### Aggressive B and T cell lymphomas: Treatment paradigms in 2019

#### John P. Leonard M.D.

Richard T. Silver Distinguished Professor of Hematology and Medical Oncology

Associate Dean for Clinical Research

Associate Director, Meyer Cancer Center

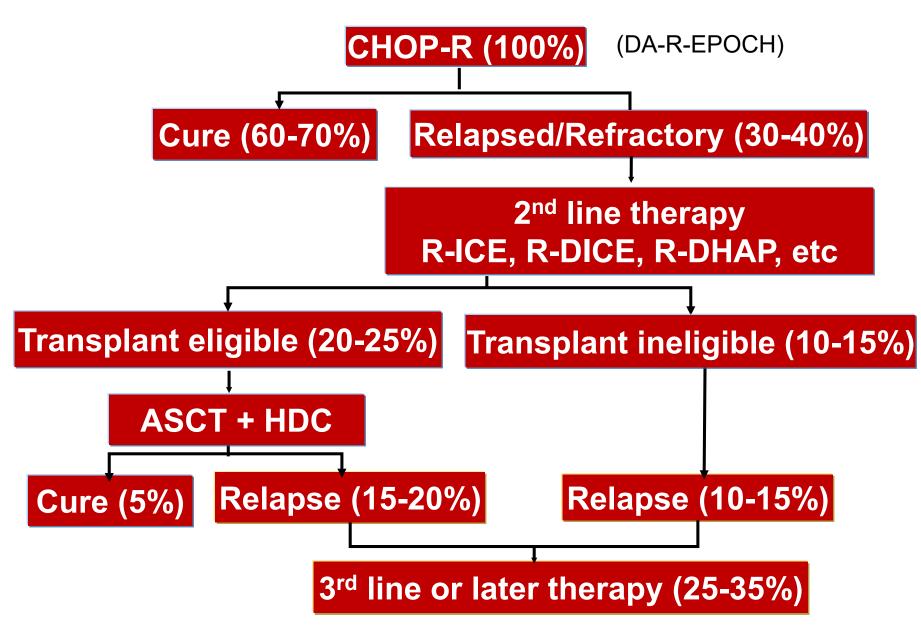
Executive Vice Chairman, Weill Department of Medicine



### **Disclosures**

**Consulting advice:** 

Gilead, Celgene, Sutro, BMS, Genentech/Roche, Bayer, ADC Therapeutics, AstraZeneca, Biotest, Karyopharm, MEI Pharma, Novartis, Merck, Morphosys, Beigene, Nordic Nanovector, Karyopharm




### **Diffuse large B cell lymphoma**

- Median age 60, usually with advanced stage disease
  - LAN, extranodal disease, symptoms
- Practical objective of treatment cure (70%)
- Reasonably good clinical prognostic tools
- Most patients treated same (R-CHOP)
- Unmet need more cures, reduce toxicity
- Who should we treat differently?
- If refractory to second-line therapy, prognosis is poor



### **Treatment algorithm for DLBCL**



When do I treat patients with DLBCL today with something other than R-CHOP x 6?

**Double hit subtype** 

Data not robust in double protein subtype

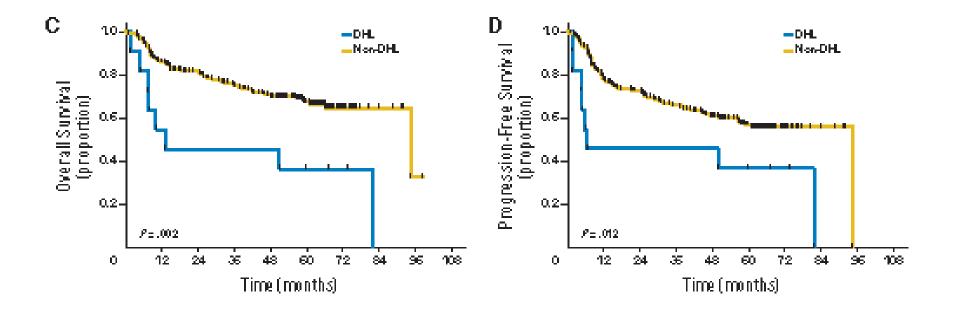
**Primary mediastinal** 

**HIV** associated

Testicular

Limited stage (?)

CNS


Elderly



### Double hit vs Double protein DLBCL 10-25% of DLBCL

- Double-hit lymphoma: High-grade B-cell lymphoma with translocations of MYC as well as BCL2, BCL6, or both ("triple-hit")
  - Histologically classified as DLBCL or B-cell lymphoma unclassifiable with intermediate features between DLBCL and Burkitt Lymphoma
  - Cell of origin: Virtually always germinal center subtype
  - Outcome poor with standard therapies
- Double-expressing lymphomas: DLBCL with dual immunohistochemical expression of MYC (≥40%) and BCL2 (≥70%) in the absence of translocations
  - Cell of origin: Usually activated B cell subtype
  - Outcome inferior to other DLBCLs, but not as poor as DHL

