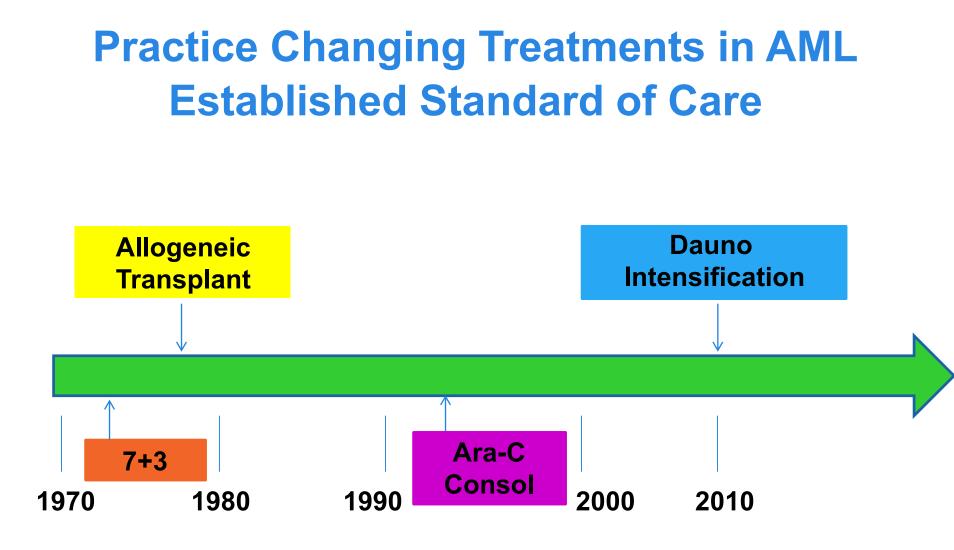
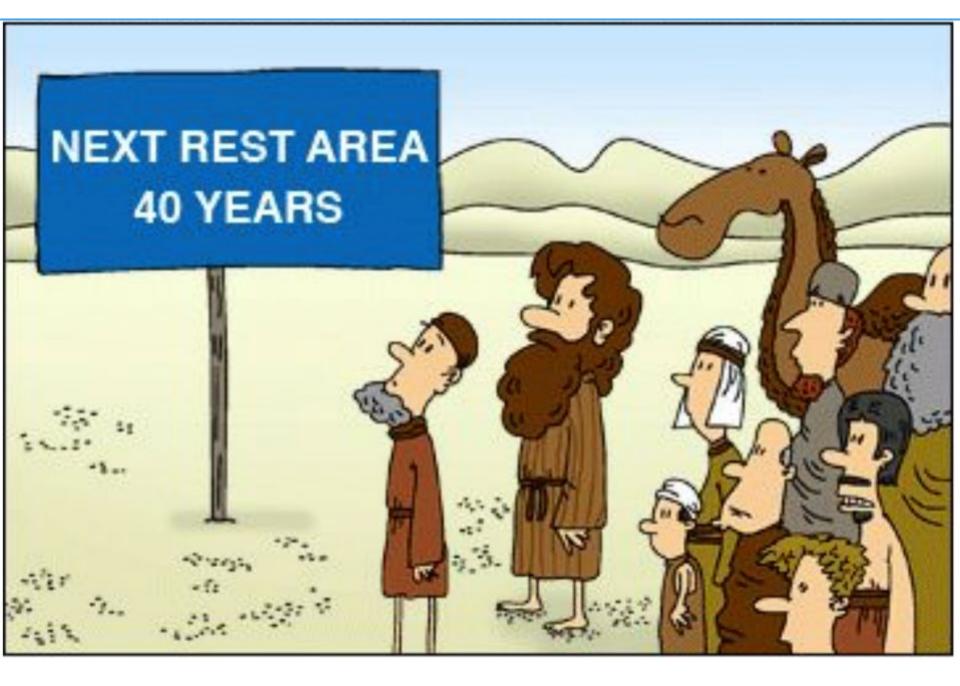


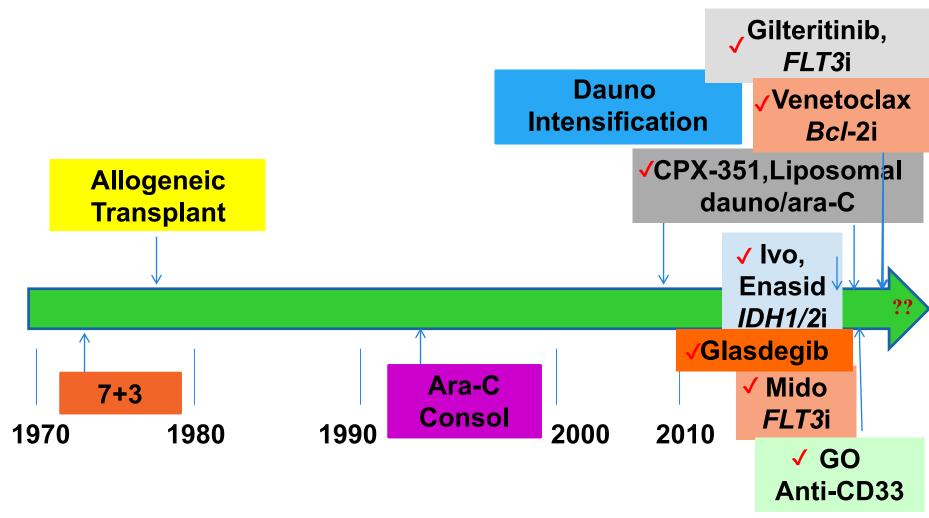
Menescial Sleve Nationing Concer Center-

Acute Myeloid Leukemias: Treatment Options in 2019


Martin S. Tallman, M.D. Chief, Leukemia Service Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College New York, NY

