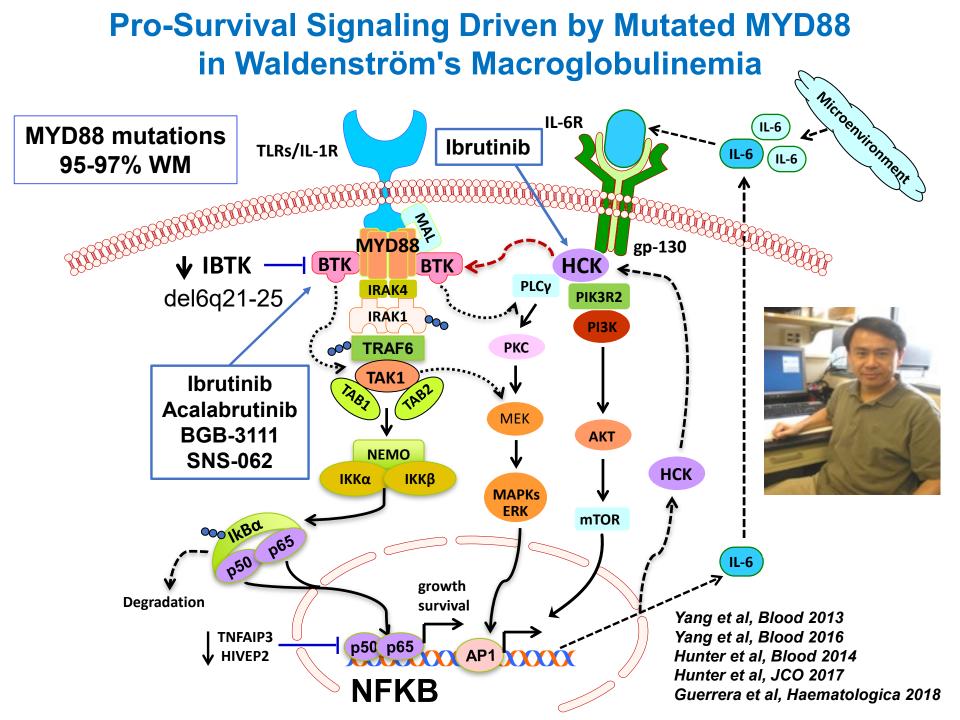
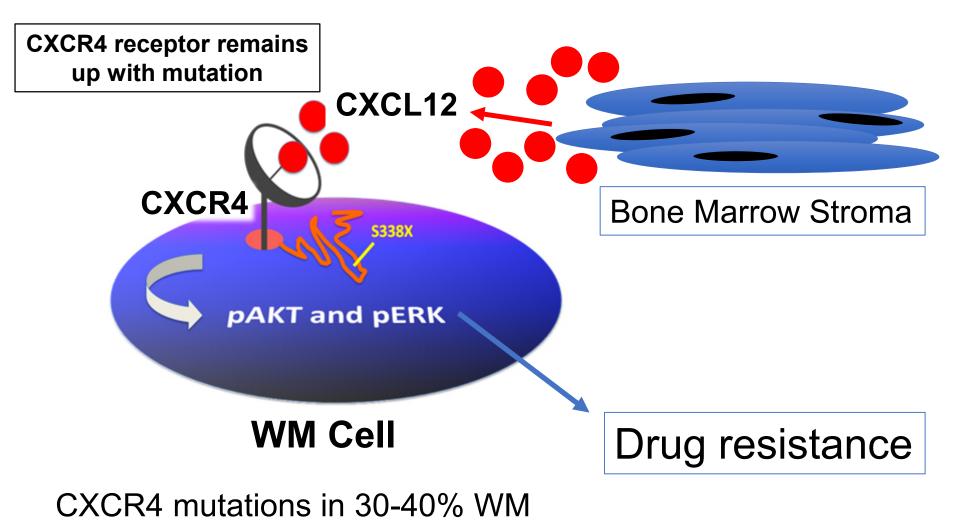