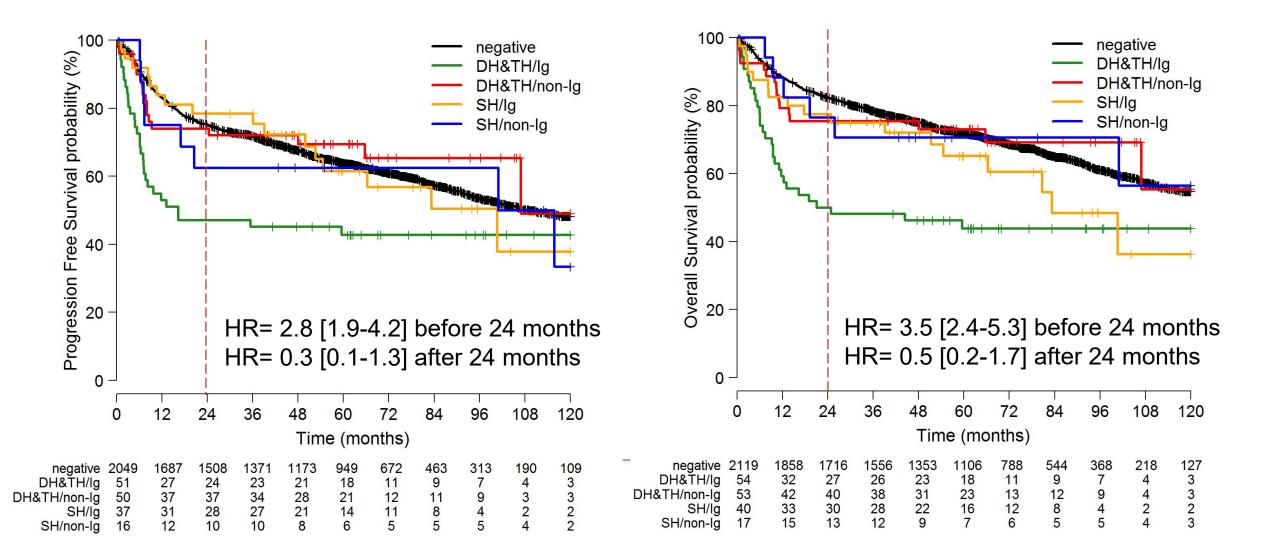
### FISH DH DLBCL and treatment with R-CHOP



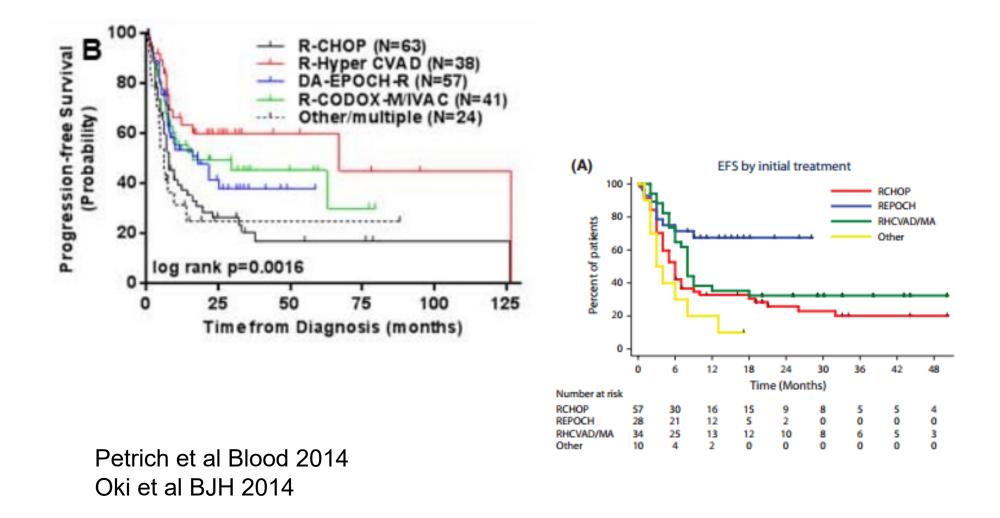
Green et al, JCO 2012

Weill Cornell Medicine

## Prognostic Significance of MYC Single, Double, Triple Hit and MYC-Translocation Partner Status in Diffuse Large B-Cell Lymphoma


Andreas Rosenwald, Laurie H. Sehn and Delphine Maucort-Boulch on behalf of the

Lunenburg Lymphoma Biomarker Consortium (LLBC)


60th ASH Annual Meeting

December 2018, San Diego

### MYC Translocation Partner (IG vs non-IG) is Prognostically Relevant in Double/Triple-Hit



### **DA-EPOCH-R** in double hit lymphoma



- NewYork-Presbyterian

Weill Cornell Medicine



# MYC rearrangement positive large B-cell lymphoma patients can be treated successfully with R-CHOP plus lenalidomide

#### results of the multicenter phase II HOVON 130 trial

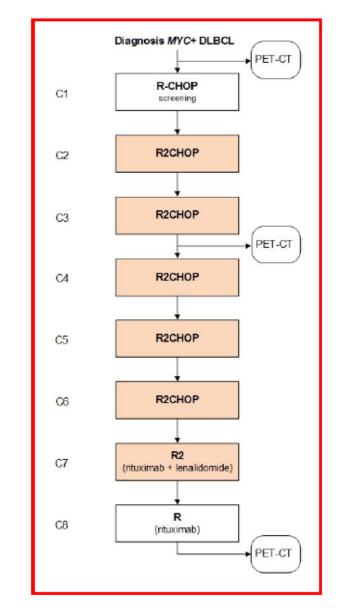
M.E.D. Chamuleau, C.N. Burggraaff, M. Nijland, K. Bakunina, R. Mous, P.J. Lugtenburg, D. Dierickx, G.W. van Imhoff, J.S. Vermaat, W.F.M. Marijt, O. Visser, C. Mandigers, Y.M. Bilgin, A. Diepstra, A. Arens, O.S. Hoekstra, J.M. Zijlstra, D. de Jong, M.J. Kersten



Stichting Haemato-Oncologie voor Volwassenen Nederland • www.hovon.nl



### R2CHOP: Rituximab-CHOP + lenalidomide


|          | Agent                  | Dose/day                         |        |
|----------|------------------------|----------------------------------|--------|
| Day 1    | Day 1 Cyclophosphamide |                                  | i.v.   |
|          | Vincristine            | 1.4 mg/m <sup>2</sup> (max 2 mg) | i.v.   |
|          | Doxorubicin            | 50 mg/m <sup>2</sup>             | i.v.   |
|          | Rituximab              | 375 mg/m <sup>2</sup>            | i.v.   |
| Day 1-5  | Prednisone             | 100 mg                           | orally |
| Day 1-14 | Lenalidomide           | 15 mg                            | orally |