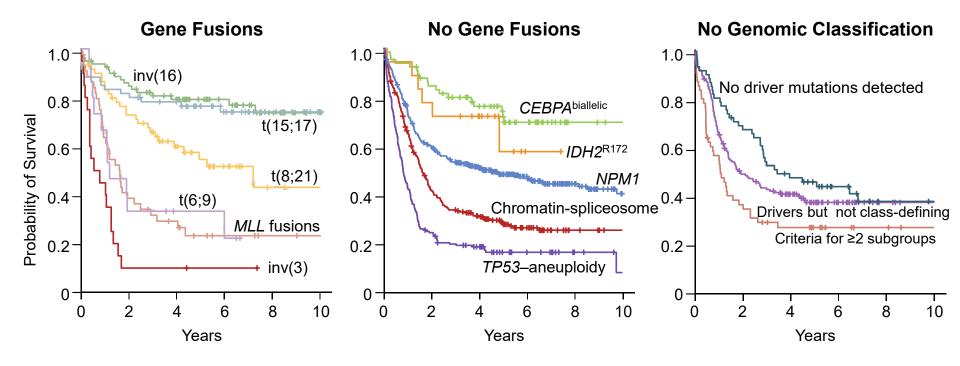

16th Annual Indy Hematology Review March 9, 2019

Disclosures


- Research Funding
 - Cellerant
 - AROG
 - BioSight
 - ADC Therapeutics
 - Abbvie
 - Orsenix
 - Nohla

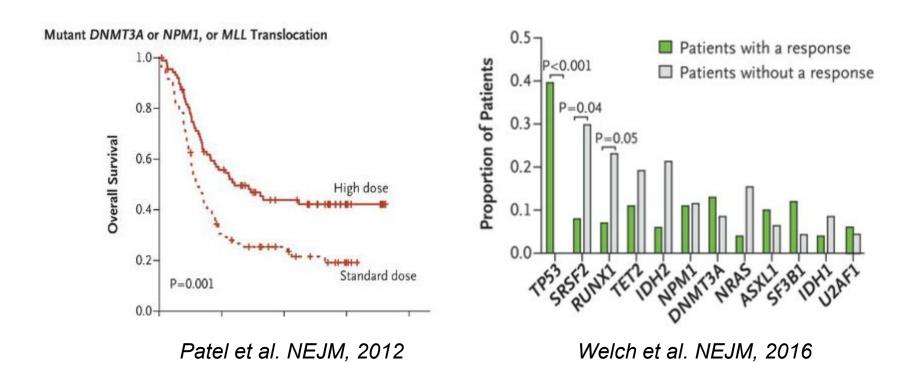
- Advisory Boards
 - Orsenix
 - Daiichi-Sankyo
 - Rigel
 - Abbvie
 - Bioline
 - Biosight
 - KAHR
 - Delta Fly Pharma
- Off label use
 - Venetoclax
 - Gilteritinib
 - Quizartinib
 - Crenolanib
 - Ipilumumab
 - Azacitidine, decitabine

Practice Changing Treatments in AML



Yates et al. Cancer Chemother Rep, 1973; Thomas et al. NEJM, 1979; Mayer et al. NEJM, 1994; Fernandez et al. NEJM, 2009; Stone et al NEJM 2017; Stein et al Blood 2017 Lancet et al ASCO 2017; Castaigne et al. Lancet 2012; Cortes et al. Blood, 2016

Progress in AML in the Last 40 Years


- Insights into genetic pathogenesis/integrated genetic profiling
- Intensified induction and less intensive postremission strategies
- Drug Discovery
- Expanded availability of hematopoietic cell transplantation
- Change in approach to older adults
- Increased importance of MRD

Kaplan-Meier Curves for Overall Survival

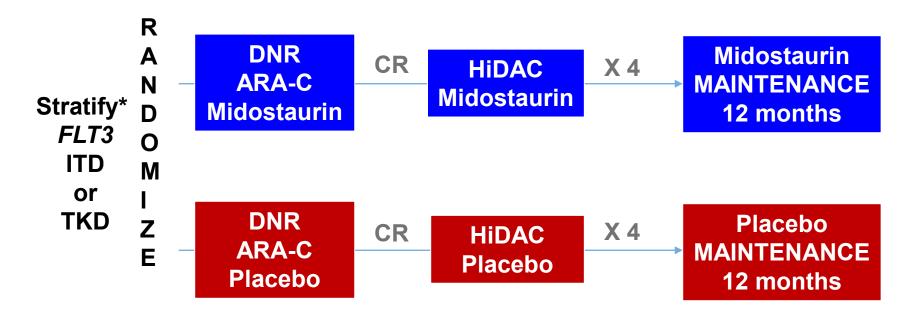
Papaemmanuil et al. N Engl J Med, 2016

Risk-Stratification and Prognostication of AML Informed by Mutational Profile

Gene Mutations Important in Practice "Clinically Actionable"

<u>Gene</u>	Incidence	<u>Associations</u>	Impact
FLT3-ITD/TKD	25%	NPM1	Unfavorable
NPM1	33%	FLT3	Favorable
dCEBPlpha	8%	FLT3	Favorable
C-KIT	15%	CBF	Unfavorable [in t(8;21), but not in inv(16)]; D816 worse than others ¹ , MRD poor prog factor in inv(16) ²
IDH1 and 2	22%	NPM1	Favorable
TP53	7%	t-AML, Complex karyotype (60%)	Unfavorable

