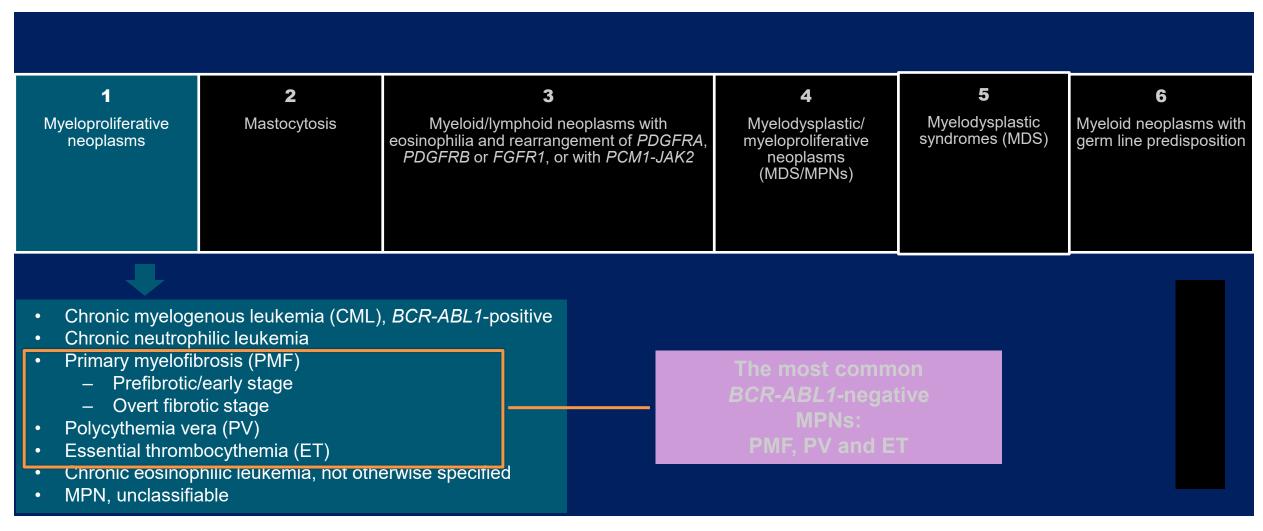
Current Treatment Strategies of Myeloproliferative Neoplasms

Rami Komrokji, MD

Senior Member & Professor of Oncologic Sciences

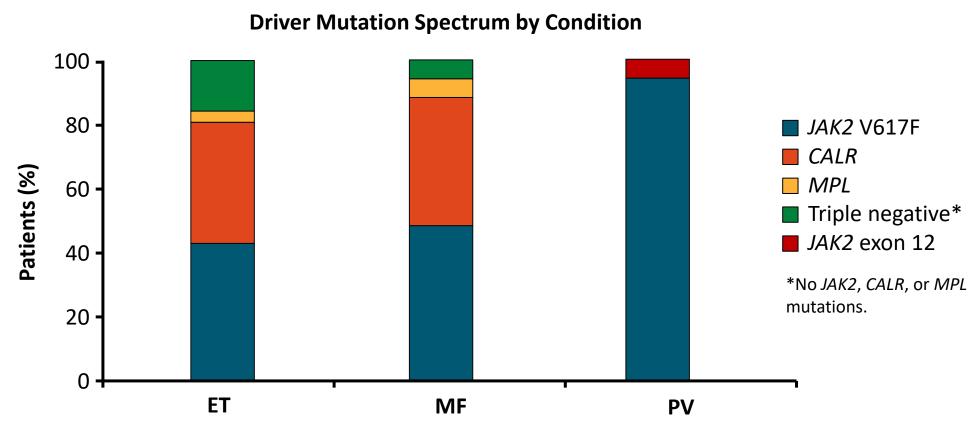
Section Head - Leukemia & MDS

Vice Chair - Malignant Hematology Department


H Lee Moffitt Cancer Center & Research Institute

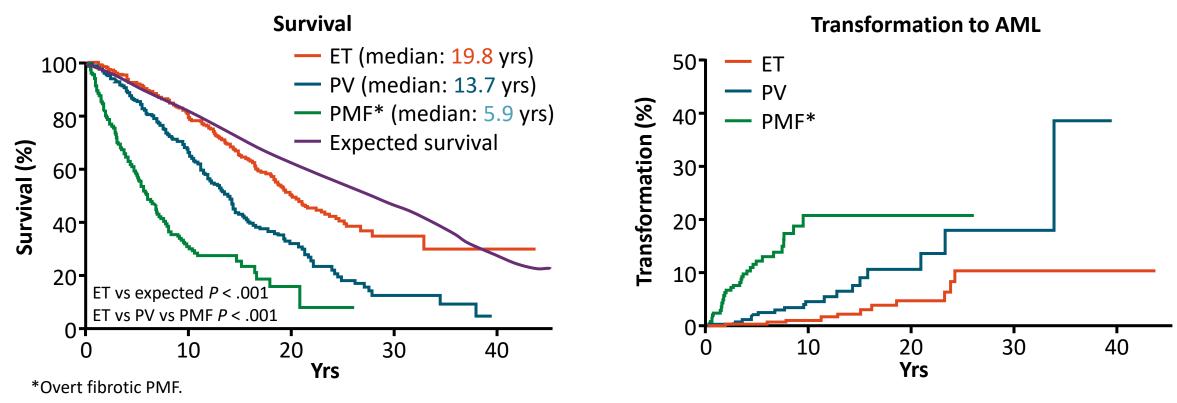
Tampa, Florida

COI disclosure


- Speaker Bureau: Celgene/BMS, JAZZ, AbbVie, Agios.
- Honoraria/consultancy: Celgene/BMS, JAZZ, AbbVie, Agios, Acceleron, Geron.

2016 WHO classification of chronic myeloid neoplasms

Arber et al. Blood 2016;127:2391–405 Tefferi et al. Am J Hematol 2017:92:95–108


Phenotype Driver Mutations Activating the JAK-STAT Pathway in MPNs

- A very small percentage of PV patients may have LNK or CALR driver mutations
- Nondriver mutations mostly frequently occurring in MPNs: TET2, ASXL1, DNMT3A

Survival and Disease Progression With PV, MF, and ET

- Although similarities exist in the molecular signature and presentation of PV, MF, and ET, important
 to distinguish among these conditions as prognosis and management can differ
- Assessment of survival and progression in patients with PV, MF, or ET at Mayo Clinic (N = 826)

Tefferi. Blood. 2014;124:2507.

Contemporary Management of Myelofibrosis

WHO Diagnostic Criteria: MF

Primary MF Diagnosis

Requirement for diagnosis

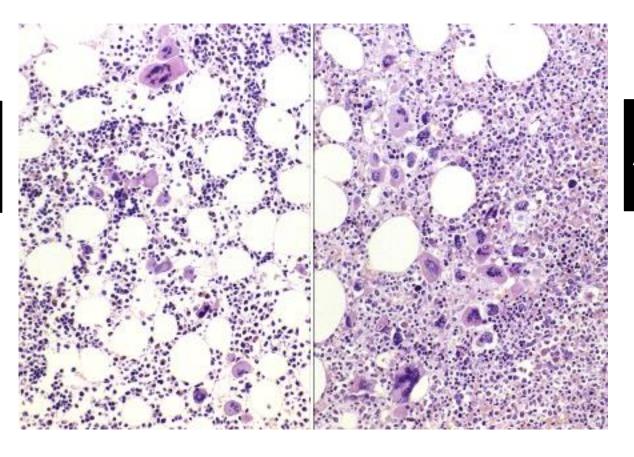
■ All 3 major criteria AND ≥ 1 minor criteria

Major criteria

- 1. Megakaryocytic proliferation and atypia, without reticulin fibrosis > grade 1 (prefibrotic PMF) or with reticulin and/or collagen fibrosis grade 2/3 (overt fibrotic PMF)
- 2. JAK2, CALR, or MPL mutation, presence of other clonal markers* OR absence of reactive MF
- 3. Not meeting WHO criteria for other myeloid malignancies

Minor criteria

- 1. Anemia not attributed to a comorbid condition
- 2. Leukocytosis $\geq 11 \times 10^9/L$


- 3. Palpable splenomegaly
- 4. LDH increased above ULN
- 5. Leukoerythroblastosis (overt fibrotic PMF)

^{*}eg, ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2, SF3B1.