R2CHOP regimen, every 3 weeks

-6 cycles of R-CHOP + 2 cycles of rituximab -6 cycles of lenalidomide (C2-C7)

Additionally:

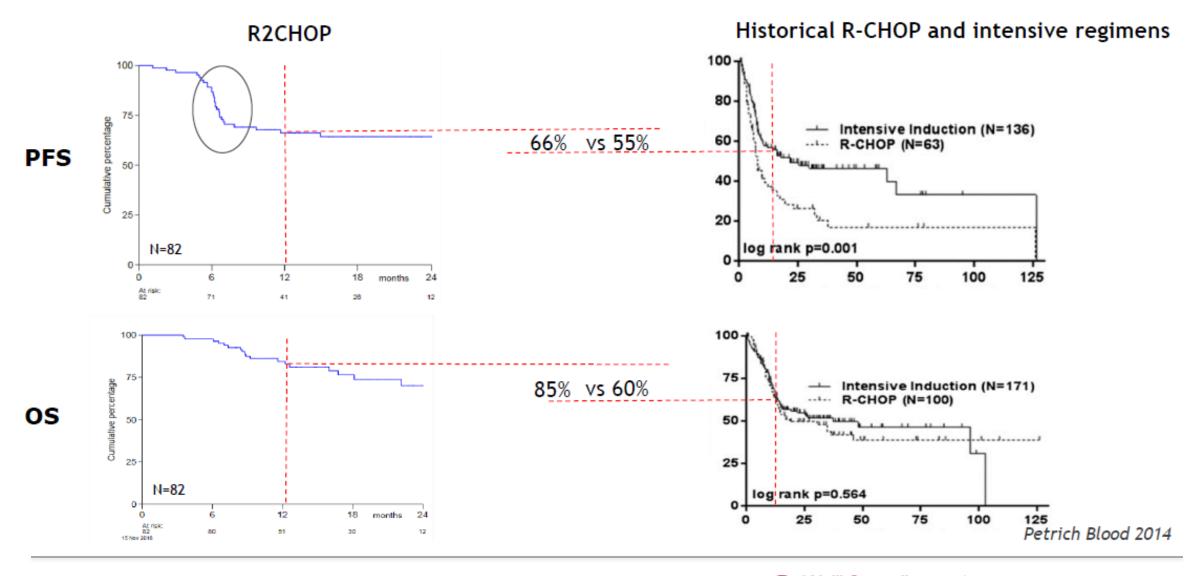
-CNS prophylaxis, pegfilgrastim, PJP and DVT prophylaxis







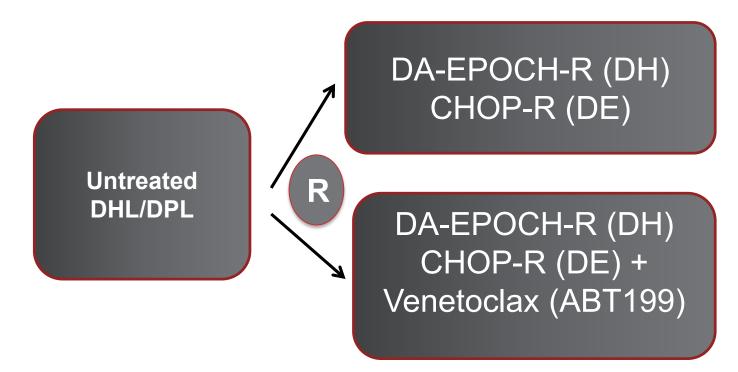
### Pathology review results


|                                     | n                                                                                                                                                                            | %                                                                                                                                                                                 |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                                              |                                                                                                                                                                                   |
| DLBCL                               | 65                                                                                                                                                                           | <b>79</b> %                                                                                                                                                                       |
| BCL-u                               | 12                                                                                                                                                                           | 15 %                                                                                                                                                                              |
| Indecisive DLBCL/BCL-U              | 5                                                                                                                                                                            | 6 %                                                                                                                                                                               |
|                                     |                                                                                                                                                                              |                                                                                                                                                                                   |
| Single hit                          | 20                                                                                                                                                                           | 24 %                                                                                                                                                                              |
| Double hit                          | 44                                                                                                                                                                           | <b>54</b> %                                                                                                                                                                       |
| MYC+/BCL2+                          | •31                                                                                                                                                                          | •38 %                                                                                                                                                                             |
| MYC+/BCL6+                          | •13                                                                                                                                                                          | •16 %                                                                                                                                                                             |
| Triple hit                          | 9                                                                                                                                                                            | 11 %                                                                                                                                                                              |
| MYC+ (BCL2 and BCL6 status unknown) | 9                                                                                                                                                                            | 11 %                                                                                                                                                                              |
|                                     |                                                                                                                                                                              |                                                                                                                                                                                   |
| GCB subtype                         | 29                                                                                                                                                                           | 76 %                                                                                                                                                                              |
| ABC subtype                         | 7                                                                                                                                                                            | 18 %                                                                                                                                                                              |
| Intermediate                        | 2                                                                                                                                                                            | 5 %                                                                                                                                                                               |
|                                     | BCL-u<br>Indecisive DLBCL/BCL-U<br>Single hit<br>Double hit<br>•MYC+/BCL2+<br>•MYC+/BCL6+<br>Triple hit<br>MYC+ (BCL2 and BCL6 status unknown)<br>GCB subtype<br>ABC subtype | DLBCL 65<br>BCL-u 12<br>Indecisive DLBCL/BCL-U 5<br>Single hit 20<br>Double hit 44<br>•MYC+/BCL2+ •31<br>•MYC+/BCL6+ •31<br>Triple hit 9<br>MYC+ (BCL2 and BCL6 status unknown) 9 |