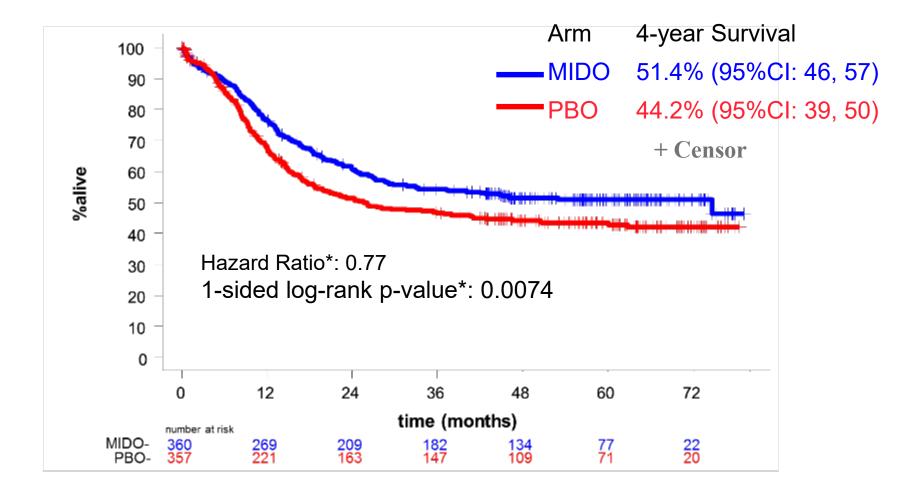
¹Yui et al. Ann Hematol, 2017; ²Kawashima et al. ASH, 2018 (abstr 438)


New Agents With Regulatory Approval

Agent	Target	Population	Setting
Midostaurin	FLT3	FLT3-ITD or TKD	Treatment naïve w chemo in induc and consol
Gemtuzumab ozogamicin	CD33	CBF and possibly intermed-risk	Treatment naïve CD33+ adults w chemo or single agent or Rel/refr adults and peds
CPX-351	Cytotoxic	t-AML or AML with MRC	Treatment naïve with t-AML or AML with MRC
Enasidenib/lv osidenib	IDH2/1	IDH mutated	Rel/refr AML w m <i>IDH2/1</i>
Venetoclax	BCL-2	Age >/=75 or comormidities	Treatment naïve w HMA or LoDAC
Gilteritinib	FLT3	FLT3-ITD or TKD	Rel/refr AML
Glasdegib	Smoothened Receptor in Hedgehog pathway	Age >/=75 or comorbidities	Treatment naïve w LoDAC

FLT3 Mutations in AML

- Frequent in normal cytogenetic AML
- Associated with high WBC, packed marrow
- ITD associated with high relapse rate, poor OS; TKD less so
- Most common in APL, but appears not prognostic
- Resistance mechanisms include point mutations, high levels of *FLT3* ligand


RATIFY (C10603) Trial Schema

*Stratification: TKD; ITD with allelic ratio <0.7 'vs' ≥0.7

Stone et al. N Engl J Med, 2017

Overall Survival 23% reduced risk of death in the Mido arm

Stone et al. N Engl J Med, 2017

Midostaurin in AML

- First agent with (sustained) regulatory approval in 40 years
- It has changed practice, but some caution warranted
 - OS increase 7%
 - Benefit more in FLT3-TKD than ITD
 - Men OS benefit ITD not TKD; woman trend for benefit OS TKD not ITD
 - Which phase of treatment important? Induction? Consol? Both?
 - Among least potent FLT3 inhibitors
 - Role in maintenance unclear¹
 - Beneficial effect of Midostaurin most pronounced in NPM1^{wt}/FLT3^{high} group, but some benefit among pts NPM1^{mut2}

¹Larson et al. ASH, 2017 (abstr 145); ²Dohner et al. ASH, 2017 (abstr 467)

Second Generation FLT3 Inhibitors

Gilteritinib

 Inhibits FLT3-ITD and TKD, in newly diagnosed pts w chemo and single agent maint CRc 89%¹; Ph3 randomized trial in de novo disease underway;

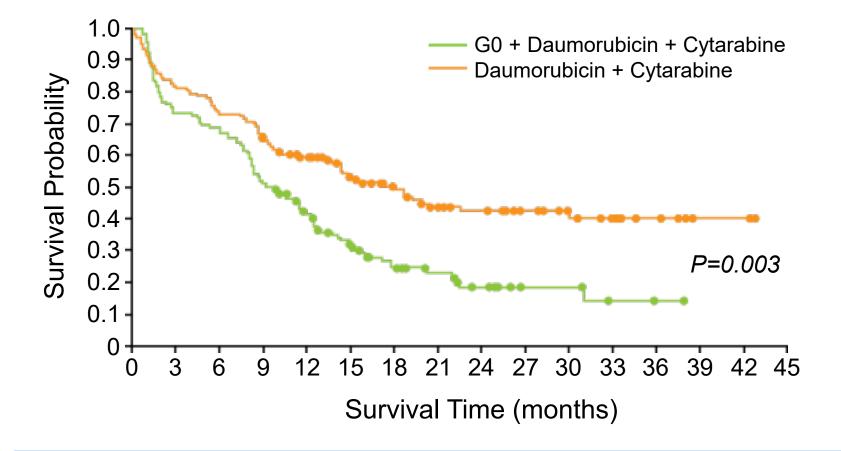
• Quizartinib

 Most potent *FLT3*i, <u>inhibits *FLT3-ITD*</u> and *PDGFa*, in R/R AML OS benefit vs std care²; Ph3 randomized trial in de novo disease underway

Crenolanib

Inhibits FLT3-ITD, TKD, PDGFa and b, in trial with induction chemo CR 88% w 1 cycle³; randomized trial in newly diagnosed pts of chemo w crenolanib vs midostaurin underway

¹*Pratz et al. ASH, 2018 (abstr 564);* ²*Cortes et al. ASH, 2018 (abstr 563);* ³*Wang et al ASH, 2016 (abstr 1071);*

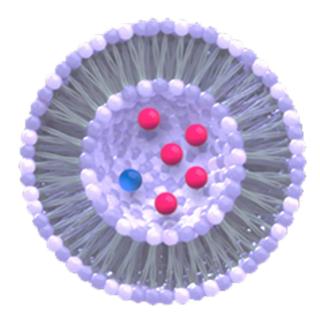

Gemtuzumab Ozogamicin: Reapproved New Insights

- CD33 single nucleotide polymorph rs121459419 C—T may be biomarker for response
- Fractionated schedule reduces toxicity
- OS benefit in favorable-risk and trend in intermediate-risk
- Risk of SOS/VOD 8% after allograft; higher if allo <3 mo of GO
- CD33 blast expression impacts outcome

