

Overview of Aggressive Lymphomas

Sonali Smith, MD Elwood V. Jensen Professor of Medicine Director, Lymphoma Program March 9, 2019

DISCLOSURES

Sonali M. Smith, MD

- I have the following relevant financial relationships to disclose:
 - Consultant for: Genentech, Bayer, TGTX, Kite, Seattle Genetics, Gilead
 - Speaker's Bureau for: none
 - Stockholder in: none
 - Honoraria from: none
 - Employee of: none
- I will discuss the following off label use and/or investigational use in my presentation: lenalidomide, ibrutinib, acalabrutinib, venetoclax. I will disclose when they are being discussed in an off-label manner.

OBJECTIVES

- To discuss the historical and current treatment of diffuse large B-cell lymphoma
- To distinguish "double hit lymphoma" from aggressive lymphomas with "double protein expression"
- To understand risk stratification in diffuse large B-cell lymphoma
- To describe the treatment options for patients with relapsed disease

There are nearly 100 types of lymphoma

Goals of therapy vary by histology and expected clinical behavior: □Curative intent □Palliative intent

Swerdlow Blood. 2016 May 19;127(20):2375-90. doi: 10.1182/blood-2016-01-643569.PMID: 2698072

DLBCL

- Most common NHL, peak incidence 6th decade
- Large cells with loss of follicular architecture of node
- May present as extranodal disease (stomach, CNS, testis, skin)
- Median survival, weeks to months if not treated
- Immunophenotype: CD19+, CD20+, CD22+, CD79a+
- Cytogenetics: t(14;18) in 20-30%; 3q27 in 30%
- Curable in 30-90%

2002+: Rituximab plus CHOP-like regimens improves overall survival

Pfreundschuh et al., Lancet Oncol. 2008; 9: 105. Pfreundschuh et al., Lancet Oncol. 2006; 7: 379. Habermann et al., JCO. 2006; 24: 3121. Feugier et al., JCO. 2005; 23: 4117.

CAN WE MOVE BEYOND R-CHOP?

Challenging R-CHOP

DLBCL: a study in clinical and biologic heterogeneity

Neoplasm of large B lymphoid cells with a diffuse growth pattern

Clinicopathologic subtypes (PMBL, PCNSL, 1⁰ testicular lymphoma, IVL, PEL)

J

Morphologic variants

Genomic variants

Gene expression profiling subtypes

Altered protein expression

Clinical impact of heterogeneity on curative potential

HETEROGENEITY AND RISK STRATIFICATION IN AGGRESSIVE B-NHL

Identifying high-risk subsets: 4 key approaches

1Histopathology

3 Cell-of-origin

4 DHL, DEL, other

⁴FOCUS ON HGBL-DHL/THL

Co-rearrangement of MYC <u>and</u> BCL2in DLBCL

& BIOLOGICAL SCIENCES

DHL > Dual expression

Dilluse large B-cell lymphoma, N	• Distinction of GCB vs ABC/non-GC type required with use of immunohistochemical algorithm
	acceptable, may affect therapy.
	 Coexpression of MYC and BCL2 considered new prognostic marker (double-expressor lymphoma).
	Mutational landscape better understood but clinical impact remains to be determined
EBV DLBCL, NOS	bunger patients.
	ie diagnosis,
EBV ⁺ mucocutane	proximately 25-30% of DLBCL have dual
Burkitt lymphoma	protein expression
Burkitt-like lymphoma with 11	PCL2 > EO0/
High-grade B-cell lymphoma,	MVC > 100/ oblastic lymphomas.
and/or BCI 6 translocations	
	sees the 2000 estensory of
High-grade B-cell lymphoma,	aces the 2008 category of
	b-ceil lymphoma, unclassinable, with reatures intermediate between DLBCL and Burkitt lymphoma
	(BCLU).
	 Includes blastoid-appearing large B-cell lymphomas and cases lacking MYC and BCL2 or BCL6
	translocations that would formarly have been called BCLU

Swerdlow, et al., BLOOD, 19 MAY 2016 x VOLUME 127, NUMBER 20

DHL vs. DLBCL, NOS with DEL

Double-hit lymphoma

- High grade B-cell lymphoma with translocations of MYC, BCL2, +/-BCL6
- Accounts for 5-7% of all DLBCL
- > New category:
 - 2016 WHO category: "High grade B-cell lymphoma, with rearrangements of MYC and BCL2 and/or BCL6"
- Outcome poor with standard therapies

Majority are germinal center DLBCL

Double-expressing lymphomas

- DLBCL with immunohistochemical expression of MYC (≥40%) and BCL2 (≥50% recommended in 2016 WHO revision) *in the absence of* <u>translocations</u>
- ➤ Accounts for 20-30% of all DLBCL
- Not a distinct entity but an adverse prognostic factor
- Outcome inferior to other DLBCLs treated with R-CHOP, but not as poor as DHL