Amsterdam UMC

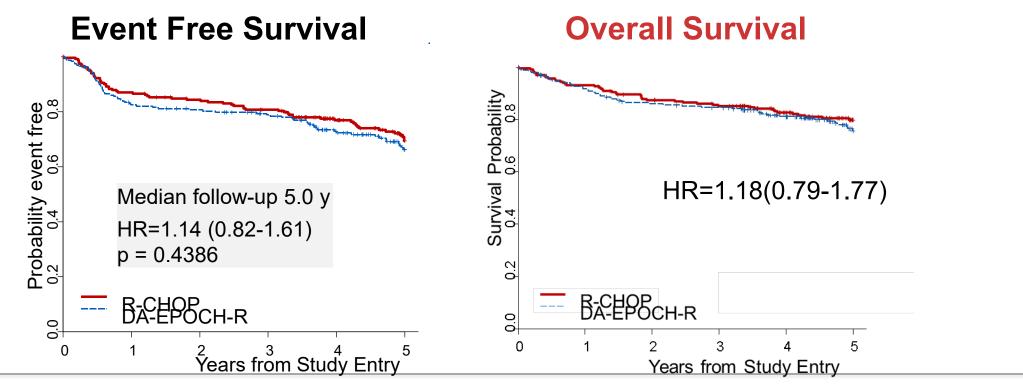



#### Median FU of 15.9 months, 1-year estimates



Weill Cornell Medicine

B


Planned Intergroup Trial in DH/DE DLBCL Phase I then Phase II-III BCL-2 inhibitor Venetoclax



Ph I Investigator-initiated study (Alliance Foundation) WCM/NYP Coordinating Site (Rutherford) Phase II/III NCI/Alliance/Intergroup (Abramson MGH)

### Alliance 50303: Outcomes

|        | R-CHOP | DA-EPOCH-R | P-value |
|--------|--------|------------|---------|
| ORR    | 89%    | 89%        | 0.983   |
| CR/CRu | 62%    | 61%        |         |
| PR     | 27%    | 27%        |         |



Weill Cornell Medicine

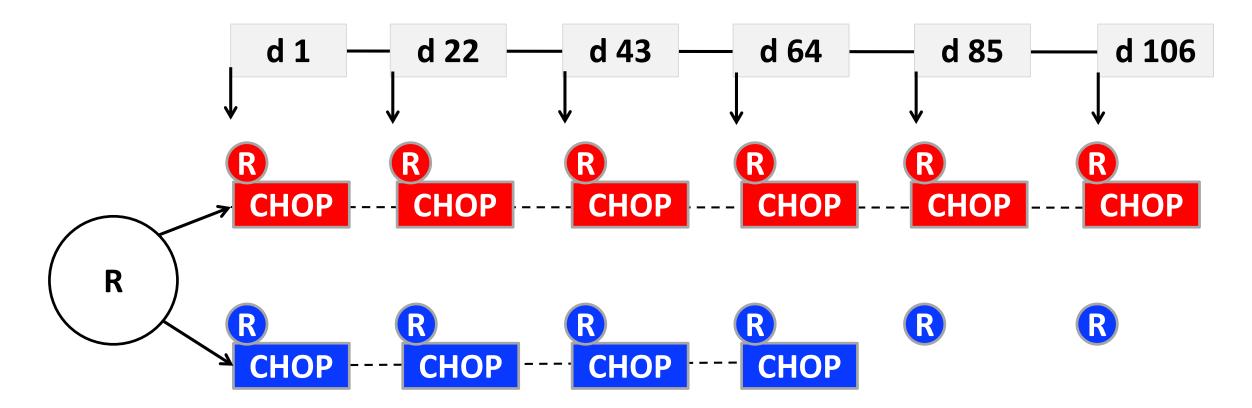






**UKS** Universitätsklinikum des Saarlandes

### Excellent outcome of young patients (18-60 years) with favourable-prognosis diffuse large B cell lymphoma (DLBCL) treated with 4 cycles CHOP plus 6 applications of rituximab: Results of the 592 patients of the FLYER trial of the DSHNHL/GLA. (ASH 2018 Abstract 781)

