoid drug interactions

Adjust doses appropriately in patients with kidney dysfunction

Avoid rapid IV administration of QTc-prolonging drugs

Avoid administration of >1 QTc prolonging drug

Avoid QTc-prolonging drugs in patients with a history of TdP or resuscitation after sudden cardiac death

Avoid use of QTc-prolonging drugs in patients with congenital long QT syndromes

Monitor ECG

QTc Monitoring Recommendations

Drug	Baseline QTc Monitoring	toring QTc Monitoring During Treatment							
		HDAC Inhibitor							
Panobinostat	ECG	ECG q 3 weeks x 8							
Vorinostat	ECG	If patient at risk or receiving QT prolonging medications: ECG 2 weeks after drug initiation and at 1 and 3							
	months*								
		BTK Inhibitor							
Acalabrutinib		A. Fib: ECG in patients who develop palpitations, lightheadedness, syncope, or chest pain							
Ibrutinib		A. Fib: ECG in patients who develop palpitations, lightheadedness, syncope, or chest pain							
Zanubrutinib		A. Fib: ECG in patients who develop palpitations, lightheadedness, syncope, or chest pain							
BCR-ABL Inhibitor									
Bositinib	ECG	ECG q 4 weeks x 3							
Dasatinib	ECG	ECG at week 4							
Nilotinib	ECG	ECG on day 8 then every 3 cycles x 3							
Ponatinib	ECG	ECG week 4							
		FLT 3 Inhibitor							
Midostaurin	ECG	In patient at risk or receiving QT prolonging medications: ECG on day 3 and 14 of midostaurin during							
		induction and consolidation cycles then every other cycle during continuation therapy							
Gilteritinib	ECG	ECG on days 8 and 15 of cycle 1, and prior to the start of the next two subsequent cycles							
		IDH1 Inhibitor							
Ivosidenib	ECG	ECG weekly x 3 then monthly							
		Hedgehog Pathway Inhibitor							
Glasdegib	ECG	ECG at week 2 then monthly x 2							

Recommendations based on QT prolongation risk and recommended monitoring included in Prescribing Information for each medication

Journal of Oncology Practice[®] An American Society of Clinical Oncology Journal Potential Drug-Drug and Herb-Drug Interactions in Patients With Cancer: A Prospective Study of

Medication Surveillance

- N=149
- 56.4% reported using concurrent herbal supplements
- 122 possible interactions detected

Table 3. Potential HDIs Found in Data Set

Herbal Supplement	Mechanism of Interaction	Anticancer Agent Involved (No. of patients)			
Allium sativum	Inhibits CYP3A4 and 2C9	Paclitaxel (8), irinotecan (4), abiraterone acetate (2),			
	Induces P-glycoprotein synthesis	cyclophosphamide (2)			
Aloe barbadensis/capensis	Decreases intestinal absorption Inhibits CYP3A4	Tamoxifen (8), capecitabine (6), cyclophosphamide (6), paclitaxel (6), abiraterone acetate (2), irinotecan (2) anastrozole (2), imatinib (2), vincristine (1), vinorelbine (1), erlotinib (1)			
Annona muricata	Inhibits P-glycoprotein	Paclitaxel (3)			
Camelia sinesis	Inhibits P-glycoprotein and CYP3A4	Paclitaxel (4), abiraterone acetate (2), cyclophosphamide			
	Increases bioavailability of tamoxifen	(2), tamoxifen (1), irinotecan (1)			
Ecchinacea angustfolia	Inhibits CYP3A4	Sorafenib (1), erlotinib (1)			
Gingo biloba	Inhibits CYP2C9 and 1A2	Anastrozole (4)			
	Induces CYP1A2				
Matricata recutita	Inhibits CYP2D6, 3A4, and 2C9	Tamoxifen (1)			
Moringa oleifera	Inhibits CYP3A4	Cyclophosphamide (3), docetaxel (1)			
Panax ginseng	Induces CYP3A4	Abiraterone acetate (1), sorafenib (1), cyclophosphamide (1), docetaxel (1)			
Spirulina sp.	Inhibits CYP1A2	Anastrozole (1)			
Uncaria tomentosa	Inhibits CYP3A4	Abiraterone acetate (2), paclitaxel (1)			
Valeriana officinalis	Inhibits CYP2D6	Tamoxifen (4), paclitaxel (4)			
	Induces CYP3A4				
Vitis vinifera	Inhibits CYP3A4 and 2C9	Paclitaxel (9), cyclophosphamide (8), vincristine (1), tamoxifen (3), anastrozole (3), abiraterone acetate (2), exemestane (1), irinotecan (1), imatinib (1)			

Abbreviations: HDI, herb-drug interaction; P-glycoprotein, phosphoglycoprotein.

J Oncol Pract. 2017;13:443

What about CBD oil?

- FDA approved formulation available for seizure treatment: Epidiolex
- Inhibits CYP 2C8, 2C9, 2C19
- May inhibit or induce CYP 1A2, 2B6
- Inhibits UGT 1A9, 2B7
- May inhibit BCRP and BSEP

• Unknown impact of impurities: up to 70% of products tested positive for heavy metals (i.e., lead, arsenic), pesticides, mold, other impurities

Prescribing Information Epidiolex (cannabidiol). Greenwich Biosciences, Inc. Carlsbad CA. 06/2018

The risk of contaminants and false labeling in the exploding CBD industry. WJLA/ABC7, May 2019. <u>https://wjla.com/features/7-on-your-side/the-risk-of-contaminants-and-false-labeling-in-the-exploding-cbd-industry</u> (Accessed 1/20/2020)

Franciscan PHYSICIAN NETWORK

Management Strategies – Identifying Interactions

Drug-Drug Interaction Databases

• Lexicomp/LexiInteract, MicroMedex, ClinPharm, Epocrates, Drugs.com

Herb-Drug Databases

- Natural Medicines Comprehensive Database: <u>https://naturalmedicines.therapeuticresearch.com/</u>
- Memorial Sloan Kettering Cancer Center About Herbs, Botanicals & Other Products: <u>https://www.mskcc.org/cancer-care/diagnosis-treatment/symptom-management/integrative-medicine/herbs</u>

Sensitivities of detecting known interactions with oncologic medications¹

- Micromedex: 70%
- Facts & Comparisons: 70%
- Epocrates: 90%
- Lexi-Interact: 95%
- Drugs.com: 95%
- Only 3 of 20 interactions were classified at the same level of severity in all databases

¹J Oncol Pract. 2017;13:e217-e222

Franciscan PHYSICIAN NETWORK

Management Strategies - Reacting

Determination of need to continue interacting medications

Alternative therapy

Dose adjustments

Increased monitoring

- Adverse effects
- ECG monitoring

Managing Drug Interactions with Oral Oncolytics in the Management of Hematologic Malignancies

David Reeves, PharmD, BCOP

Associate Professor of Pharmacy Practice Butler University

Clinical Pharmacy Specialist – Hematology/Oncology Franciscan Health Indianapolis