Majority are non-germinal center DLBCL

Slide modified from Jeremy Abramson

TREATMENT OF DHL

Management considerations

- All data to date is retrospective
- All data to date is on DHL and not DLBCL, NOS with DEL
- Role of intensified treatment
- Does achievement of CR matter?
- Impact of consolidative stem cell transplant
- Management of relapsed/refractory disease
- Need for CNS prophylaxis

R-CHOP is inferior to intensive therapy

Landsburg J Clin Oncol. 2017 Jul 10;35(20):2260-2267. doi: 10.1200/JCO.2017.72.2157. PMID: 28475457

DA-EPOCH-R in MYC-R NHL (n=43)

MANAGEMENT OF RELAPSED DLBCL

Autologous transplant in modern era: outcome by prior rituximab exposure and time to relapse

Gisselbrecht J Clin Oncol. 2010 Sep 20;28(27):4184-90. doi: 10.1200/JCO.2010.28.1618. PMID: 20660832

Expected survival for rel/ref DLBCL

Patients unable to undergo autologous stem cell transplant have median survivals < 1 year

Crump Blood. 2017 Oct 19;130(16):1800-1808. doi: 10.1182/blood-2017-03-769620. PMID: 28774879

Chimeric Antigen Receptor (CAR) T-cells

- Uses patients own cells
- Tumor specific
- Can be applied to multiple malignancies

T cell Native TCR Anti-CD19 CAR construct **CD19** Dead tumor cell Tumor cell

Courtesy N. Frey

Slide courtesy of Dr. Michael Bishop, University of Chicago

Patient Characteristics in CAR-T trials

Patients Characteristics	ZUMA-1 (Neelapu, 2017)	JULIET (Schuster, 2017)	TRANSCEND (Abramson, 2017)
No of patients enrolled	111 (101)	141 (85)	91 (67)
Median age, range	58 (23–76)	56 (24–75)	61 (29-82)
Age ≥ 65	24%	21%	17%
Lymphoma subtypes	DLBCL, TFL, PMBCL	DLBCL, TFL	DLBCL, TFL (CORE) ^a
Double hit lymphomas	NR	27%	27%
\geq 3 lines of therapy	69%	50%	50%
Primary refractoriness	26%	NR	NR
Refractory to > 2 nd line	77%	NR	76%
Relapse post ASCT	21%	51%	44%

Initial results of CAR-T trials

Study	ZUMA-1 (Neelapu, 2017)	JULIET (Schuster, 2017)	TRANSCEND (Abramson, 2017)
No of patients enrolled (treated)	111 (101)	141 (99)	NR (91)
			67 in CORE
Median age, range	58 (23–76)	56 (24–75)	61 (29-82)
Median follow-up	15.4 months	5.6 months	6.3 months
Costimulatory domain	CD28	4-1BB	4-1BB
Bridging chemotherapy	Not allowed	Allowed	Allowed
CART dose	$2.0 imes 10^6$ cells/kg	Median, $3.1 imes 10^8$	DL1 5.0 \times 10 ⁷ cells ^a
			DL2 1.0×10^8 cells
Conditioning regimen	Flu 30 mg/m ² x3d	Flu 25/m ² x 3d	Flu 30 mg/m ² x3d
	Cy $500 \text{ mg/m}^2 \text{ x3d}$	Cy 250 mg/m ² x3d or B 90 mg/m ² x 2d	Cy $300 \text{ mg/m}^2 \text{ x3d}$
Efficacy			
%ORR (%CR)	82 (54)	59 (43)	84 (61)
3-mo %ORR (%CR)	44 (39)	45 (37)	65 (53)
mDOR	11.1 months	NR	9.2 months

Published CAR-T results

Schuster N Engl J Med. 2019 Jan 3;380(1):45-56. doi: 10.1056/NEJMoa1804980. PMID: 30501490 Neelapu N Engl J Med. 2017 Dec 28;377(26):2531-2544. doi: 10.1056/NEJMoa1707447. PMID: 29226797

CAR-T IN DLBCL: ONE YEAR LATER...

"Real-world" Axi-cel

Table 1. Patient characteristics and outcomes: comparison between ZUMA-1 (Neelapu and Locke et al. NEJM 2017) and commercial standard of care axi-cel treatment at 17 US centers.

N infused pts	ZUMA-1 108	This Study 165
% meeting ZUMA-1 eligibility criteria	100%	51%
Age, median (range)	50123-701	59121-021
ECOG 0 or 1	100%	84%
Prior autologous transplant	23%0	51%0
DLBCL including HGBCL,	78%	61%
not tFL or PMBCL		
ORR/CR	82%/58% (Best)	79%/50% (Day 30)
Grade 3 or higher toxicity	CRS 13%/NEs 31%	CRS 7%/NEs 31%

- Seventeen US academic
- N= 165 with 78% pts completing axi-cel infusion
- Grade 3 CRS in 7%
- Grade 3 NE in 31%
- ORR at Day 30 in 112 evaluable pts was 79% with 50% CR
- PFS and OS data to be presented

"Real-world" Axi-cel

- N=73 evaluable patients
- At 4m median f/u, best ORR and CRR was 64% and 41% among those treated.
- Predictors of poor outcome:
 - Poor PS, tumor bulk, high IPI, baseline CRP, prior ibrutinib
- 96% all-grade CRS, 17% grade 3-4 CRS