Waldenström's Macroglobulinemia: Treatment Approach

HARVARD MEDICAL SCHOOL

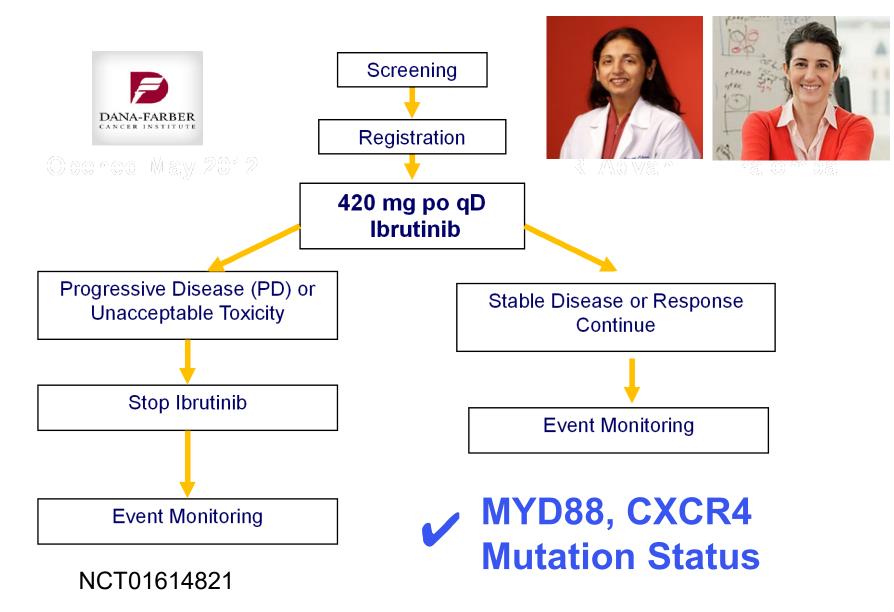
Steve Treon MD, PhD Bing Center for Waldenstrom's Macroglobulinemia Dana Farber Cancer Institute Harvard Medical School


Primary Therapy of WM with Rituximab

Regimen	ORR	VGPR/CR	TTP (mo)
Rituximab x 4	25-30%	0-5%	13
Rituximab x 8	40-45%	5-10%	16-22
Rituximab/thalidomide	70%	10%	30
Rituximab/cyclophosphamide i.e. CHOP-R, CVP-R, CPR, CDR	70-80%	20-25%	30-36
Rituximab/nucleoside analogues i.e. FR, FCR, CDA-R	70-90%	20-30%	36-62
Rituximab/Proteasome Inhibitor i.e. BDR, VR, CaRD	70-90%	20-40%	42-66
Rituximab/bendamustine	90%	30-40%	69


Reviewed in Dimopoulos et al, Blood 2014; 124(9):1404-11; Treon et al, Blood 2015; How I Treat WM

WM–centric toxicities with commonly used therapies

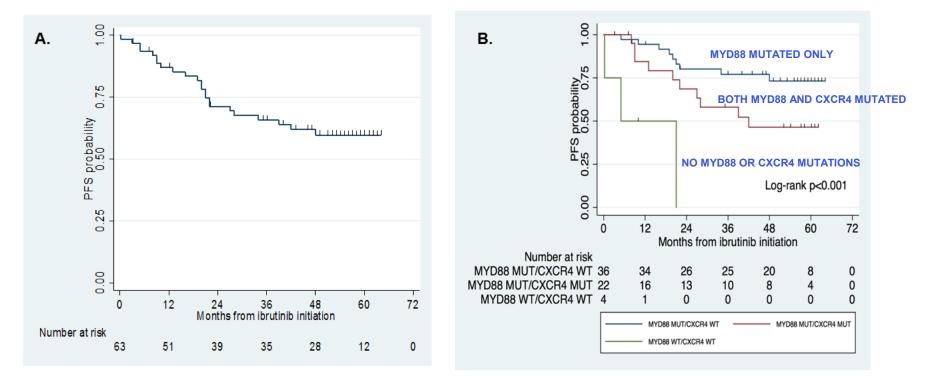

Agent	WM Toxicities
Rituximab	 IgM flare (40-60%)-> Hyperiscosity crisis, Aggravation of IgM related PN, CAGG, Cryos. Hypogammaglobulinemia-> infections, IVIG Intolerance (10-15%)
Fludarabine	 Hypogammaglobulinemia-> infections, IVIG Transformation, AML/MDS (15%)
Bendamustine	 Prolonged neutropenia, thrombocytopenia (especially after fludarabine) AML/MDS (5-8%)
Bortezomib	 Grade 2+3 Peripheral neuropathy (60-70%); High discontinuation (20-60%)

Mutations in CXCR4 permit ongoing pro-survival signaling by CXCL12, the ligand for CXCR4 receptor.

Multicenter study of Ibrutinib in Relapsed/Refractory WM (≥1 prior therapy)

Responses to ibrutinib are impacted by MYD88 (L265P and non-L265P) and CXCR4 mutations.