Essential thrombocytosis versus pre-fibrotic PMF

MF at 15 y: 9.3% AML at 15 y: 2.1% 15-y survival: 80%

Large, mature MK's with hyperlobation

MF at 15 y: 16.9% AML at 15 y: 11.8% 15-y survival: 59%

Atypical MK proliferation, †cellularity (granulocytic proliferation)

Clinicohematologic-Based Prognostic Models of MF

Comparison of IPSS, DIPSS, and DIPSS-Plus^[1]

<u>I</u>	•	•	
Parameter	IPSS	DIPSS	DIPSS-Plus
Age > 65 yrs	Yes (1 point)	Yes (1 point)	Yes*
Hb < 10 g/dL	Yes (1 point)	Yes (2 points)	Yes*
WBC > $25 \times 10^9/L$	Yes (1 point)	Yes (1 point)	Yes*
PB blasts ≥ 1%	Yes (1 point)	Yes (1 point)	Yes*
Constitutional symptoms	Yes (1 point)	Yes (1 point)	Yes*
Unfavorable karyotype	NA	NA	Yes (1 point)
RBC transfusion dependence	NA	NA	Yes (1 point)
Platelets < 100 x 10 ⁹ /L	NA	NA	Yes (1 point)
Can be used at any time point	No (only at diagnosis)	Yes	Yes

Survival by Risk Group and Prognostic Model

Risk Group	Median OS, Yrs				
Points	IPSS ^[2]	DIPSS ^[3]	DIPSS-Plus ^[4]		
Low • 0	11.3	NR	15.0		
Intermediate 1 IPSS/DIPSS-Plus: 1 DIPSS: 1-2	7.9	14.2	6.6		
Intermediate 2 IPSS: 2 DIPSS: 3-4 DIPSS-Plus: 2-3	4.0	4.0	2.9		
High ■ IPSS: ≥ 3 ■ DIPSS: ≥ 5 ■ DIPSS-Plus: ≥ 4	2.3	1.5	1.3		

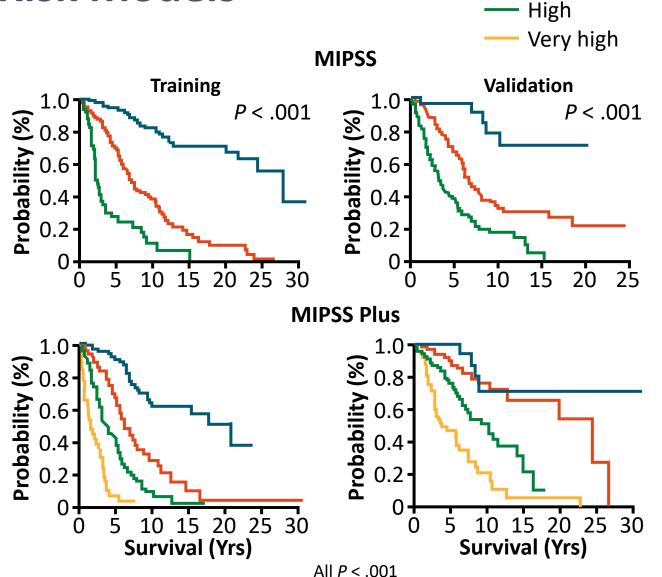
DIPSS, Dynamic International Prognostic Scoring System; Hb, hemoglobin; IPSS, International Prognostic Scoring System; MF, myelofibrosis; NA, not applicable; PB, peripheral blood; RBC, red blood cell; WBC, white blood cell.

^{*0-3} points for each based on DIPSS risk categories; features not individually weighted.

^{1.} Bose. Cancer. 2016;122:681. 2. Cervantes. Blood. 2009;113:2895. 3. Passamonti. Blood. 2010;115:1703. 4. Gangat. JCO. 2011;29:392.

Prognostic Impact of Driver and High Molecular Risk Nondriver Mutations in Primary MF

■ Analysis of association between **driver mutations** and survival in patients with primary MF $(N = 617)^{[1]}$

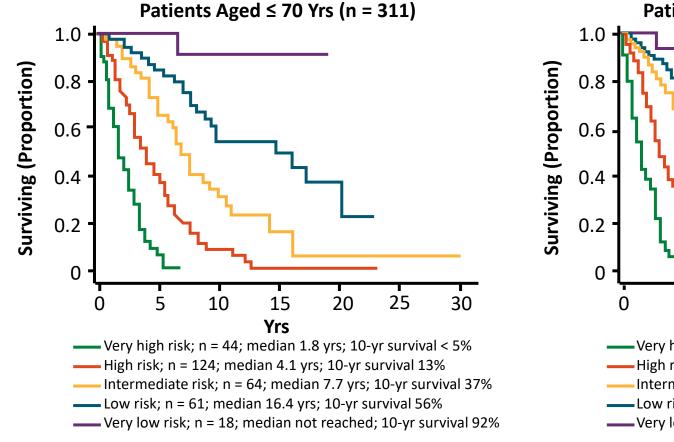

Driver Mutation	Patients, %	Median OS, Yrs
CALR mutated	22.7	17.7
JAK2 mutated	64.7	9.2
MPL mutated	4.0	9.1
Triple negative	8.6	3.2

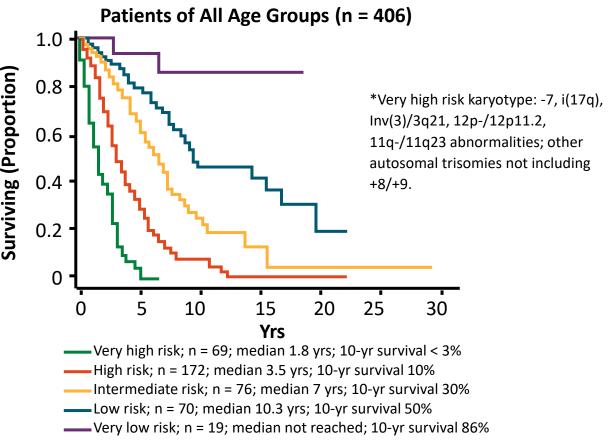
- Analysis of association between set of nondriver mutations (IDH, EZH2, ASXL1, SRSF2) and survival in patients with primary MF (N = 797)^[2]
 - Presence of mutations predicted decreased survival; ≥ 2 mutations predicted worst survival

MIPSS70/MIPSS70-Plus Risk Models

Variables	Rank
Hb < 100 g/L	1
WBC > 25 x $10^9/L$	2
Platelets < 100 x 10 ⁹ /L	2
PB blasts ≥ 2%	1
Constitutional symptoms	1
Grade ≥ 2 BM fibrosis	1
Absence CALR type 1	1
HMR category*	1
≥ 2 HMR mutations	2

^{*}HMR category, any mutation in ASXL1, EZH2, SRSF2, IDH1/2.