Reapproved for: treatment naïve CD33+ adults w chemo or single agent or R/R adults and peds

Lamba et al. J Clin Oncol, 2017; Burnett et al. J Clin Oncol, 2011; Battipaglia et al. BBMT, 2017; Olombel et al. Blood, 2016; Lamba et al. ASH, 2017 (abstr 3826)

Gemtuzumab Ozogamicin (Fractionated) in Newly Diagnosed AML Ages 50-70 Kaplan-Meier Plot of Event-Free Survival ALFA-0701 Trial

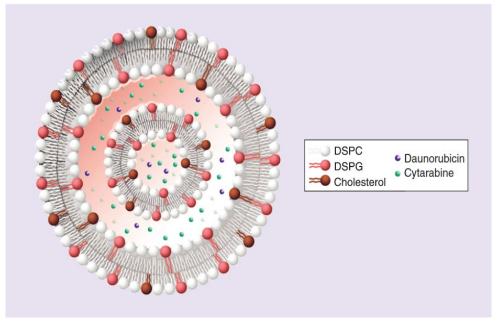


Castaigne. et al. Lancet, 2012 and update

Gemtuzumab Ozogamicin Questions Emerge

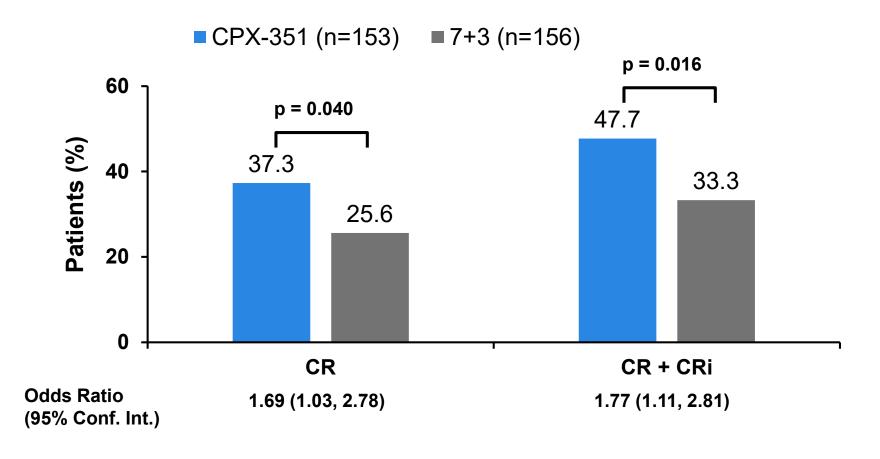
- How does GO compare to other regimens for rel/ref disease?
- How should transplant be affected by GO in induction?
- What is the role in *NPM1*+ AML (high CD33 expression)?
- What is the role in APL (high CD33 expression) in ATRA/ATO era?

CPX-351 Uses a Nano-Scale Delivery Complex

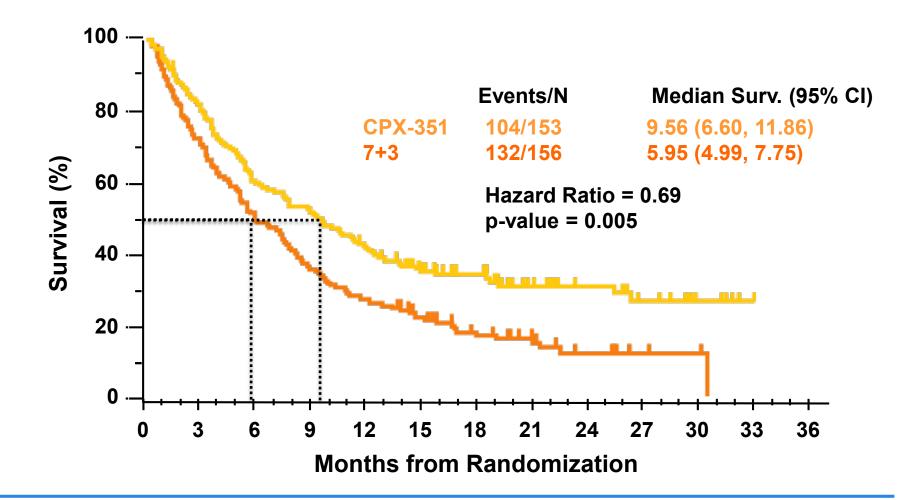

- 100 nm bilamellar liposomes
- 5:1 molar ratio of cytarabine to daunorubicin
- 1 unit = 1.0 mg cytarabine plus 0.44 mg daunorubicin

US FDA Approved August 2017 for t-AML and AML with MRC

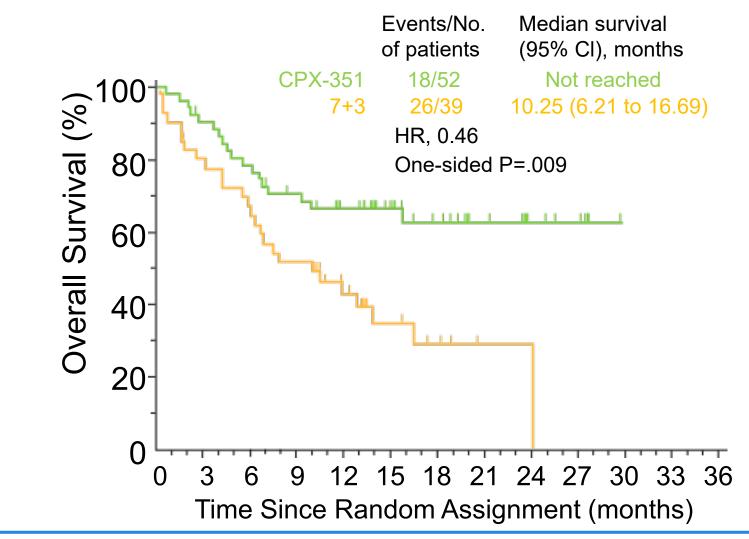
CPX-351


- A fixed 5:1 synergistic molar ratio of cytarabine to daunorubicin is maintained for a prolonged period of time¹
- CPX-351 accumulates and persists in the bone marrow in high concentrations¹
- CPX-351 is preferentially taken up by leukaemic cells vs normal bone marrow cells¹