<u>AUTHORS' CONCLUSION</u>: "The ORR and CR rate are lower than the 82% and 54% reported on ZUMA-1. This may reflect inclusion of sicker patients with a poorer PS, and/or with different histologies (ie transformation from non-FL). Outcomes were significantly worse in high risk lymphomas, reflected by IPI, PS, tumor bulk, and baseline CRP. Rates of CRS and NT were similar to ZUMA-1"

Jacobsen ASH 2018 Abstract 92 Saturday, December 1, 2018: 9:45 AM Pacific Ballroom 20 (Marriott Marquis San Diego Marina)

New relapsed DLBCL algorithm

& BIOLOGICAL SCIENCES

If CAR-T doesn't work...

+

Overall Survival

- N=51
- Initial progression did worse than delayed progression
 - Med OS 5.1 m vs. 13.6m

Chow ASH Abstract 94 Saturday, December 1, 2018: 10:15 AM Pacific Ballroom 20 (Marriott Marquis San Diego Marina)

Characteristic	Total (N=51)	Initial PD (N=27)	Delayed PD (N=24)
Gender			e for OS E
Female	17 (33.3%)	8 (29.6%)	9 (37.5%)
Male	34 (66.7%)	19 (70.4%)	15 (62.5%)
Histology	1.4 28 7	· · · · · · · · · · · · · · · · · · ·	
HGBCL	11 (21.6%)	3 (11.1%)	8 (33.3%)
DLBCL	29 (56.9%)	18 (66.7%)	11 (45.8%)
PMBCL	3 (5.9%)	2 (7.4%)	1 (4.2%)
tEL	8 (15.7%)	4 (14.8%)	4 (16.7%)
Median age (range)	60 (26-75)	60 (29-70)	59 (26-75)
Additional therapy after progression	39 (76.5%)	17 (63.0%)	22 (91.7%)
Next line of therapy			8
Allogeneic Transplant	1 (2.6%)	0 (0.0%)	1 (4.5%)
CAR T	14 (35.9%)	6 (35.3%)	8 (36.4%)
Chemotherapy	7 (17.9%)	5 (29.4%)	2 (9.1%)
Immunotherapy	3 (7.7%)	1 (5.9%)	2 (9.1%)
Intrathecal	1 (2.6%)	0 (0.0%)	1 (4.5%)
Radiation	3 (7.7%)	1 (5.9%)	2 (9.1%)
Targeted	10 (25.6%)	4 (23.5%)	6 (27.3%)
Next treatment on clinical trial	5 (9.8%)	3 (11.1%)	2 (8.3%)
Allogeneic transplant after progression	4 (7.8%)	1 (3.7%)	3 (12.5%)

What if transplant and/or CAR-T are not options?

- Chemoimmunotherapy
 - Gemcitabine-based regimens
 - BR
- Non-chemotherapy agents include:
 - Ibrutinib (for non-GCB only and if insurance allows)
 - Len/rituximab
- Best supportive care

Targeting the macrophage checkpoint: 5F9 plus rituximab

C Complete Response in Female Patient with DLBCL

D Complete Response in Male Patient with DLBCL Baseline Response at 8 wk

- Favorable toxicity profile
- No chemotherapy

Polatuzumab plus BR in rel/ref DLBCL

Ph lb safety run-in: Pola + BR or BG

Ph II randomization: Pola + BR versus BR

Ph II expansion: Pola + BG

Figure 2a. Randomized DLBCL cohort: Kaplan Meier curves for PFS

B, bendamustine; CI, confidence interval; DLBCL, diffuse large B-cell lymphoma vedotin;

R, rituximab

Figure 2b. Randomized DLBCL cohort: Kaplan Meier curves for OS

Sehn ASH Abstract 1683 Saturday, December 1, 2018, 6:15 PM-8:15 PM Hall GH (San Diego Convention Center) nphoma; N, $\eta \underbrace{CAGO}_{ALCENTER}^{RSITYOF}$

Please join us!!

16TH Annual International

ULTMANN CHICAGO LYMPHOMA SYMPOSIUM

APRIL 12–13, 2019 InterContinental Chicago Magnificent Mile

505 N Michigan Ave, Chicago, IL 60611

SYMPOSIUM CO-CHAIRS

Sonali M. Smith, MD Elwood V. Jensen Professor of Medicine Section of Hematology/Oncology Director, Lymphoma Program

The University of Chicago

Andrew M. Evens, DO, MSc, FACP

Associate Director for Clinical Services Rutgers Cancer Institute Medical Director Oncology Service Line RWJ Barnabas Health Director, Lymphoma Program Division of Blood Disorders Professor of Medicine Rutgers Robert Wood Johnson Medical School

Barbara Pro, MD

Professor of Medicine Division of Hematology/Oncology Northwestern University Feinberg School of Medicine

REGISTER TODAY AT www.chicagolymphoma.com

Early registration rates expire March 12, 2019