Low

Intermediate

MIPSS70-Plus v2.0 Risk Model

Also incorporates very high-risk karyotype,* U2AF1 Q157 mutation status, sex- and severity-adjusted Hb
thresholds (vs MIPSS70-Plus) and defines 5 prognostic categories, from very low to very high risk

MF Treatment: Based on Risk and MF-Related Symptoms/Signs

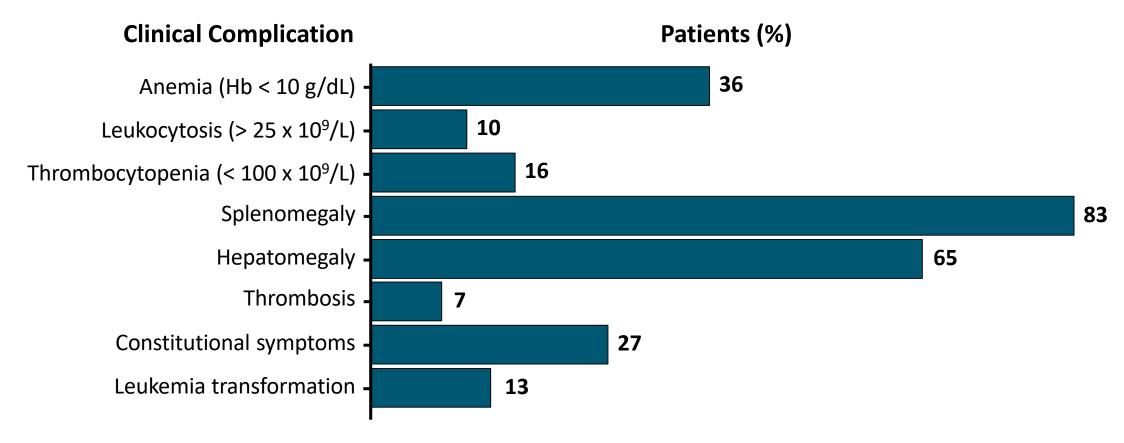
Low Risk

Minimally symptomatic → observation or IFN
Many symptoms → consider JAK inhibitor

Intermediate-1 Risk

Ruxolitinib or anemia treatment and/or allogeneic HSCT

Intermediate-2 Risk


Allogeneic HSCT or JAK inhibitor and/or anemia treatment

Allogeneic HSCT or JAK inhibitor and/or anemia treatment

Allogeneic HSCT for Patients With MF

- Who: consider HSCT in younger patients whose survival is expected to be < 5 yrs (int-2—risk/high-risk patients < 70 yrs of age but also int-1—risk patients < 65 yrs of age with refractory, transfusion-dependent anemia, circulating blasts >2%, adverse cytogenetics (as defined in the DIPSS+), triple negativity or *ASXL1* mutation^[1]
- But: very few MF patients undergo HSCT
 - Traditionally limited to younger patients < 60 yrs of age and those with HLA-identical sibling match (although now possible up to 75 yrs of age)
 - High transplant-related mortality and morbidity associated with transplantation due to acute and chronic GvHD^[1]
 - 1-yr NRM rate: 12% (completely matched donors) to 38% (mismatched)
 - 5-yr survival rate: 56% (matched sibling donors) to 34% (partially matched/ mismatched)

Main Clinical Complications in MF

 Common symptoms derived from complications: bone pain, pruritus (myeloproliferation), night sweats, weight loss, fever (constitutional), early satiety, abdominal discomfort (splenomegaly), fatigue, insomnia

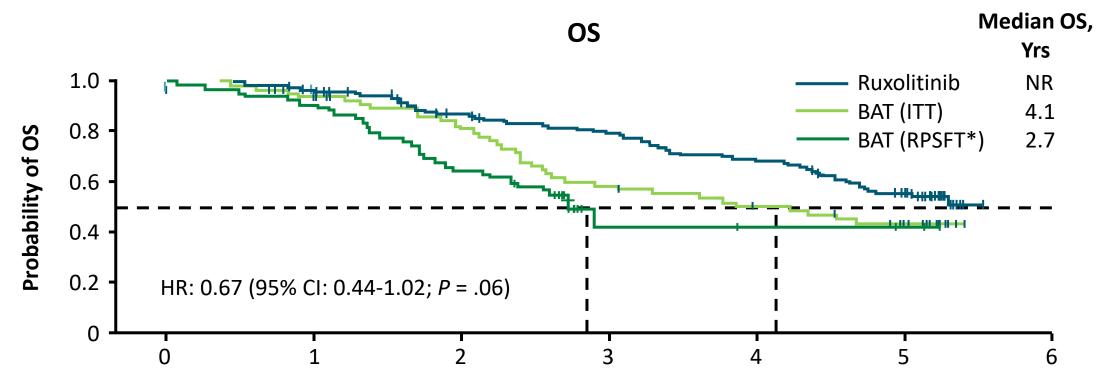
Needs-Oriented Therapy for MF

Clinical Issue	Treatments		
Anemia	ESAsCorticosteroidsDanazol	Thalidomide, lenalidomide (IMiDs)	
Symptomatic splenomegaly	Ruxolitinib, fedratinibHydroxyurea	Cladribine, IMiDsSplenectomy	
Constitutional symptoms/QoL	Ruxolitinib, fedratinibCorticosteroids		
Extramedullary hematopoiesis	Radiation therapy		
Hyperproliferative (early) disease	■ Interferon		
Risk of thrombosis	Low-dose aspirin		
Accelerated/blastic phase	Hypomethylating agents		
Improved survival	Allogeneic HSCTRuxolitinib		

ESA, erythropoiesis-stimulating agent; HSCT, hematopoietic stem cell transplantation; IMiD, immunomodulatory drug; MF, myelofibrosis; QoL, quality of life.

COMFORT-I and -II: Ruxolitinib for Patients With Intermediate-2–Risk/High-Risk MF

Randomized phase III studies in which patients with intermediate 2-risk/high-risk
 MF were treated with ruxolitinib (15 or 20 mg BID) vs placebo (COMFORT-I,
 N = 309) or best available therapy (COMFORT-II, N = 149)


	COMFORT-I, Wk 24 ^[1]		Р	COMFORT-II, Wk 48 ^[2]		P
Outcome	Ruxolitinib (n = 155)	Placebo (n = 154)	Value	Ruxolitinib (n = 144)	BAT (n = 73)	Value
Spleen volume reduction ≥ 35%,* %	41.9	0.7	< .001	28	0	< .001
≥ 50% reduction in MF-SAF TSS, %	45.9	5.3	< .001	NR	NR	NR
D/c for AEs	11.0	10.6	NR	8	5	NR

^{*}Primary endpoint. †n = 151.

 Grade 3/4 anemia/thrombocytopenia/neutropenia in COMFORT-I, %: ruxolitinib, 45/13/7; placebo 19/1/2[†]

AE, adverse event; BAT, best available therapy; D/c, discontinued; MF, myelofibrosis; MPN-SAF TSS, Myeloproliferative Neoplasm Symptom Assessment Form Total Symptom Score; NR, not reported.

COMFORT-II: 5-Yr Overall Survival With Ruxolitinib vs BAT

^{*}RPSFT modeling estimates treatment effect corrected for crossover.