	ALL	MYD88 ^{Mut} CXCR4 ^{WT}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{WT} CXCR4 ^{WT}	P-value
N=	63	36	21	5*	
ORR	91%	100%	85.7%	60%	0.005
Major (>PR)	78%	<mark>97%</mark>	<mark>67%</mark>	<mark>0%</mark>	<0.001
VGPR	29%	<mark>44%</mark>	<mark>10%</mark>	<mark>0%</mark>	0.007
Time to Minor Response (mos.)	1.0	1.0	1.0	1.0	0.10
Time to Major response (mos.)	2.0	<mark>2.0</mark>	<mark>6.0</mark>	N/A	0.05

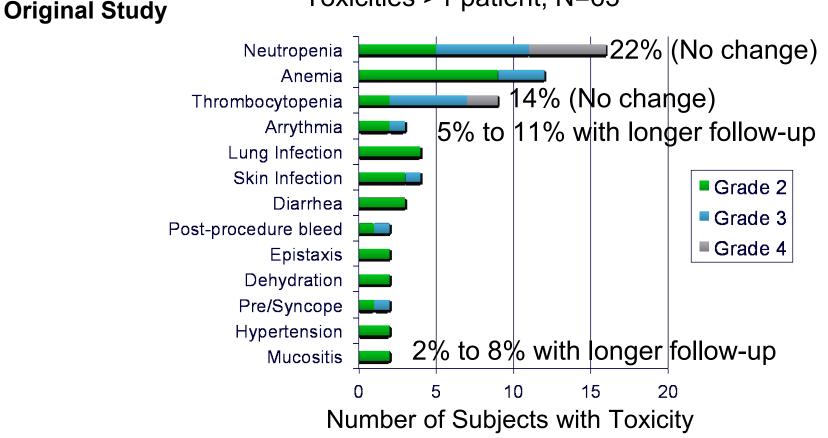

*2 patients at initial reporting with major responses were discovered subsequently to have MYD88 mutated disease (S243N, L265P). One patient at initial reporting was subsequently found to CXCR4 mutated disease upon genotyping of CD19-selected WM cells.

Treon et al, EHA 2018

Ibrutinib in Previously Treated WM: Updated PFS

All patients

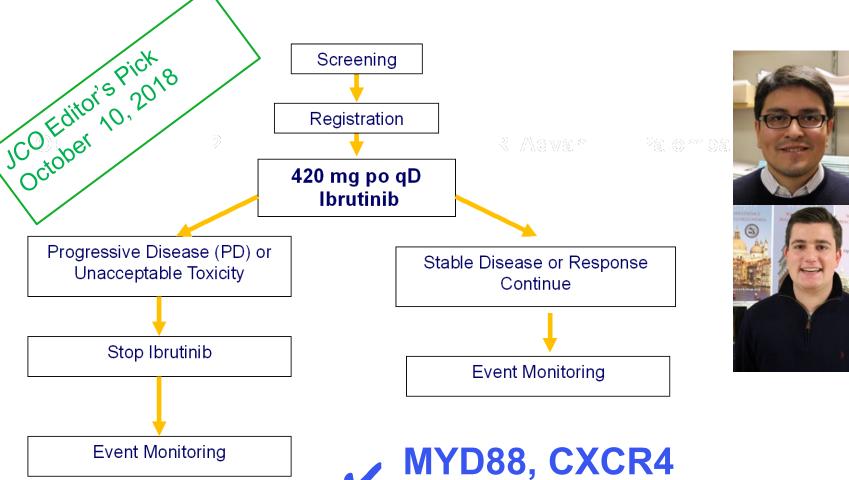
MYD88 and CXCR4 Status



5 year PFS: 60% (95% CI 46-71%).

Treon et al, EHA 2018

Ibrutinib Related Adverse Events in previously treated WM patients


Toxicities >1 patient; N=63

Update on Adverse Events (Grade \geq **2) in** \geq **5% of patients:** Neutropenia (22%); Thrombocytopenia (14%), Pneumonia (9%); GERD (8%); Hypertension (8%); anemia (6%); and skin infection (5%). Seven patients (11%) had atrial arrhythmia [Grade 1 (n=1); Grade 2 (n=5); Grade 3 (n=1)], and 6 continued ibrutinib following medical management.