Schematic representation of CPX-351²


1. Jazz Pharmaceuticals. Vyxeos® 44mg/100mg (danorubicin/cytarabine) Summary of Product Characteristics 2018; 2. Tolcher AW, Mayer LD. Future Oncol, 2018

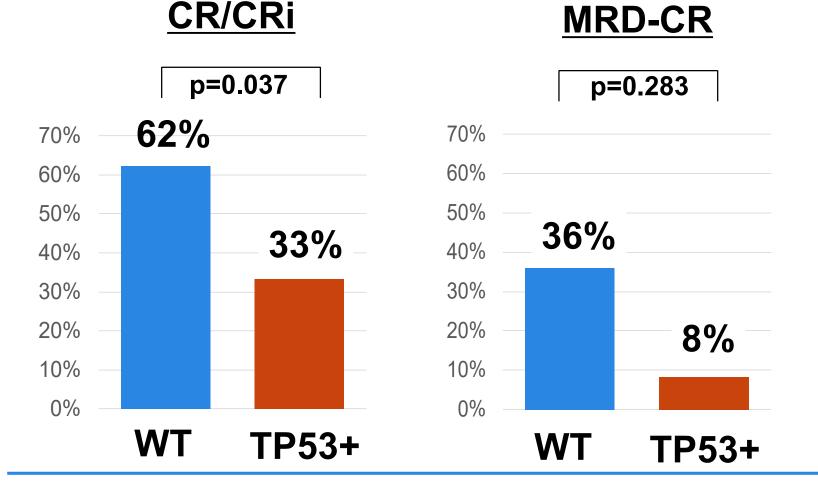
Patients Treated With CPX-351 Exhibited Statistically Significant Improvements in Response Rate in sAML Ages 60-75


Lancet et al. J Clin Oncol, 2018

Overall Survival Was Greater in the CPX-351 Arm Compared to the 7+3 Arm

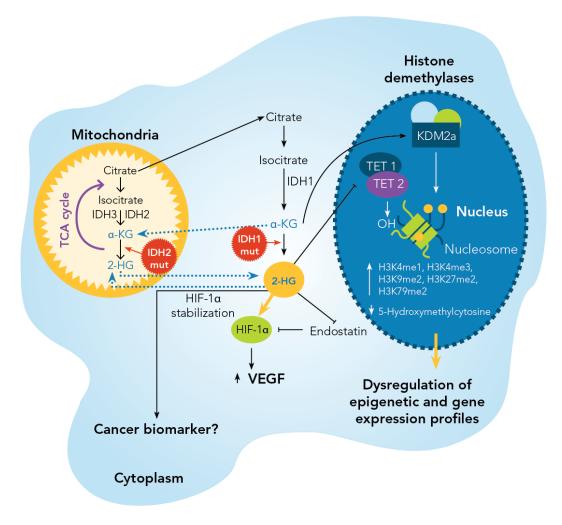
Lancet et al. J Clin Oncol, 2018

Impact of CPX-351 on Transplant Outcome Overall Survival



Lancet et al. J Clin Oncol, 2018

CPX-351 Questions Emerge

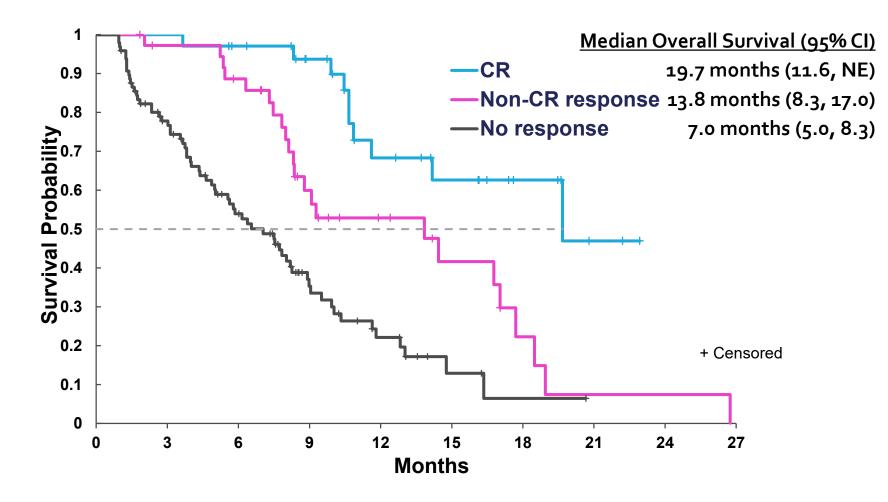

- Why is CPX-351 more effective in t-AML and AML with MRC?
- Why is outcome after allograft better with CPX-351 than with with 7 + 3? (less toxicity? less MRD?)
- Will CPX-351 be effective alone or when combined with other agents in adverse subtypes?

TP53 Mutations Predict Lower Rates of CR/CRi Following CPX-351

Goldberg et al. ASH, 2019 (abstr 1433)

Role of IDH in Malignancy

- IDH is critical metabolic enzyme in the citric acid cycle
- IDH1 in cytoplasm and IDH2 in mitochondria
- Cancer-associated IDHm produces 2hydroxyglutarate (2-HG) and blocks normal cellular differentiation