 Median follow-up: 4.3 yrs; majority crossed over from BAT to ruxolitinib

Ruxolitinib in IPSS-1 Patients: Higher Response Rate and Lower Toxicities

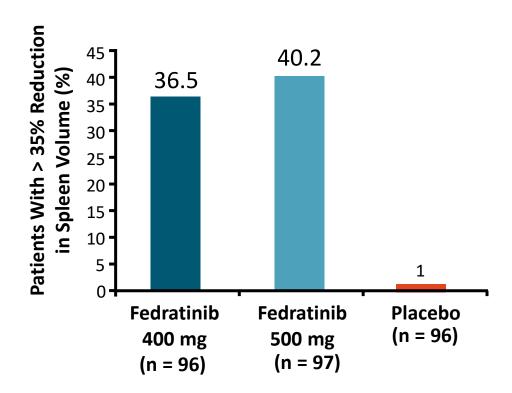
Rate, %	Category	Spleen Response at Wk 24	Grade 3/4 Anemia	Grade 3/4 Thrombocytopenia	Discontinuations
COMFORT-I ^[1] (n = 155)	Int-2–risk and high-risk patients	41.9	45.2	12.9	21.0 ^[6]
COMFORT-II ^[2] (n = 146)	Int-2–risk and high-risk patients	32.0	42.0	8.0	38.0
JUMP INTM-1 ^[3] (n = 163)	Int-1—risk patients	63.8	24.5	11.0	19.6
ROBUST ^[4] (n = 14)	Int-1–risk patients	57.1	NA	NA	NA
Italian study ^[5] (n = 70)	Int-1–risk patients	54.7	21.7*	2.9*	17.1

^{*}Grade 3 only.

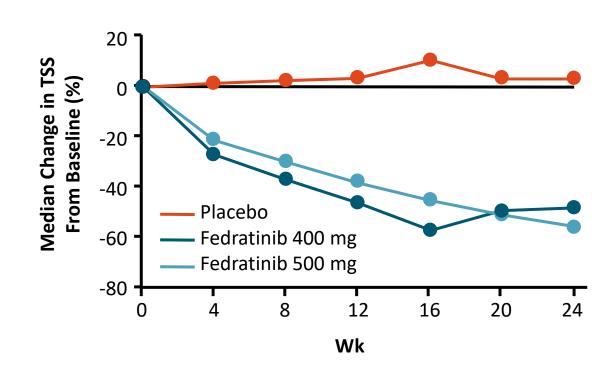
^{1.} Verstovsek. NEJM. 2012;366:799. 2. Harrison. NEJM. 2012;366:787. 3. Al-Ali. Haematologica. 2016;101:1065.

^{4.} Mead. Br J Haematol. 2015;170:29. 5. Palandri. Hematol Oncol. 2018;36:285. 6. Verstovsek. Haematologica. 2015;100:479.

Tips for Using Ruxolitinib to Treat Patients With MF


- Effective regardless of patient's mutational profile (not specific for JAK2 V617F mutation)
- Starting dose selected based on platelet count; anemia is NOT contraindication for use, can consider 10 mg BID x 12 weeks before escalating in anemic patients
- Development of anemia DOES NOT affect benefits of ruxolitinib
- Avoid abrupt interruption of ruxolitinib in patients responding well to therapy
 - Decision to stop ruxolitinib will depend on benefit and presence/absence of toxicity

Ruxo	Ruxolitinib Dosing Recommendations			
Starting dose	 Determined by platelet count: > 200 x 10⁹/L: 20 mg BID PO 100 to 200 x 10⁹/L: 15 mg BID PO 50 to < 100 x 10⁹/L: 5 mg BID PO 			
Monitoring	Monitor CBC every 2-4 wks until doses stabilized, then as clinically indicated			
Dose adjustment	Modify or interrupt dosing for thrombocytopenia			


- Dose should be modified to the maximum tolerated when response not adequate, and treatment should be continued for ≥ 6 mos
- NHL risk appears unsubstantiated

JAKARTA: Efficacy

Spleen Response (Primary Endpoint)

Change in Total Symptom Score

JAKARTA: Hematologic and Nonhematologic Events

Adverse Events,	Fedratinib 400 mg (n = 96)		Fedratinib 500 mg (n = 97)		Placebo	
n (%)	All Grades	Grade 3/4	All Grades	Grade 3/4	All Grades	Grade 3/4
Nonhematologic						
Diarrhea	63 (66)	5 (5)	54 (56)	5 (5)	15 (16)	0
Vomiting	40 (42)	3 (3)	53 (55)	9 (9)	5 (5)	0
Nausea	61 (64)	0	49 (51)	6 (6)	14 (15)	0
Constipation	10 (10)	2 (2)	17 (18)	0	7 (7)	0
Asthenia	9 (9)	2 (2)	15 (16)	4 (4)	6 (6)	1 (1)
Abdominal pain	14 (15)	0	12 (12)	1 (1)	15 (16)	1 (1)
Fatigue	15 (16)	6 (6)	10 (10)	5 (5)	9 (10)	0
Hematologic						
Anemia	95 (99)	41 (43)	94 (98)	58 (60)	86 (91)	24 (25)
Thrombocytopenia	60 (63)	16 (17)	55 (57)	26 (27)	48 (51)	9 (9)
Lymphopenia	54 (57)	20 (21)	63 (66)	26 (27)	50 (54)	19 (21)
Leukopenia	45 (47)	6 (6)	51 (53)	15 (16)	18 (19)	3 (3)
Neutropenia	27 (28)	8 (8)	42 (44)	17 (18)	14 (15)	4 (4)

Pardanani. JAMA Oncol. 2015;1:643.

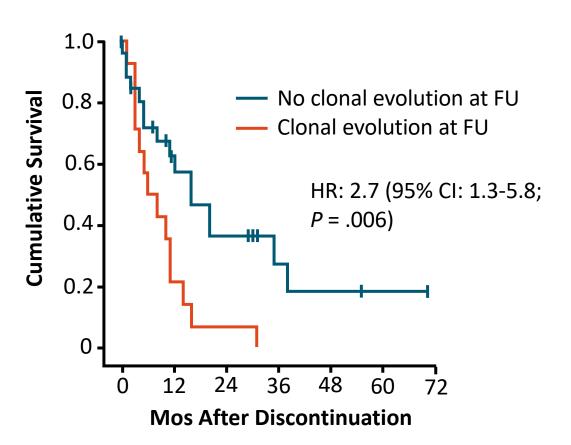
Fedratinib Indication in MF

- Approved by FDA in August 2019 for treatment of adults with intermediate-2—risk or high-risk primary or secondary MF
- Recommended dose 400 mg daily in patients with platelets \geq 50 x 10⁹/L
 - Reduce dose to 200 mg daily in patients receiving strong CYP3A inhibitors or if severe renal impairment
- Black box warning: Wernicke's encephalopathy (ataxia, AMS, ophalmoplegia) occurred in 8/608 (1.3%) patients receiving fedratinib in trials
 - Measure and replace thiamine levels prior to treatment initiation
 - Do not start fedratinib in patients with thiamine deficiency

Luspatercept for Treating Anemia in MF

Open-label, nonrandomized, multicohort phase II trial of luspatercept 1 mg/kg every 21 days for patients with primary or post-ET/post-PV MF and anemia (planned N = 100)