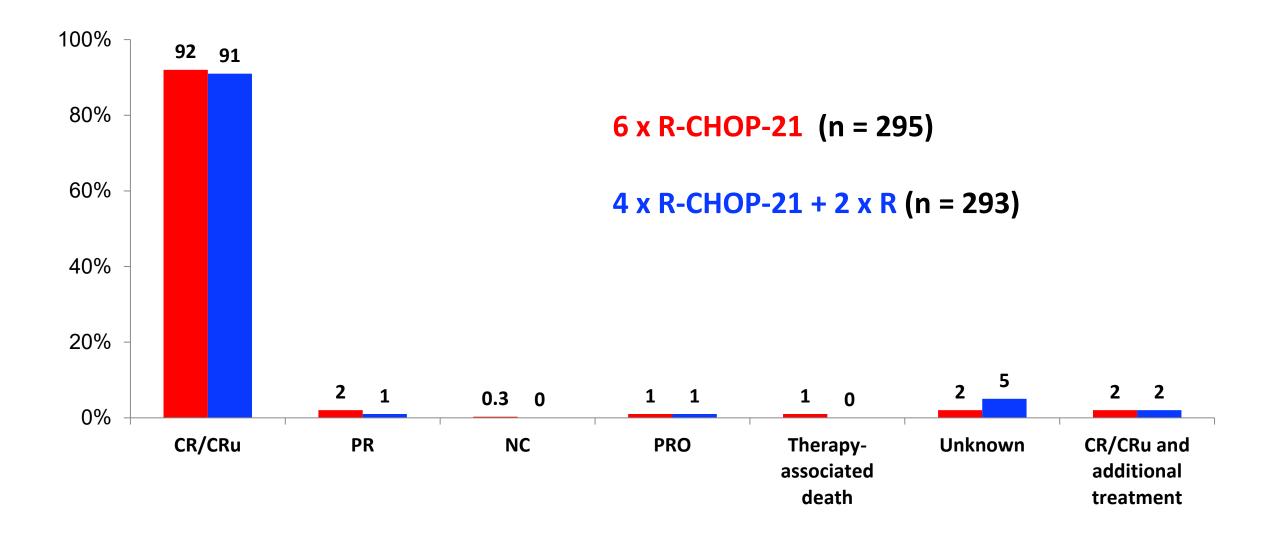

Viola Poeschel<sup>1</sup>, Gerhard Held<sup>1</sup>, Marita Ziepert<sup>2</sup>, Bettina Altmann<sup>2</sup>, Mathias Witzens-Harig<sup>3</sup>, Harald Holte<sup>4</sup>, Lorenz Thurner<sup>1</sup>, Andreas Viardot<sup>5</sup>, Peter Borchmann<sup>6</sup>, Lothar Kanz<sup>7</sup>, Ulrich Keller<sup>8</sup>, Christian Schmidt<sup>9</sup>, Rolf Mahlberg<sup>10</sup>, Bernd Metzner<sup>11</sup>, Reinhard Marks<sup>12</sup>, Heinz-Gert Hoeffkes<sup>13</sup>, Konstantinos Christofyllakis<sup>1</sup>, Josif Amam<sup>1</sup>, Christian Berdel<sup>14</sup>, Stephan Stilgenbauer<sup>1</sup>, Norbert Schmitz<sup>15</sup>, Lorenz Truemper<sup>16</sup>, Niels Murawski<sup>1</sup>,

Markus Löffler<sup>2</sup>, Michael Pfreundschuh<sup>1</sup>

<sup>1</sup>Department of hematology, oncology and rheumatology, Saarland University Medical School, Homburg / Saar, Germany; <sup>2</sup>Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; <sup>3</sup>Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany; <sup>4</sup>Oslo University Hospital, Oslo, Norway; <sup>5</sup>Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany; <sup>6</sup>Department of Haematology and Oncology, University Hospital of Cologne, Cologne, Germany; <sup>7</sup>University Hospital of Tuebingen, Tuebingen, Germany; <sup>8</sup>Klinikum rechts der Isar der TU München, Munich, Germany; <sup>9</sup>Department of Medicine III, University Hospital, Munich, Germany; <sup>10</sup>Klinikum Mutterhaus der Borromaerinnen, Trier, Germany; <sup>11</sup>Klinikum Oldenburg, Oldenburg, Germany; <sup>12</sup>Department of Hematology and Oncology, University Medical Center, Freiburg, Germany; <sup>13</sup>Klinikum Fulda Tumorklinik, Fulda, Germany; <sup>14</sup>Department of radiooncology, Saarland University Medical School, Homburg / Saar, Germany; <sup>15</sup>Medizinische Klinik A, University Hospital Münster, Münster, Germany; <sup>16</sup>Georg August University, Goettingen, Germany

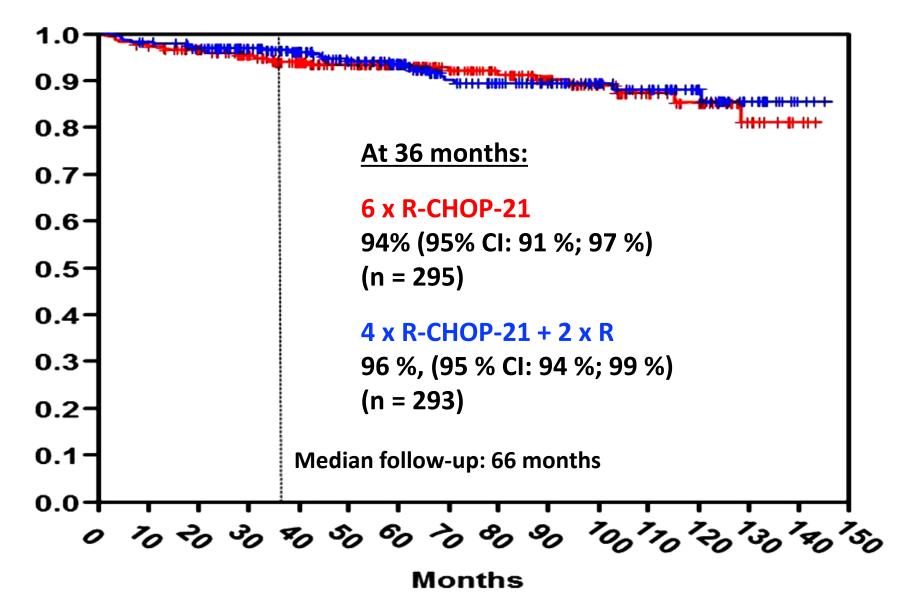
# FLYER: Study Design

- Front-line treatment of aggressive B-cell lymphoma
- 18-60 years, stage I/II, aaIPI = 0, no bulk (max. diameter < 7.5 cm)</li>