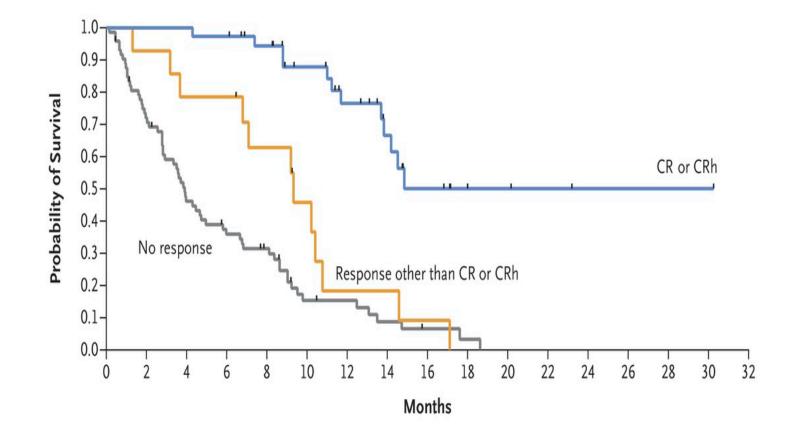

Prensner et al. Nature Med, 2011

Response in R/R AML

	Relapsed/Ref	Relapsed/Refractory AML	
	Enasidenib 100 mgkday (n=214)	All doses (N=281)	
Overall response rate, % [n/N] [95% Cl]	37% (19/214) [304, 43.8]	38% (108/281) [32.7, 44.4]	
Best response			
CR, n (%) [95% CI] INDY.03.08.19	43 (20.1) [14.9, 26.1]	55 (19.6) [15.1, 24.7]	
CRi or CRp, n (%)	17 (7.9)	22 (7.8)	
PR, n (%)	8 (3.7)	16 (5.7)	
MLFS, n (%)	11 (5.1)	15 (5.3)	
SD, n (%)	110 (51.4)	137 (48.8)	
PD, n (%)	11 (5.1)	15 (5.3)	
NE, n (%)	2 (0.9)	3 (1.1)	
Time to first response (mos), median (range)	1.9 (0.5–11.1)	1.9 (0.5-11.1)	
Duration of response (mos), median [95%CI]	5.6 [4.6, 7.4]	5.6 [4.6, 6.5]	
Time to CR (mos), median (range)	3.7 (07–11.2)	3.8 (0.5-11.2)	
Duration of response in pts with CR (mos), mediar [95%CI]	8.8 [5.6, NR]	7.4 [6.4, 14.7]	

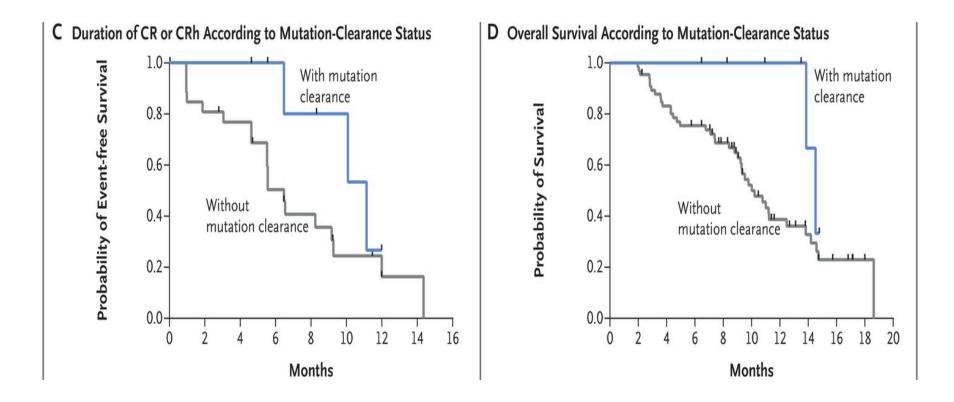
Stein et al. Blood, 2017

Overall Survival by Best Response


Stein et al. Blood, 2017

Ivosidenib or Enasidenib Plus Chemotherapy Phase I Trial Best Overall Response Summary

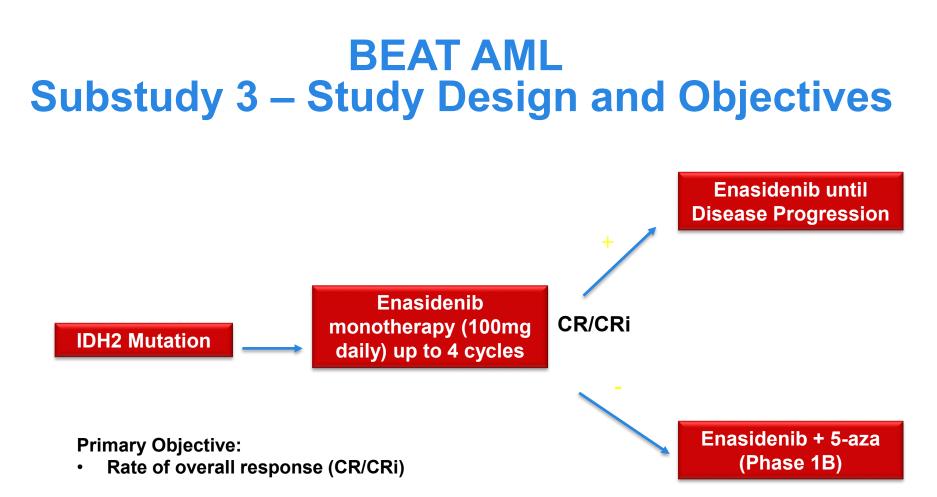
	lvoside	nib (AG-12	20) + CT	Enaside	enib (AG-2	21) + CT
Response, (%)	All (n=41)	De novo (n=28)	sAML (n=13)	All (n=77)	De novo (n=45)	sAML (n=32)
CR+CRi/CRp	78	93	46	69	73	63
CR	66	79	39	55	62	44
CRi/CRp	12	14	8	14	11	19
MLFS	5	-	15	13	9	19
PR	2	0	8	1	-	3
Persistent disease	5	4	8	12	13	9
NE	10	4	23	5	4	6


Stein et al. ASH, 2018 (abstr 560)

Overall Survival According to Response to Ivosidenib in *IDH1* Mutated Relapsed or Refractory AML

DiNardo et al. N Engl J Med, 2018

Duration of CR or CRh and OS According to Mutation Clearance Status in IDH-1 Mutated AML