	RBC Transfusion Dependent			
Parameter	No RUX (Cohort 2; n = 21)	RUX (Cohort 3b; n = 19)		
RBC transfusion-free ≥ 12 consecutive wks, n (%)*	2 (10)	6 (32)		
Median duration of response, wks (range)	32 (16-49)	39 (12-77)		
≥ 50% reduction in RBC transfusion burden from BL, n (%)	8 (38)	10 (53)		


rts		Not receiving ruxolitinib	Receiving ruxolitinib [‡]
Study Cohorts	No RBC transfusions	Cohort 1 (n = 22)	Cohort 3A (n = 14)
Stu	RBC transfusion dependent	Cohort 2 (n = 21)	Cohort 3B (n = 19)

Uh Increace > 1 E a/di Erom	No RBC Transfusions		
Hb Increase ≥ 1.5 g/dL From BL for ≥ 12 Consecutive Wks [†]	No RUX (Cohort 1; n = 22)	RUX (Cohort 3a; n = 14)	
Hb increase ≥ 1.5 g/dL at every assessment, n (%)	3 (14)	3 (21)	
Mean Hb increase ≥ 1.5 g/dL, n (%)	4 (18)	9 (64)	

^{*}Primary endpoint, cohorts 2, 3b. †Primary endpoint, cohorts 1, 3a. ‡Stable dose for ≥ 16 wks at enrollment

Outcomes After Ruxolitinib Discontinuation

 Retrospective analysis of clonal evolution and outcomes after ruxolitinib discontinuation in an open-label phase I/II study (N = 56)

- Median OS: 14 mos
- Survival improved if baseline platelets \geq 260 vs < 260 × 10⁹/L (HR: 2.7; P = .006)
- Survival improved if follow-up platelets $\geq 100 \text{ vs} < 100 \times 10^9 / \text{L}$ (HR: 4.1; P = .001)
- 35% of patients acquired a new mutation while on ruxolitinib, most commonly
 ASXL1

FU, follow-up., OS overall survival, HR hazard ratio

JAKARTA-II Reanalysis: Fedratinib for Patients With MF Previously Treated With Ruxolitinib

Aim: confirm efficacy of fedratinib in ITT analysis in all enrolled patients, and in subgroups defined
using rigorous definitions of prior ruxolitinib response

Criteria for Ruxolitinib Failure					
ITT Population			Ruxolitinib Failure Cohort		
Resistant	RUX ≥ 14 days with no response or stable disease, disease progression, or loss of response per investigator	Relapsed	RUX ≥ 3 mos with regrowth (defined as < 10% SVR or < 30% decrease in spleen size from BL following an initial response)		
		Refractory	RUX ≥ 3 mos with < 10% SVR or < 30% decrease in spleen size from BL		
Intolerant	RUX ≥ 14 days before d/c tx due to unacceptable toxicity	Intolerant	RUX ≥ 28 days complicated by development of RBC transfusion requirement (≥ 2 units/mos for 2 mos); or grade ≥ 3 thrombocytopenia, anemia, hematoma/hemorrhage while on RUX		

- 79/97 enrolled patients (81%) met the more stringent criteria for RUX R/R (n = 65, 82%) or intolerance (n = 14, 18%); median prior RUX duration in RUX failure cohort, 11.5 mos (range: 1.0-62.4)
- In RUX failure cohort: median number of FEDR cycles, 7; spleen volume RR 30% (95% CI: 21-42); median spleen response duration, NE (95% CI 7.2-NE); symptom RR 27% (95% CI: 17-39)

Momelotinib for Patients With MF

Momelotinib: JAK1/2 inhibitor with potential to improve anemia, possibly via suppression of hepcidin^[1]

Key Trial	Туре	Key Findings
SIMPLIFY 2 ^[2]	Phase III RCT in MF previously treated with ruxolitinib (N = 156)	 SVR ≥ 35% at Wk 24*: momelotinib, 7%; BAT, 6% (P = .90)
SIMPLIFY 1 ^[3]	Phase III RCT in JAKi-naive patients with MF (N = 432)	 SVR ≥ 35% at Wk 24*: momelotinib, 26.5%; ruxolitinib, 29% (noninferior)

- Ongoing double-blind, randomized phase III MOMENTUM trial (NCT04173494) of momelotinib vs danazol for symptomatic patients with MF who have anemia (Hb < 10 g/dL) and previous JAKi experience
 - Primary endpoint, symptom response; secondary endpoints, transfusion independence and spleen response)

BAT, best available therapy; MF, myelofibrosis; SVR, spleen volume reduction.

^{*}Primary endpoint(s).

Pacritinib for Patients With MF

Pacritinib: selective inhibitor of JAK2, JAK2 V617F, and FLT3

Key Trial	Туре		Key Findings	
PERSIST-1 ^[1]	Phase III RCT in higher-risk, JAKi-naive MF with any degree of anemia/thrombocytopenia (N = 327)	•	SVR ≥ 35% at Wk 24*: pacritinib , 19% ; BAT (no JAK2i), 5% (<i>P</i> = .0003)	
PERSIST-2 ^[2]	Phase III RCT in MF (prior JAKi allowed) with platelet count ≤ 100,000/μL (N = 311)	•	SVR \geq 35%*: pacritinib , 18% ; BAT , 3% (incl RUX) ($P = .001$); TSS reduced \geq 50%*: pacritinib , 25% ; BAT , 14% ($P = .08$)	
PAC203 ^[3]	Phase II dose-finding trial in higher-risk MF with previous ruxolitinib (N = 164)	•	200 mg BID dose most effective: SVR ≥ 35%, 9.3%; TSS reduced ≥ 50%, 7.4%	

- Development of pacritinib put on hold by FDA in 2016 due to reports of patient deaths related to intracranial hemorrhage, cardiac failure, and cardiac arrest; clinical hold removed in 2017
- Ongoing randomized phase III PACIFICA trial of pacritinib vs physician's choice treatment for pts with limited (90 days)/no previous JAKi treatment and intermediate- or high-risk MF and platelet count < 50,000/μL^[4]

^{*}Primary endpoint(s).

^{1.} Mesa. Lancet Haematol. 2017;4:e225. 2. Mascarenhas. JAMA Oncol. 2018;4:652.

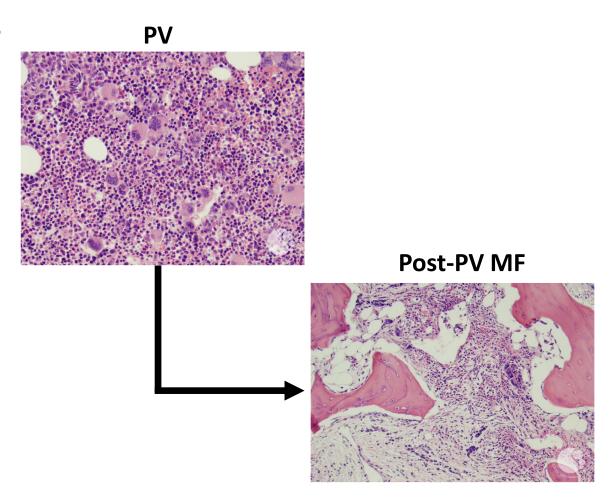
^{3.} Gerds. ASH 2019. Abstr 667. 4. Harrison. ASH 2019. Abstr 4175.