Treon et al, EHA 2018

Ibrutinib Monotherapy in Symptomatic Treatment Naive WM

Mutation Status

NCT02604511

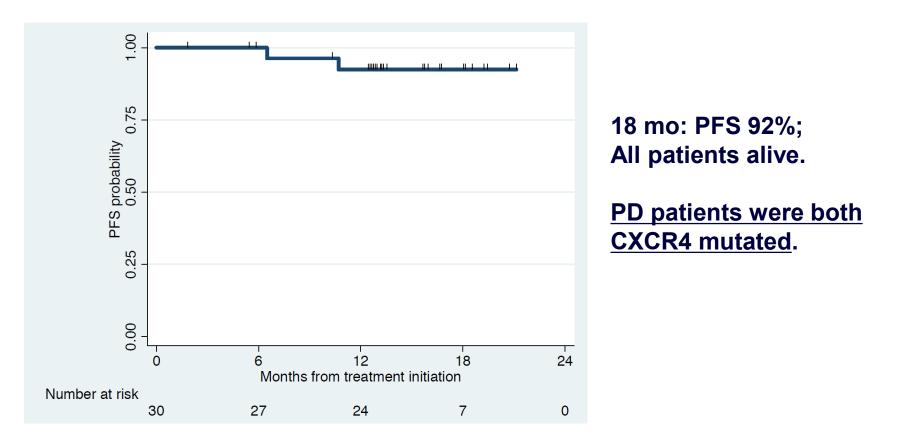
Treon et al, JCO 2018

Time to and depth of response to ibrutinib are impacted by CXCR4 mutations.

	All Patients	MYD88 ^{MUT} CXCR4 ^{WT}	MYD88 ^{MUT} CXCR4 ^{MUT}	P-value
N=	30	16	14	N/A
Overall Response Rate-no. (%)	30 (100%)	16 (100%)	14 (100%)	1.00
Major Response Rate- no. (%)	25 (83%)	<mark>15 (94%)</mark>	<mark>10 (71%)</mark>	0.16
Categorical re	esponses			
Minor responses-no. (%)	5 (17%)	1 (6%)	4 (29%)	0.16
Partial responses-no. (%)	19 (63%)	10 (63%)	9 (64%)	1.00
Very good partial responses-no. (%)	6 (20%)	<mark>5 (31%)</mark>	<mark>1 (7%)</mark>	0.18
Median time t	o respons	e (months)		
Minor response (≥Minor response)	1.0	0.9	1.7	0.07
Major response (≥Partial response)	1.9	<mark>1.8</mark>	<mark>7.3</mark>	0.01

Data cutoff: Jan. 22, 2018

Median f/u: 14.6 (range 1.8-21.6 months)

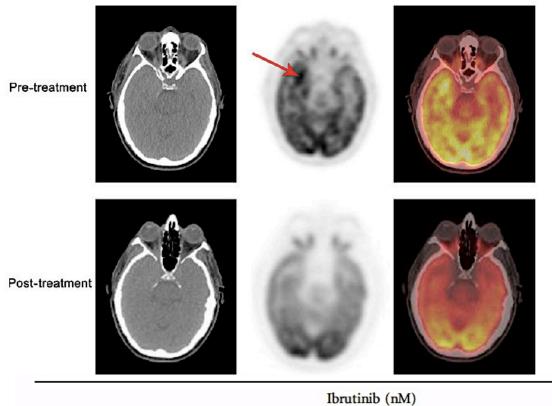

Treon et al, JCO 2018

Adverse Events (>5%)

Event or Abnormality	Grade 2	Grade 3	Grade 4	Total Grades 2-4
Arthralgia	2 (7%)	0 (0%)	0 (0%)	2 (7%)
Atrial fibrillation	3 (10%)	0 (0%)	0 (0%)	3 (10%)
Bruising	2 (7%)	0 (0%)	0 (0%)	2 (7%)
Hypertension	2 (7%)	2 (7%)	0 (0%)	4 (13%)
Neutropenia	2 (7%)	0 (0%)	0 (0%)	2 (7%)
Upper respiratory infection	2 (7%)	0 (0%)	0 (0%)	2 (7%)
Urinary tract infection	2 (7%)	0 (0%)	0 (0%)	2 (7%)

- Minimal hematological toxicity
- Median serum IgA levels decreased from 62 to 39 mg/dL; p=0.04
- Median serum IgG levels declined from 563 to 462; p=0.003
- Afib medically managed in 2 patients who continue on treatment; cardiac ablation for one patient with left atrial enlargement off treatment.

Ibrutinib Monotherapy in Frontline WM: PFS



Data cutoff: Jan. 22, 2018

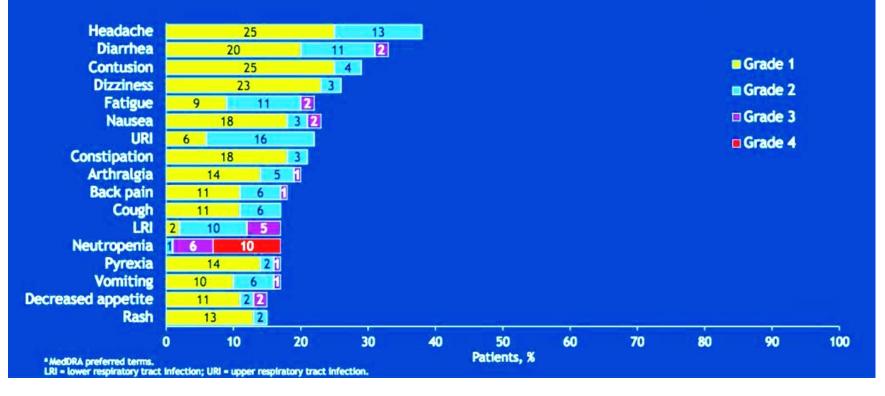
Median f/u: 14.6 (range 1.8-21.6 months)