DiNardo et al. N Engl J Med, 2018

Frequently Asked Questions Re: IDH2

- Does molecular CR occur? Yes, about 30%
- Does differentiation syndrome occur? Yes (12-19%), and can occur late (d48,10-340)
- How long does it take to achieve CR? 21% by C3, 68% by C5, 82% by C7
- Are molecular signatures predictive of response or nonresponse?
 RAS mutations assoc with NR
- What is the longest duration of CR? >36 months

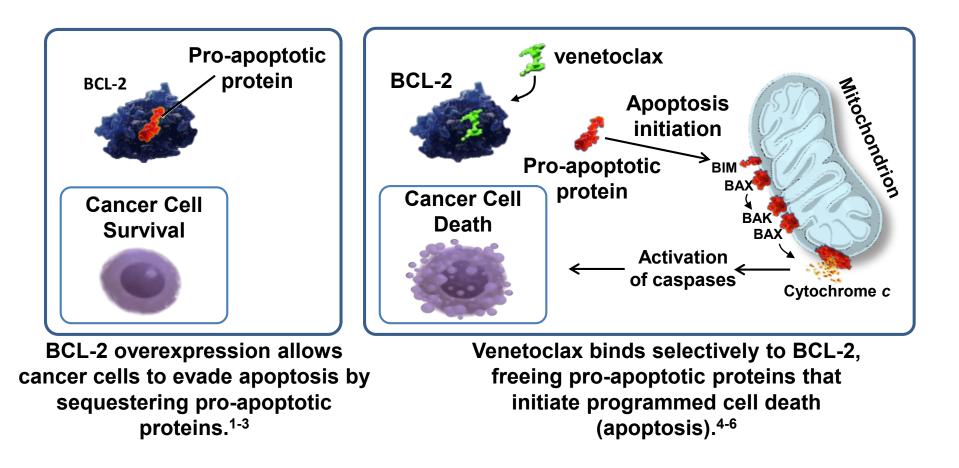
Norsworthy et al. ASH, 2018 (abstr 288)

Key Secondary Objectives:

- To explore the toxicity profile of combining Enasidenib with azacytidine
- Estimate progression free and overall survival in patients treated with Enasidenib

Response in Newly Diagnosed IDH2 Mut AML

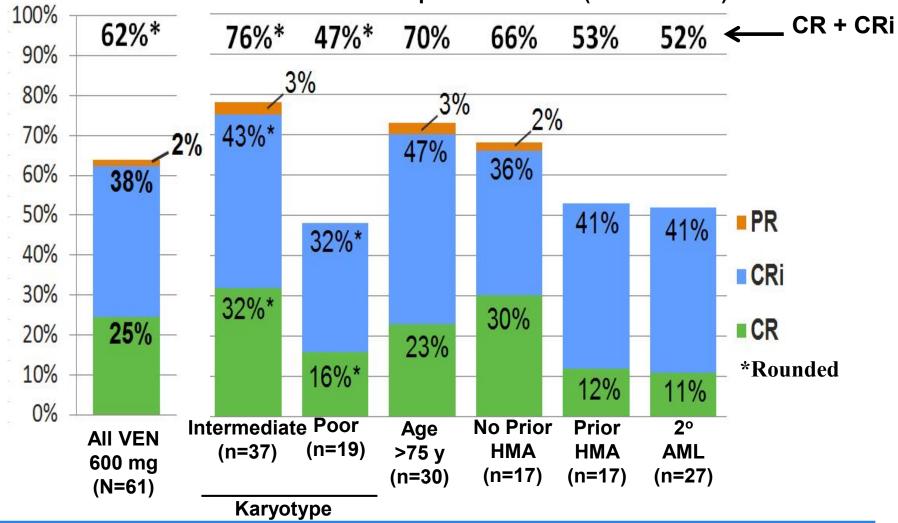
	N=27*
Overall response (CR, CRi), n (%)	12 (44.4)
Best response, n (%)	
CR	10 (37)
CRi	2 (7.4)
MLFS	0 (0)
No response (PR, SD, TF/PD) n (%)	15** (55.6)
Early Death (death within 30 days)	0


Median number of enasidenib treatment cycles: 5 (range 1-14+)

Stein et al. ASH, 2018 (abstr 287)

IDH Inhibitors Fundamental Questions for Future Research

- Do co-mutations (beyond RAS and MAPK) influence response?
- Will combinations with other targeted therapies be more effective?
- What are other mechanisms of resistance? Second site mutation in trans position¹


Venetoclax: Promotes Apoptosis Through Selective Inhibition of BCL-2

1. Leverson et al. Sci Transl Med 2015; 2. Czabotar, et al. Nature Reviews 2014; 3. Plati et al. Integr Biol (Camb) 2011; 4. Certo et al. Cancer Cell. 2006; 5. Souers et al. Nat Med. 2013; 6. Del Gaizo Moore V et al. J Clin Invest. 2007

CR/CRi Rates LoDAC + Venetoclax

Median time to response: 1 month (<1–9 months)

Wei et al. EHA, 2017 and ASH, 2017 (abstr 890)

Venetoclax + LoDAC in Previously Untreated Older Adults with AML Not Eligible for Intensive Chemotherapy

- N=82
- CR 26%, CR/CRi 54%
- Med dur of response for CRs 14.8 mo
- CR/CRi in specific mutations
 - TP53 30%
 - IDH1/2 72%
 - FLT3 44%
 - NPM1 89%
- OS med 10.1 mo, estimate at 24 mo 27%
- MRD neg 32%
- Transfusions indep RBC 49%, plts 65%

Wei et al. ASH, 2018 (abstr 284)

Venetoclax + HMA in Older Newly Diagnosed Pts Ineligible for Intensive Chemotherapy

- N=115
- Med age:
- Secondary AML:
- Poor risk cyto:
- CR/CRi:
- Med time to first response:
- Med OS:
- Among CR/CRi's