Novel agents in clinical trials for MF

	Target	Agent
Promotion of Apoptosis	SMAC mimetic/IAP BCL-xL inhibitors LSD1 inhibitors XPO1 inhibitor	LCL-161 Navitoclax IMG-728 Selinexor
Targeting Hematopoietic Stem Cell/Micro-environment	CD123 Hsp90	Tagraxofusp PU-H71
Modulation of TP53 Pathway	MDM2 antagonists	Idasanutlin KRT-232
Targeting Fibrosis and Associated Cytokine	Pentraxin-2	PRM-151
Aurora Kinase Inhibition		Alisertib
Telomerase Inhibition		Imetelstat
Bromodomain and Extraterminal Protein Inhibition	BET -	CPI-0610
JAKi		Itacitinib
ΡΙ3Κδί		Parsaclisib

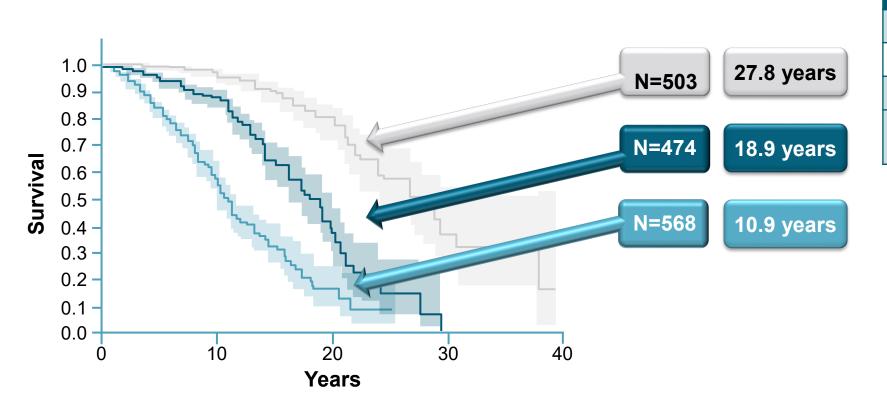
Modified from Economides MP, et al. Curr Hematol Malig Rep. 2019 Aug 1.

Polycythemia Vera and Essential Thrombocythemia in Focus


Evolution of WHO PV Diagnostic Criteria

	WHO 2008 ^[1]		WHO 2016 ^[2]
Req	uirement for diagnosis		
•	2 major and 1 minor criteria OR first major and 2 minor criteria	•	All 3 major criteria OR first 2 major criteria and the minor criterion
Maj	or criteria		
 2. 	Hb > 18.5 g/dL (men); > 16.5 g/dL (women) JAK2 V617F mutation or similar (JAK2 exon 12)	 2. 3. 	Hb > 16.5 g/dL or Hct > 49% (men); Hb > 16.0 g/dL or Hct > 48% (women) BM biopsy showing hypercellularity, trilineage growth (panmyelosis) with erythroid, granulocytic, and pleomorphic, mature megakaryocytic proliferation JAK2 V617F or JAK2 exon 12 mutation
Min	or criteria		
1. 2. 3.	Subnormal serum EPO level BM trilineage proliferation Endogenous erythroid colony growth	1.	Subnormal serum EPO level

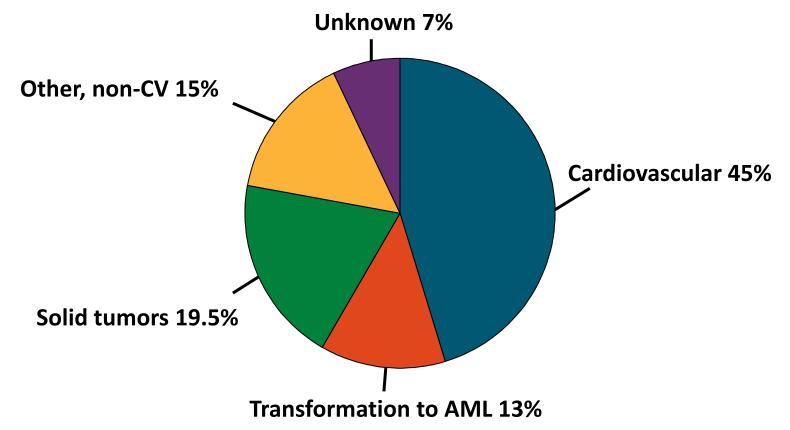
BM, bone marrow; EPO, erythropoietin; Hb, hemoglobin; Hct hematocrit; PV, polycythemia vera; WHO, World Health Organization.


Bone Marrow Testing in PV Diagnosis

- Bone marrow biopsy may not be required for diagnosis if sustained Hb levels > 18.5 g/dL (men) or > 16.5 g/dL (women) where JAK2 mutated and EPO suppressed^[1]
- Biopsy may identify fibrosis at diagnosis
 - Prevalence: 14% to 48% with grade 1 fibrosis at diagnosis; consequences include a higher rate of overt, fibrotic progression^[2,3]
- Biopsy required to diagnose post-PV MF^[4]
 - Progression prevalence: 5% to 19% at 15 yrs
 - Note that high-grade bone marrow fibrosis alone not enough to diagnose post-PV MF

^{1.} Arber. Blood. 2016;127:2391. 2. Barbui. Blood. 2012;119:2239. 3. Barraco. Blood Cancer J. 2017;7:e538. 4. Cerquozzi. Blood Cancer J. 2015;5:e366. These images were originally published in ASH Image Bank. Elizabeth L. Courville, MD. Polycythemia vera (PV), polycythemic phase, core biopsy 2; Post-polycythemic myelofibrosis, bone marrow core 1. ASH Image Bank. 2019; #00060162; #00060155. © the American Society of Hematology.

Survival among 1545 patients with WHO-based PV



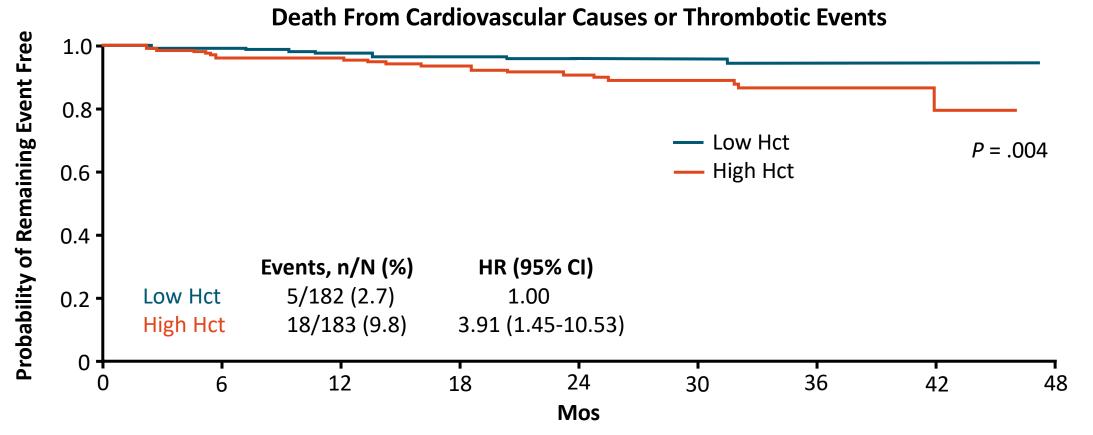
Risk factors	
Age > 67 years	5 points
Age 57-66	2 points
WBC > 15 x10 ⁹ /L	1 point
Venous thrombosis	1

Risk Categories/score			
LR	0		
Int	1-2		
HR	≥3		

Thrombosis: A Major Cause of Mortality in PV

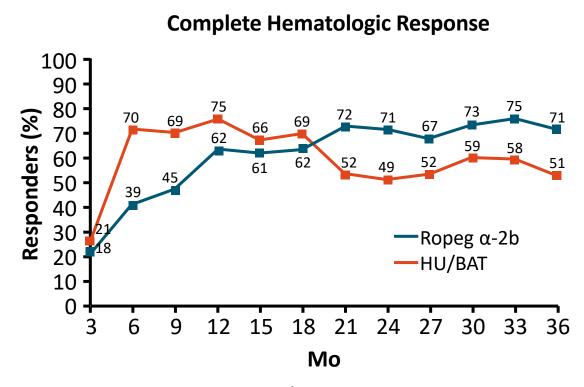
Data from large prospective multicenter project in PV (ECLAP trial);
 164 of 1638 patients deceased at time of analysis