Treon et al, JCO 2018

Ibrutinib (560 mg/day) induced response in a WM patient with Bing Neel Syndrome

Study Day	Time post-dose (h)	CSF	Plasma	%CSF/Plasma
Day 1	0	BLQ	BLQ	NA
	2	34	1133	3.0
1 Month	3	16	463	3.5
4 Months	2.5	7	318	2.2

Mason et al, BJH 2016


Acalabrutinib (ACP-196) in Treatment Naïve and Previously Treated WM

	TN (n=14)	R/R (n=92)
ORR (≥ minor response [MR]), n (%)	13 (93)	86 (94)
95% CI	66, 100	86, 98
Major response rate (≥ partial response [PR])	11 (79)	72 (78)
95% CI	49, 95	68, 86
Complete response	0	0
Very good PR	1 (7)	29 (32)
PR	10 (71)	43 (47)
MR	2 (14)	14 (15)
24-mo rate, % (95% Cl)		
DOR	90 (47, 99)	84 (73, 90)
PFS	90 (47, 99)	82 (72, 88)
OS	92 (54, 99)	89 (80, 94)

Owen et al, ASCO 2018; EHA 2018

Acalabrutinib in WM

Most Common Adverse Events^a (≥15% of All Patients [N=106])

Atrial fibrillation occurred in 3 pts (1 Gr 3). Bleeding events occurred in 57% of pts; 4 events were Gr 3/4: There were 5 Gr 5 events: pneumonia, glioblastoma multiforme, esophageal carcinoma, myocardial ischemia, and intracranial hematoma.

Owen et al, ASCO 2018; EHA 2018

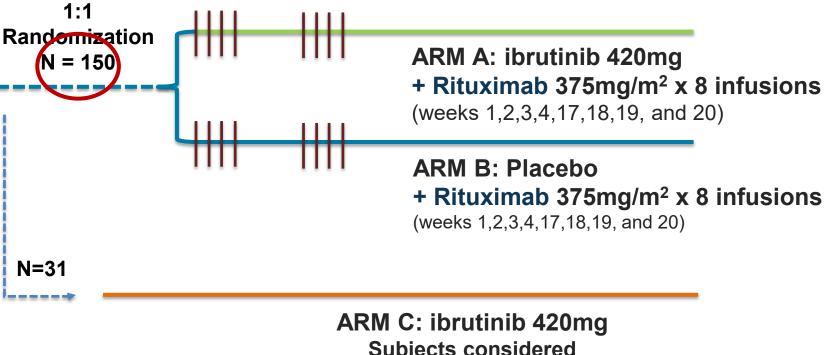
Zanubrutinib in WM

		By MYD88 Status					
Best response, n (%)	OVERALL (n=51)	МҮD88^{L265P}/ СХСR4^{wт} (n=25)	МҮD88^{L265P}/ CXCR4^{wнім} (n=5)	МҮD88^{wт} (n=6)	Unknown Status (n=15)		
ORR	47 (92)	23 (92)	5 (100)	5 (83)	14 (93)		
MRR	41 (80)	21 (84)	4 (80)	3 (50)	13 (87)		
VGPR	22 (43)	14 (56)	2 (40)	1 (17)	5 (33)		
PR	19 (37)	7 (28)	2 (40)	2 (33)	8 (53)		
MR	6 (12)	2 (8)	1 (20)	2 (33)	1 (7)		
SD	4 (8)	2 (8)	0	1 (17)	1 (7)		

Phase I/II Data 51 patients out of 67 evaluable for efficacy Genotyping unknown for many patients 91% PFS at 1 year