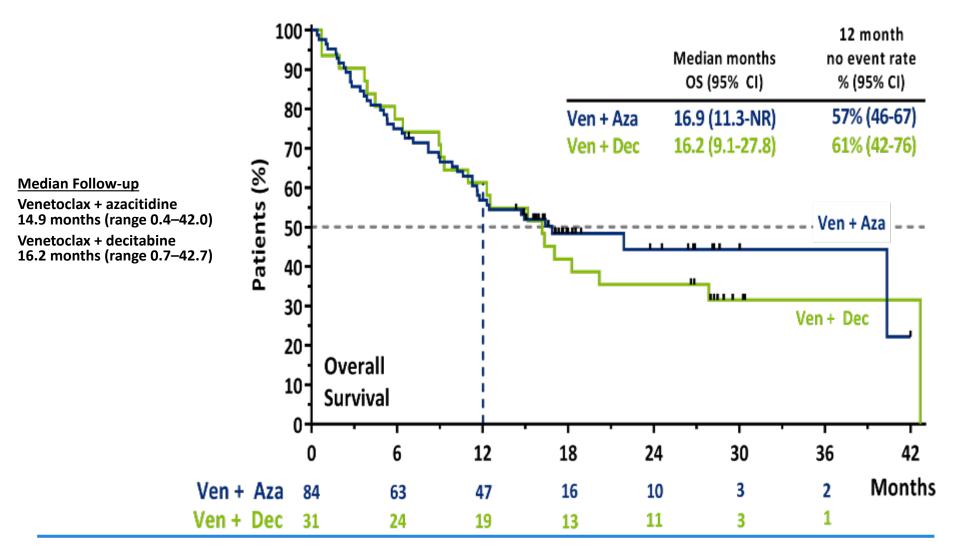
Aza 84, DAC 31

75, 72, respectively

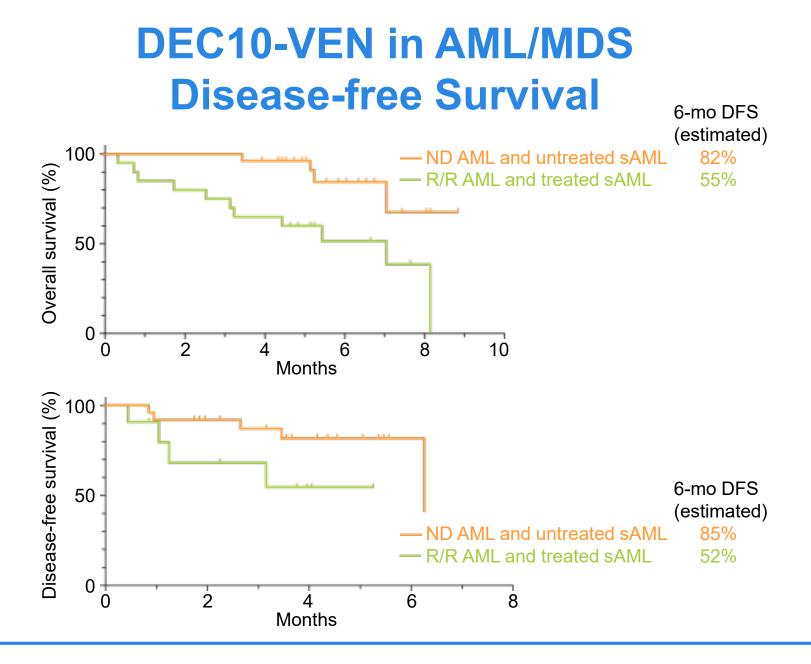
25% and 29%

39% and 48%

70% and 75%


1.2 mo and 1.9 mo

14.9 mo and 16.2 mo


MRD neg 45%

Pollyea et al. ASH, 2018 (abstr 285)

Overall Survival in Untreated Older AML

Pollyea et al. ASH, 2018 (abstr 285)

Maiti et al. ASH, 2018 (abstr 286)

AML Treatment Strategies in 2019

AML subgroup	Candidate for intensive chemo	Not candidate for intensive chemo
CBF	GO + chemo	HMA/LoDAC + Venetoclax*
CD33 pos	GO + chemo, ? If pretransplant	GO d1,8 or HMA/LoDAC + Venetoclax
t-AML or AML w/MRC (incl complex cyto)	CPX-351 ind/consol, transplant	HMA/LoDAC + Venetoclax*
TP53 mutant	Chemo or decitabine x 5 or 10d +/- Venetoclax	Decitabine x 5 or 10d +/- Venetoclax
FLT3+	Mido + chemo ind/consol/maint, transplant	?Aza + sorafenib or HMA/LoDAC + Venetoclax
IDH1/2+	Chemo (on trial with IDHi)	HMA/LoDAC + Venetoclax*
Marker -	Chemo	HMA/LoDAC + Venetoclax*

*HMA/LoDAC + Venetoclax awaiting phase III data

AML Treatment Strategies in 2019: Rel/Ref

AML subgroup	Candidate for intensive chemo	Not a candidate for intensive chemo
R/R IDH2+	Enasidenib	Enasidenib
R/R IDH1+	Ivosidenib	Ivosidenib
R/R <i>FLT3</i> +	Gilteritinib	Gilteritinib
R/R TP53 mutant	Chemo vs decitabine x 5 or 10d +/- Venetoclax	Decitabine x 5 or 10d +/-
R/R CD33+	Chemo or GO	HMA/LoDAC + Venetoclax* or GO
R/R marker -	Chemo vs HMA vs HMA/LoDAC + Venetoclax*	HMA vs HMA/LoDAC + Venetoclax*

*Lower RR for HMA/LoDAC + Venetoclax in R/R setting (*Dinardo et al. Am J Hematol 2018*; *Goldberg et al. ASH 2017, abstr 1353*)

Summary and Conclusions

- AML is a heterogeneous disease of diverse somatic genetic mutations
- Molecular genetics inform classification, prognosis, and therapy
- Era of precision medicine is here
- Many novel agents with unique mechanisms of action now available with more to come
- Treatment options are (finally) expanding

Acknowledgments

Leukemia Service Memorial Sloan Kettering Cancer Center

ECOG Leukemia Committee