Thrombosis Risk-Adapted Management of ET and PV


Category	Characteristics	Treatment		
Low risk	Age ≤ 60 yrs AND no history of thrombosis	■ Therapeutic phlebotomy (goal Hct < 45%) in PV		
		Aspirin 81 mg/day for ET/PV*		
		 Address CV modifiable risk 	 Address CV modifiable risk factors for ET/PV 	
	Age > 60 yrs <i>OR</i> history of thrombosis	 All the above AND cytoreductive therapy 		
		Cytoreductive therapy		
High risk		First line	Second line	
1116111131		Hydroxyurea for ET/PVAnagrelide for ETPegIFN for ET/PV	 Ruxolitinib for PV PegIFN for ET/PV Busulfan (age > 70 yrs) for ET/PV 	

^{*}ASA may not be needed for CALR-mutant ET patients ≤ 60 yrs AND no history of thrombosis.

CV, cardiovascular; ET, essential thrombocythemia; Hct, hematocrit; PegIFN, peginterferon; PV, polycythemia vera.


CYTO-PV: Death From CV or Thrombotic Events by Hematocrit Target

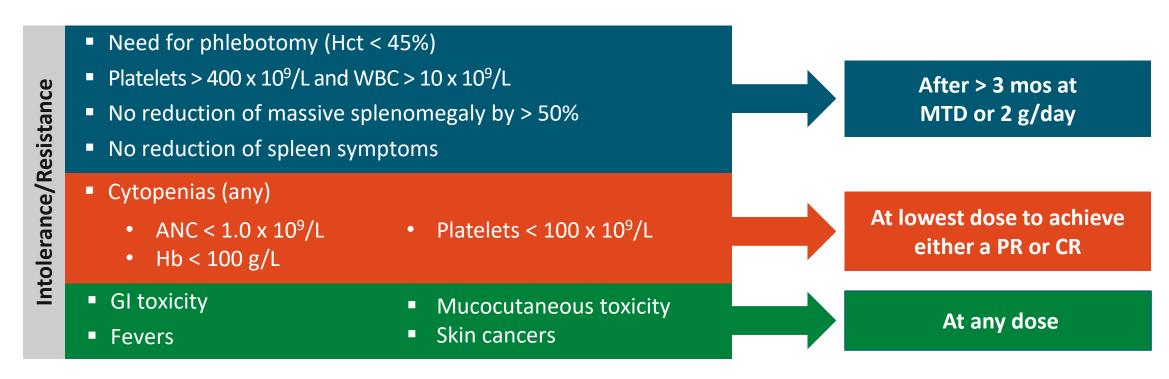
Randomized, open-label phase III trial in which PV patients were treated to a lower (< 45%) or higher (45% to 50%) Hct target with ASA + phlebotomy ± cytoreductives (N = 365)

PROUD-PV/CONTI-PV: Ropeginterferon α -2b for Patients With PV

■ Randomized phase III study of ropeginterferon α-2b vs HU* for cytoreductivenaive or previously HU-treated patients[†] with PV (N = 254)

	Responde	P	RR	
Study Mo	Ropeg α-2b (n = 95)	HU/BAT (n = 76)	Value	(95% CI)
12 (EOT in PR)	59/95 (62.1)	57/76 (75.0)	.1201	0.85 (0.70-1.04)
24	67/95 (70.5)	33/67 (49.3)	.0111	1.42 (1.08-1.87)
36	67/95 (70.5)	38/74 (51.4)	.0122	1.38 (1.07-1.79)

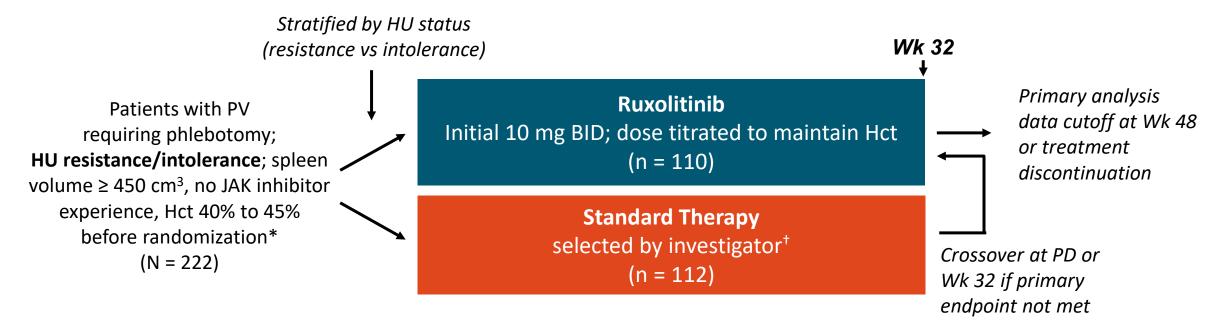
BAT, best available therapy; EOT, end of treatment; HU, hydroxyurea; PV, polycythemia vera; Ropeg, ropeginterferon; RR, relative risk.


^{*}After 12 mos, could switch to BAT. †Could not have HU resistance.

IFN for First-line PV Treatment

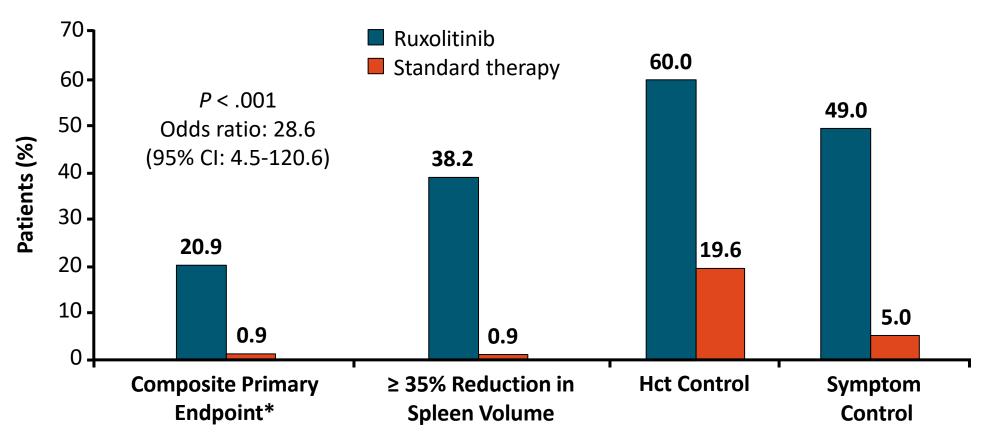
Parameter	Considerations			
Patients in whom IFN may be considered	 Preserved performance status and limited comorbidities Earlier in disease course Modest splenomegaly No additional non-JAK2 mutations (?) 			
Limitations	Potential for short-term negative impact on QoLTolerable in the long term?			
Impact of use	 Blood count control Early Address splenomegaly, when modest Reduction in thrombosis risk 			
	 Anticlonal activity Late Potential for regression of histologic changes, delayed transformation 			

Foucar. Curr Hematol Malig Rep. 2017;12:406.