Trotman et al, EHA 2018

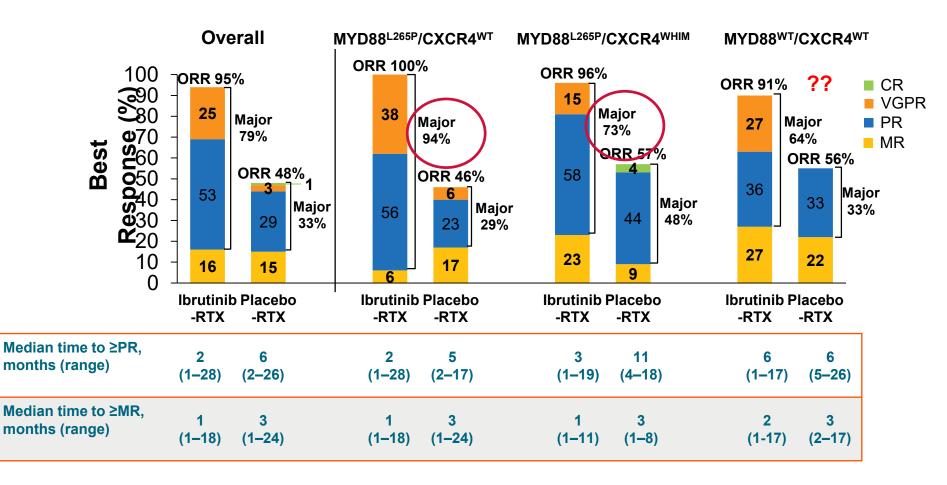
Zanubrutinib in WM


Adverse Event	N=6	67	Advorce Event	Adverse Event	67
Adverse Event	All Gr %	Gr 3-4 %	Adverse Event	All Gr %	Gr 3-4 %
Petechiae/purpura/ contusion	37		Gastroesophageal reflex disease	10	
Upper respiratory tract infection	34		Neutropenia	10	6.0
Constipation	18		Rash	10	
Diarrhea	18	1.5	Basal cell carcinoma	9.0	3.0
Cough	13		Hypertension	9.0	3.0
Anemia	12	7.5	Squamous cell carcinoma	6.0	3.0
Back pain	12	3.0	Atrial fibrillation/flutter	6.0	
Epistaxis	12		Pyrexia	4.5	3.0
Headache	12	1.5	Pneumonia	4.5	3.0
Nausea	12		Actinic keratosis	4.5	3.0
Urinary track infection	12		Major hemorrhage*	3.0	3.0