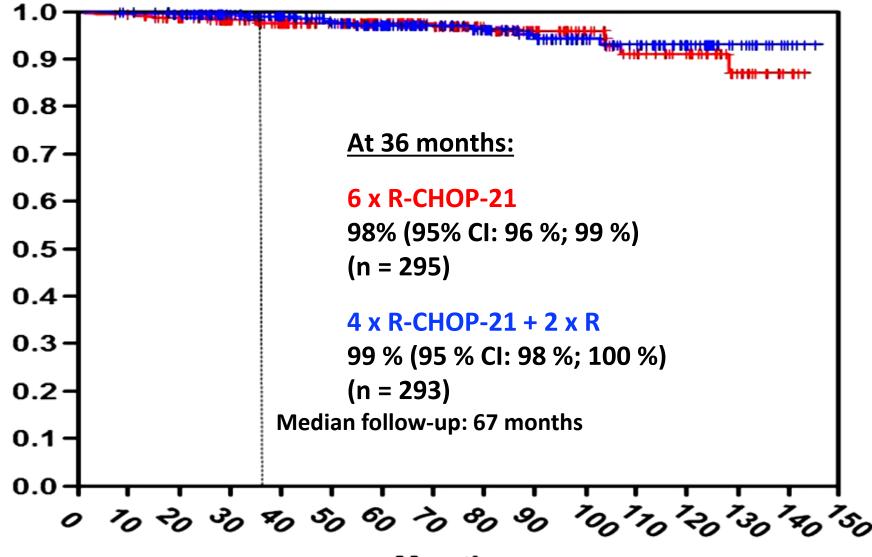

# Demographics

|                     | Tota | ul (n = 588) | 6 x R- | CHOP (n = 295) | 4 x R-0 | CHOP (n = 293) | p-value |
|---------------------|------|--------------|--------|----------------|---------|----------------|---------|
| Female              | 234  | (40 %)       | 116    | (39 %)         | 118     | (40 %)         | 0.814   |
| Age, median (range) | 48   | (18, 60)     | 47     | (19, 60)       | 49      | (18, 60)       | 0.438   |
| LDH > UNV           | 0    | (0 %)        | 0      | (0 %)          | 0       | (0 %)          | -       |
| ECOG > 1            | 0    | (0 %)        | 0      | (0 %)          | 0       | (0 %)          | -       |
| Stage I             | 346  | (59 %)       | 172    | (58%)          | 174     | (59 %)         | 0.050   |
| II                  | 236  | (40 %)       | 119    | (40 %)         | 117     | (40 %)         | 0.953   |
| III/IV              | 6    | (1 %)        | 4      | (1 %)          | 2       | (1 %)          |         |
| aalPl 0             | 582  | (99 %)       | 291    | (99 %)         | 291     | (99 %)         | 0.686   |
| 1                   | 6    | (1 %)        | 4      | (1 %)          | 2       | (1 %)          | 0.686   |
| Extralymph.         | 191  | (32 %)       | 96     | (32 %)         | 95      | (32 %)         | 0.975   |
| involvement         |      |              |        |                |         |                |         |
| Bulky disease       | 2    | (0.3 %)      | 1      | (0.3 %)        | 1       | (0.3 %)        | 1.000   |
| B-symptoms          | 36   | (6 %)        | 9      | (3 %)          | 27      | (9 %)          | 0.002   |




# **Response Rates**

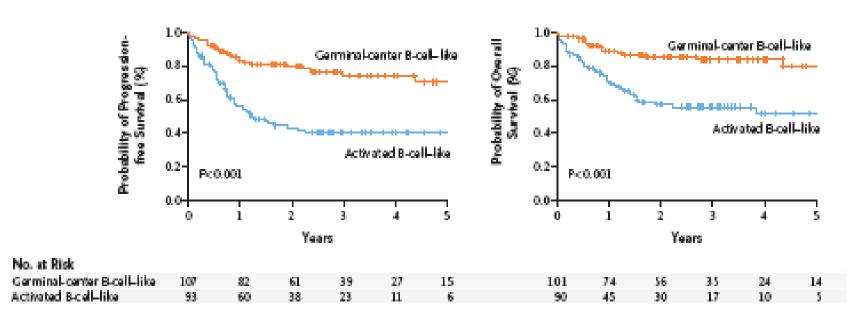





# Primary Endpoint: PFS



# **Overall Survival (OS)**


DSHNHL



Months

### Outcome by GCB vs ABC gene signatures in DLBCL N=233 patients treated with R-CHOP

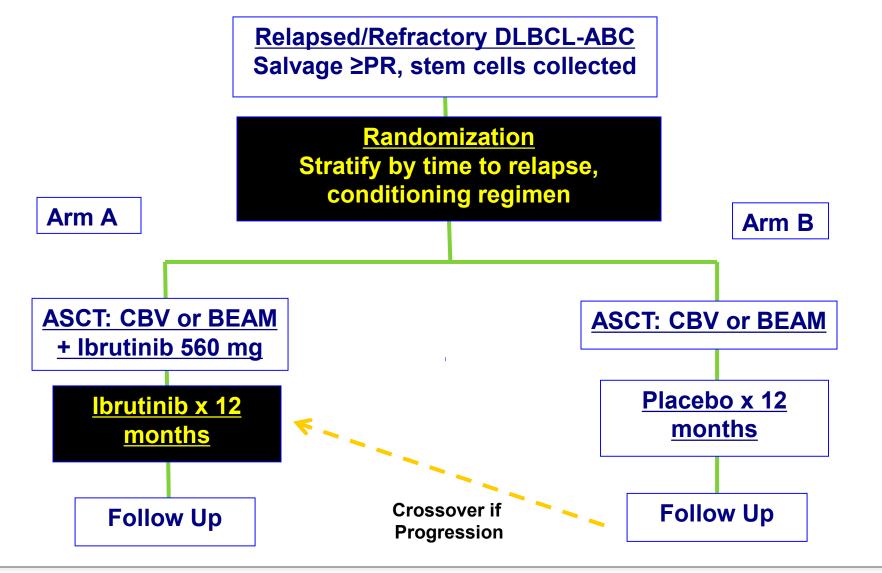
PFS



Lenz G, et al, NEJM 2008

OS

Weill Cornell Medicine


# Oncogenic mechanisms and potential therapeutic targets in GCB and ABC DLBCLs

| DLBCL subtype | Cell of origin                 | Oncogenic mechanisms                                                                                         | Potential targets                        |
|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------|
| GCB           | Germinal centre<br>B-cell      | BCL2 translocation*<br>EZH2 mutations <sup>‡</sup><br>PTEN deletions <sup>§</sup><br>Loss of PTEN expression | BCL6<br>EZH2<br>PI3K/Akt                 |
| ABC           | Post-germinal<br>centre B-cell | NF-κB activation <sup>  </sup><br>CARD11 mutations<br>MYD88 mutations<br>CD79B mutations<br>A20 deletions    | BCR<br>CBM complex<br>IRAK-4<br>JAK–STAT |

Roschewski M. et al. Nat. Rev. Clin. 2013;11:12-23.