HU Resistance and Intolerance: ELN Criteria

- Prevalence of HU resistance/intolerance: up to 25%
- Among individual criteria, development of cytopenia at the lowest required HU dose associated with increased risk of MF/AML progression and death
- Uncontrolled PV symptoms can be a trigger to re-evaluate therapeutic strategy

RESPONSE: Ruxolitinib vs Standard Therapy in Patients With PV and HU Resistance/Intolerance


- International, multicenter, randomized, open-label phase III study
 - Ruxolitinib: JAK 1 and 2 inhibitor

All patients received low-dose ASA.

^{*}Patients with Hct < 40% or > 50% entered Hct control period prior to randomization. †Excluding ³²P, busulfan, and chlorambucil.

RESPONSE: Key Efficacy Findings at Wk 32

^{*}Proportion with Hct control + spleen volume reduction \geq 35%.

• Complete hematologic response also significantly improved with ruxolitinib vs standard therapy (23.6% vs 8.9%; P = .003)

RESPONSE: 256-Wk Follow-up Data

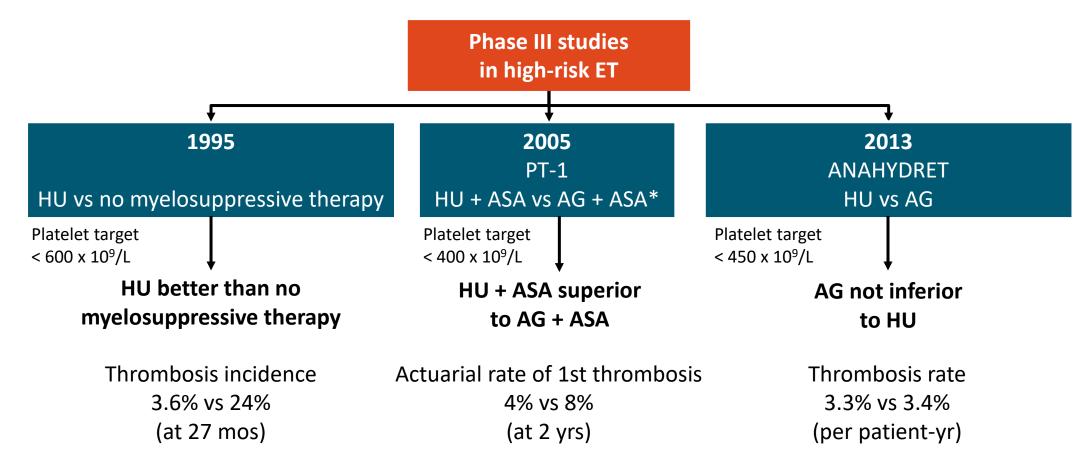
- For patients randomized to ruxolitinib (n = 110)
 - Median exposure: 255 wks
 - Remained on or completed treatment:66%
 - For patients achieving response at 32 wks (n = 25), KM estimate of maintaining response for 224 wks:

– Primary endpoint*: 0.74

Hct control: 0.73

Spleen reduction: 0.72

Events/100 PY	Ruxolitinib (n = 110)
Thromboembolic events	1.2
Grade 3/4 thrombocytopenia	1.2
Zoster	4.7
Nonmelanoma skin cancer	5.1
Increased weight	6.1

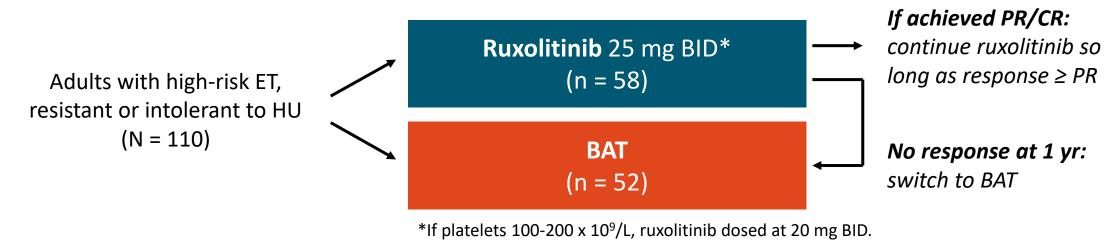

RESPONSE-2: Ruxolitinib vs Best Available Therapy in Patients Without Splenomegaly

Multicenter, randomized, open-label phase IIIb study in which patients with HU-resistant/intolerant PV who required phlebotomy and had no splenomegaly were treated with ruxolitinib or best available therapy (N = 149)

Outcome, Wk 28	Ruxolitinib (n = 74)	BAT (n = 75)	<i>P</i> Value
Hct control,* n (%)	46 (62)	14 (19)	< .0001
Complete hematologic response, n (%)	17 (23)	4 (5)	.0019
Complete resolution in symptoms, n/N [†] (%) ■ ≥ 50% reduction in MPN-SAF TSS, n/N (%)	17/34 (50) 29/64 (45)	2/26 (8) 5/22 (23)	NR NR

^{*}Primary endpoint. †Patients with baseline MPN-SAF TSS of ≥ 20.

Prospective Randomized Clinical Trials in ET

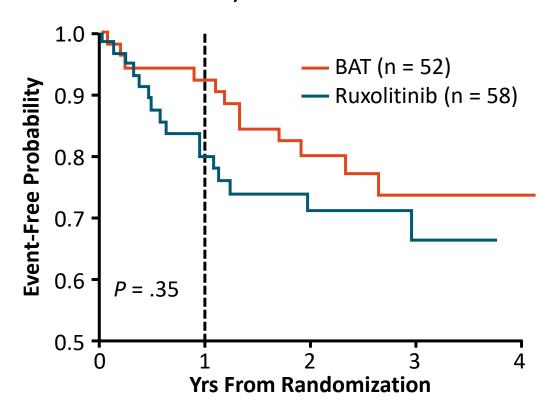

^{*}Composite primary endpoint: arterial or venous thrombosis, serious hemorrhage, or death from vascular causes.

AG, anagrelide; ASA, aspirin; ET, essential thrombocythemia; HU, hydroxyurea; Plt, platelet.

Cortelazzo. NEJM. 1995;332:1132. Harrison. NEJM. 2005;353:33. Gisslinger. Blood. 2013;121:1720.

MAJIC-ET: Ruxolitinib vs BAT in Patients With ET Resistant or Intolerant to HU

Randomized, open-label phase II study



- Baseline: resistant to HU, 48.2%; intolerant to HU, 51.8%; both, 22.7%
- Primary endpoint: CR rate within 1 yr of treatment (ELN criteria)
- Secondary endpoints: PR rate within 1 yr of treatment, DoR, ORR, histologic response, molecular response, hemorrhagic and thromboembolic events, disease transformation, OS, PFS, QoL, disease symptom burden, safety

MAJIC-ET: No Difference in Outcomes With Ruxolitinib vs BAT in ET

- No difference in CR, PR within first yr of treatment
 - CR: ruxolitinib, 46.6%; BAT, 44.2% (P = .40)
- Rates of thrombosis, hemorrhage, or transformation not different between arms at 2 yrs
- More grade 3/4 anemia, thrombocytopenia, and grade 3 infections with ruxolitinib vs BAT
- More d/c with ruxolitinib vs BAT (60% vs 19%)
- Some molecular responses in ruxolitinib-treated patients with JAK2 V617F or CALR positivity
- Better improvement of some disease-related symptoms with ruxolitinib

Time to First Hemorrhagic,
Thromboembolic, and Transformation Event

Harrison. Blood. 2017;130:1889.

only perfect counts

Moffitt MDS Team