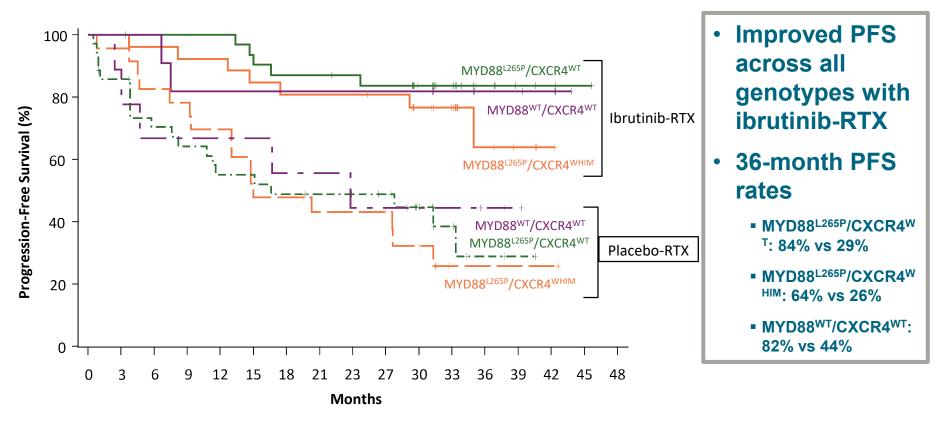
Trotman et al, EHA 2018

iNNOVATE Study in WM

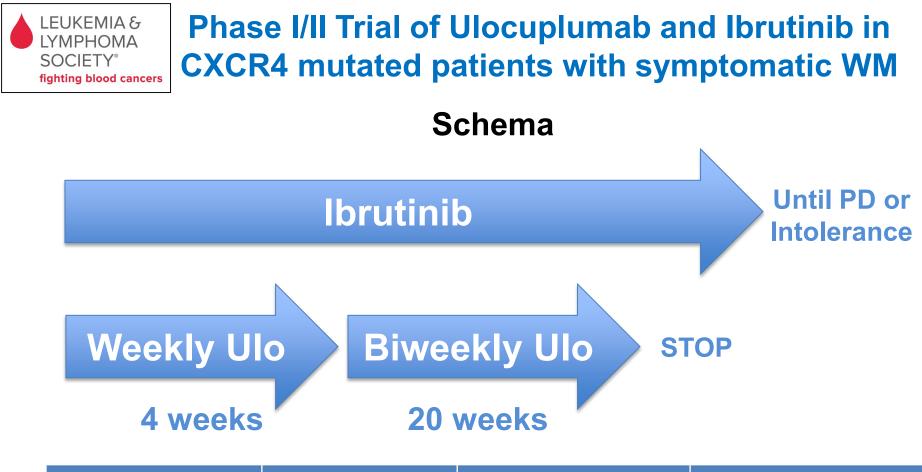
Treatment Naïve + Previously Treated


45 centers in 9 countries

Subjects considered <u>refractory</u> to prior rituximab

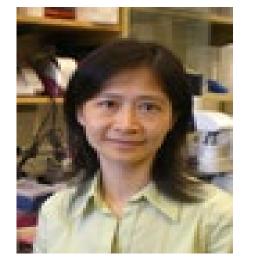

ABC patients genotyped for MYD88 and CXCR4

Responses in Innovate AB Study: Update

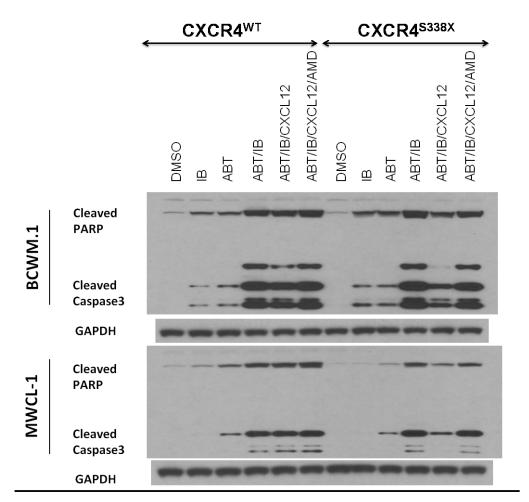


Busket et al, ASH 2018

Progression-Free Survival Benefit With Ibrutinib-RTX Independent of MYD88/CXCR4 Genotype

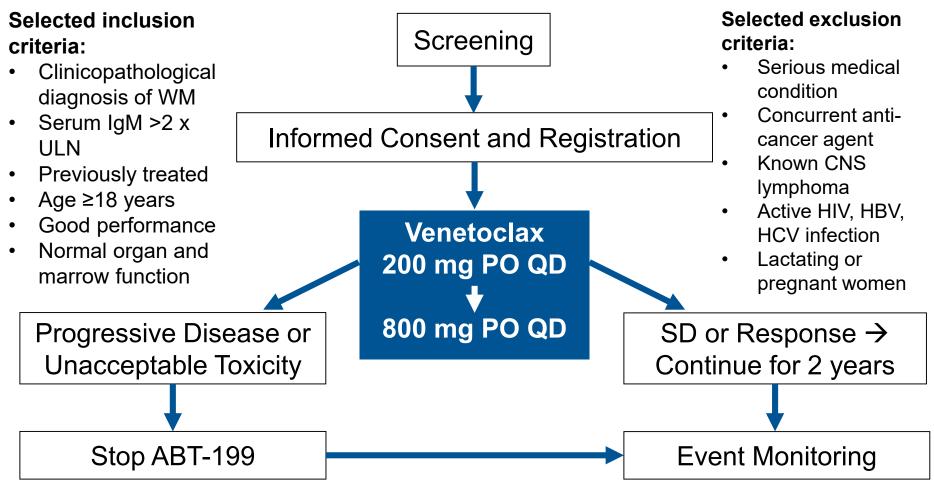


Innovate AB Data: Busket et al, ASH 2018.



Dose Level	Ibrutinib	Ulocuplumab Cycle 1	Ulocuplumab Cycles 2-6
Level 1 –Starting dose	420mg PO DQ	400 mg weekly	800 mg every other week
Level 2	420mg PO DQ	800 mg weekly	1200 mg every other week
Level 3	420mg PO DQ	800 mg weekly	1600 mg every other week