### Alliance 51301 Study Schema



- NewYork-Presbyterian

Weill Cornell Medicine



#### A Global, Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study of Ibrutinib Plus Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Patients With Previously Untreated Non-Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma

Anas Younes,<sup>1</sup> Laurie H Sehn,<sup>2</sup> Peter Johnson,<sup>3</sup> Pier Luigi Zinzani,<sup>4</sup> Xiaonan Hong,<sup>5</sup> Jun Zhu,<sup>6</sup> Olga Samoilova,<sup>7</sup> Cheolwon Suh,<sup>8</sup> Itaru Matsumura,<sup>9</sup> Andres Lopez-Hernandez,<sup>10</sup> Ulrich Dührsen,<sup>11</sup> Catherine Thieblemont,<sup>12</sup> Jodi Carey,<sup>13</sup> Grace Liu,<sup>14</sup> S. Martin Shreeve,<sup>15</sup> Steven Sun,<sup>14</sup> Jessica Vermeulen,<sup>16</sup> Louis Staudt,<sup>17</sup> and Wyndham Wilson,<sup>18</sup> on behalf of the PHOENIX investigators

<sup>1</sup>Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>2</sup>BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada; <sup>3</sup>Cancer Research UK Clinical Centre, University of Southampton, Southampton, UK; <sup>4</sup>Institute of Hematology, "Seràgnoli" University of Bologna, Bologna, Italy; <sup>5</sup>Fudan University Shanghai Cancer Center, Shanghai, China; <sup>6</sup>Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China; <sup>7</sup>Regional Clinical Hospital, Nizhniy Novgorod, Russian Federation; <sup>8</sup>Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; <sup>9</sup>Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osakasayama, Japan; <sup>10</sup>Department of Hematology, University Hospital Vall d'Hebron, Barcelona, Spain; <sup>11</sup>Department of Hematology, University Hospital Essen, Essen, Germany; <sup>12</sup>APHP, Hôpital Saint-Louis, Hemato-Oncology, Paris, France; Diderot University, Sorbonne Paris-Cité, Paris, France; <sup>13</sup>Janssen R&D, Spring House, PA, USA; <sup>14</sup>Janssen Research & Development, Raritan, NJ, USA; <sup>15</sup>Janssen Research & Development, San Diego, CA, USA; <sup>16</sup>Janssen Research & Development, LLC, Leiden, The Netherlands; <sup>17</sup>Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; <sup>18</sup>National Cancer Institute, National Institutes of Health, Bethesda, MD, USA;

### Study Design: Double-Blind, Placebo-Controlled Study



### N = 838 R-CHOP (6-8 cycles\*) + placebo <u>Randomize<sup>a</sup></u> 1:1 \*As prespecified by site R-CHOP (6-8 cycles\*) + 560 mg ibrutinib

<sup>a</sup>Stratified by R-IPI, region, and number of prespecified treatment cycles (6 vs 8 cycles).

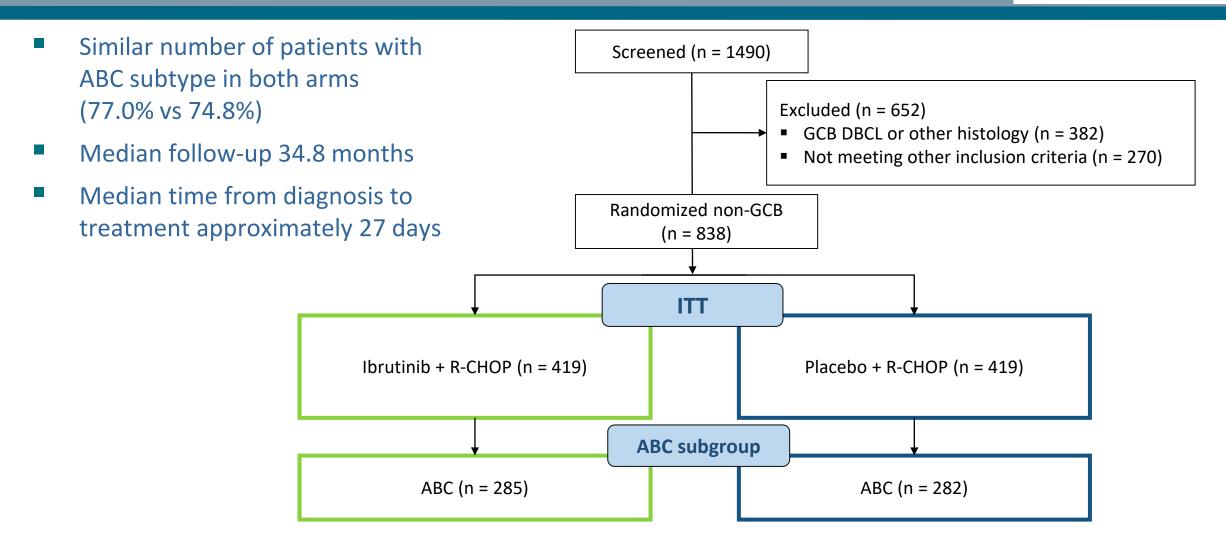
 Prophylactic antibiotics and G-CSF were not mandated but were permitted at the investigator's discretion per local or other standard guidelines

<sup>†</sup>EFS: time from randomization to PD, relapse from CR, initiation of subsequent disease-specific therapy for PET-positive or biopsy-proven residual disease after  $\geq$  6 cycles of R-CHOP, or any-cause death.

American Society of Hematology 60th Annual Meeting and Exposition, Younes A, et al. Abstract 784.