ClinicalTrials.gov Identifier: NCT03



Venetoclax (ABT-199) impacted by CXCR4 mutation

Cao et al, BJH 2015

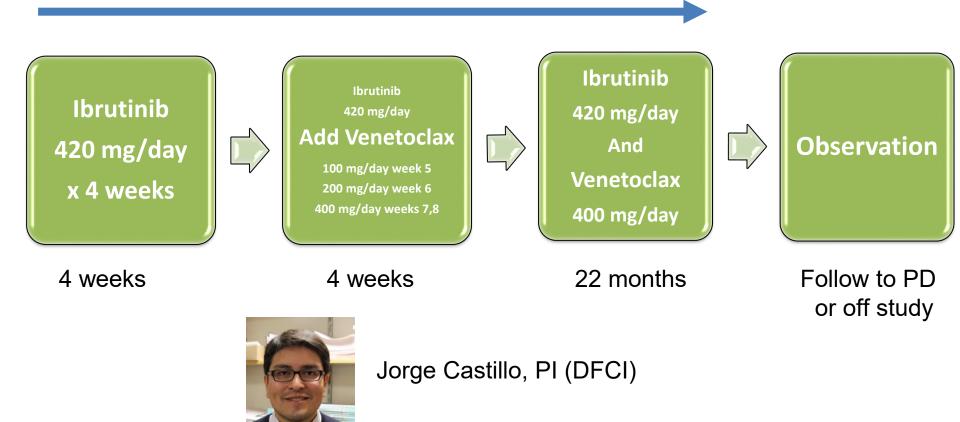
www.clinicaltrials.gov: NCT02677324

Baseline characteristics

Characteristic	Number (%)
Age, years	66 (39-80)
Male sex	17 (57%)
Previous treatments	2 (1-10)
Prior BTK inhibitors	15 (50%)
MYD88 L265P	30 (100%)
CXCR4 mutations	16 (53%)
Serum IgM level (mg/dl)	3,543 (642-7,970)
Hemoglobin level (g/dl)	10.6 (6.4-13.5)
Platelet count (K/ul)	222 (7-445)
Lymphadenopathy	9 (30%)
Splenomegaly	6 (20%)
	- Castillo et a

Response	No prior ibrutinib (n=15)	Prior ibrutinib (n=15)	CXCR4 WT (n=14)	CXCR4 MUT (n=16)
Overall	14 (93%)	12 (80%)	12 (86%)	14 (87%)
Major	<mark>13 (87%)</mark>	<mark>9 (60%)</mark>	<mark>9 (86%)</mark>	<mark>13 (63%)</mark>
Very good	<mark>4 (27%)</mark>	<mark>1 (7%)</mark>	<mark>4 (29%)</mark>	<mark>1 (7%)</mark>
Partial	9 (60%)	8 (53%)	8 (57%)	9 (56%)
Minor	1 (7%)	3 (20%)	0 (0%)	4 (25%)
Stable	1 (7%)	3 (20%)	2 (14%)	2 (13%)

Median follow-up: 11 months


1 patient had progressive disease at 9 months (MYD88, CXCR4, TP53)

Adverse Event, N (%)	Grade 1	Grade 2	Grade 3	Grade 4	All Grades
Neutropenia	2 (7)	4 (14)	6 (21)	3 (10)	15 (52)
Anemia	1 (3)	5 (17)	2 (7)	0	8 (28)
URI	2 (7)	0	1 (3)	0	3 (10)
Nausea	9 (31)	4 (14)	0	0	13 (48)
Headache	2 (7)	3 (10)	0	0	5 (17)
diarrhea	4 (14)	1 (3)	0	0	5 (17)
Chills	2 (7)	1 (3)	0	0	3 (10)
Constipation	2 (7)	1 (3)	0	0	3 (10)
Mucositis oral	2 (7)	1 (3)	0	0	3 (10)
Muscle Cramps	1 (3)	1 (3)	0	0	2 (7)

Laboratory TLS (n=1). No IgM flare. No deaths.

Ibrutinib and Venetoclax in Treatment Naïve WM

24 months

Approach to Frontline Therapy of Symptomatic WM

Hyperviscosity, Severe Cryos, CAGG, PN→ Plasmapheresis

MYD88 Mutated/No CXCR4 mutation

No bulky disease, no contraindications→ Ibrutinib (if available) Bulky disease → Benda-R +Ibrutinib and Rituximab Amyloidosis → Bortezomib/Dex/Rituximab (BDR) IgM Peripheral Neuropathy → Rituximab + Alkylator

MYD88 Mutated/CXCR4 mutation

+Ibrutinib and Rituximab

Same caveats as above If immediate response needed, either BDR or Benda-R

MYD88 Wild-Type

√non-L265P MYD88 mutations BDR > Benda-R

- Hold Rituximab until IgM <4000 mg/dL or empiric pheresis is performed.
- Consider Maintenance Rituximab
- Consider Ofatumumab if R intolerant.

Hunter et al, JCO 2017; LeBlond IWWM10

Salvage Therapy of Symptomatic WM

Consider repeat primary therapy if response >2 years

MYD88 Mutated/No CXCR4 mutation

Same caveats as primary therapy

MYD88 Mutated/CXCR4 mutation

Same caveats as primary therapy If immediate response needed, either BDR or Benda-R

MYD88 Wild-Type

Same caveats as primary therapy √non-L265P MYD88 mutations

- Everolimus >2 prior therapies
- Nucleoside analogues (non-ASCT candidates)
- ASCT in multiple relapses, chemosensitive disease

Hunter et al, JCO 2017

+Venetoclax for pts previously exposed to IB