#### Key eligibility criteria

- Untreated non-GCB DLBCL
  - Determined by Hans-based IHC at a central laboratory
  - Retrospectively analyzed for ABC subtype using GEP
- Stage II to IV measureable disease
- R-IPI ≥ 1
- ECOG performance status ≤ 2


#### **End points**

- Primary end point: EFS<sup>+</sup> in ITT (non-GCB) and ABC subgroup
- Secondary end points: PFS, CR rate, OS, safety
  - Response assessed per Revised Response
     Criteria for Malignant Lymphoma<sup>1</sup>

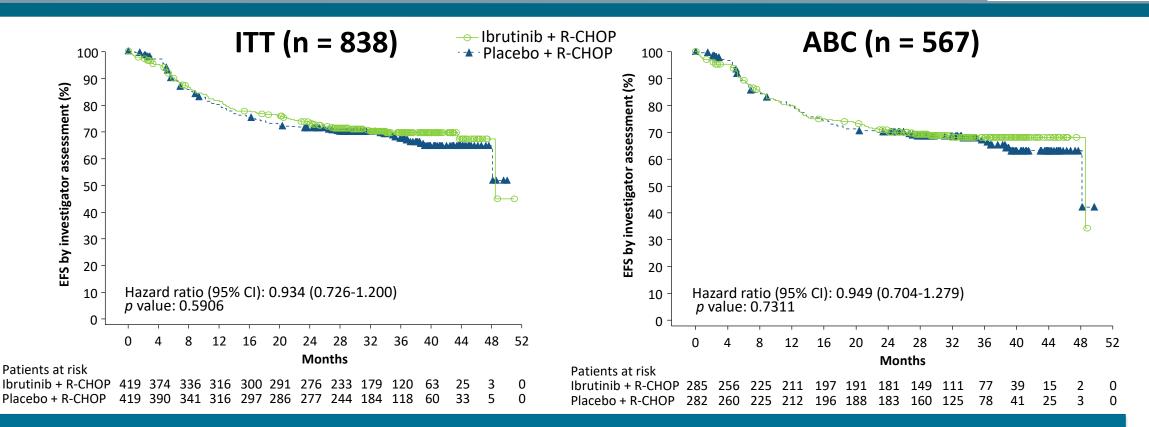
1. Cheson BD, et al. J Clin Oncol. 2007;25:579-586.

### Patient Disposition (ITT)





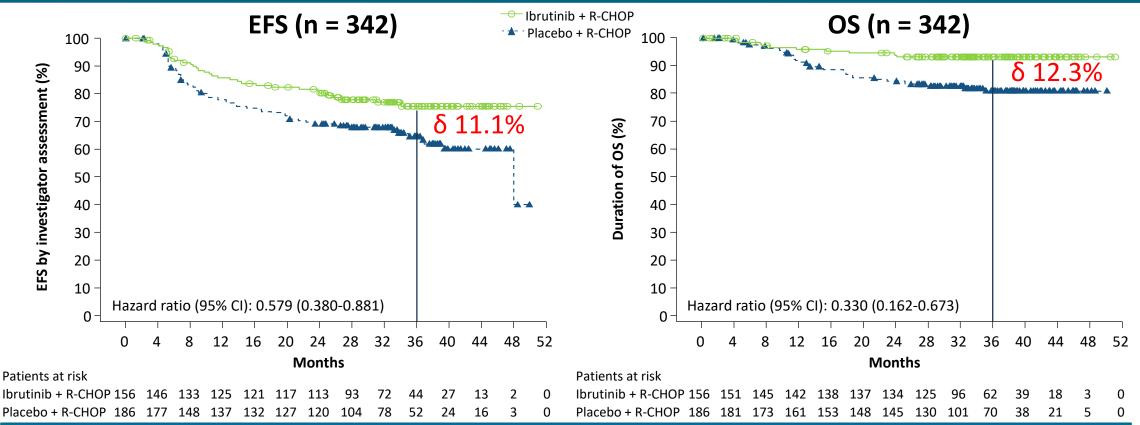
# Patient Demographics and Disease Characteristics (ITT)




|                                         | lbrutinib + R-CHOP<br>(n = 419) | Placebo + R-CHOP<br>(n = 419) |  |  |
|-----------------------------------------|---------------------------------|-------------------------------|--|--|
| Age, years                              |                                 |                               |  |  |
| Median                                  | 63.0                            | 61.0                          |  |  |
| > 65 years, n (%)                       | 188 (44.9)                      | 160 (38.2)                    |  |  |
| Sex, n (%)                              |                                 |                               |  |  |
| Male                                    | 221 (52.7)                      | 226 (53.9)                    |  |  |
| Region, n (%)                           |                                 |                               |  |  |
| US/Western Europe                       | 131 (31.3)                      | 131 (31.3)                    |  |  |
| Rest of world                           | 288 (68.7)                      | 288 (68.7)                    |  |  |
| Baseline stage of DLBCL at entry, n (%) |                                 |                               |  |  |
| 1                                       | 0                               | 1 (0.2)                       |  |  |
| П                                       | 101 (24.1)                      | 103 (24.6)                    |  |  |
| Ш                                       | 130 (31.0)                      | 118 (28.2)                    |  |  |
| IV                                      | 188 (44.9)                      | 197 (47.0)                    |  |  |

|                                 | lbrutinib + R-CHOP<br>(n = 419) | Placebo + R-CHOP<br>(n = 419) |  |  |
|---------------------------------|---------------------------------|-------------------------------|--|--|
| ECOG performance st             | atus, n (%)                     |                               |  |  |
| 0                               | 190 (45.3)                      | 187 (44.6)                    |  |  |
| 1                               | 191 (45.6)                      | 170 (40.6)                    |  |  |
| 2                               | 38 (9.1)                        | 62 (14.8)                     |  |  |
| Bone marrow involver            | ment, n (%)                     |                               |  |  |
| Yes                             | 50 (11.9)                       | 43 (10.3)                     |  |  |
| No                              | 369 (88.1)                      | 376 (89.7)                    |  |  |
| Number of planned tr            | eatment cycles, n (%)           |                               |  |  |
| 6 cycles                        | 246 (58.7)                      | 246 (58.7)                    |  |  |
| 8 cycles                        | 173 (41.3)                      | 173 (41.3)                    |  |  |
| R-IPI score index number, n (%) |                                 |                               |  |  |
| 1-2                             | 236 (56.3)                      | 238 (56.8)                    |  |  |
| 3-5                             | 183 (43.7)                      | 181 (43.2)                    |  |  |

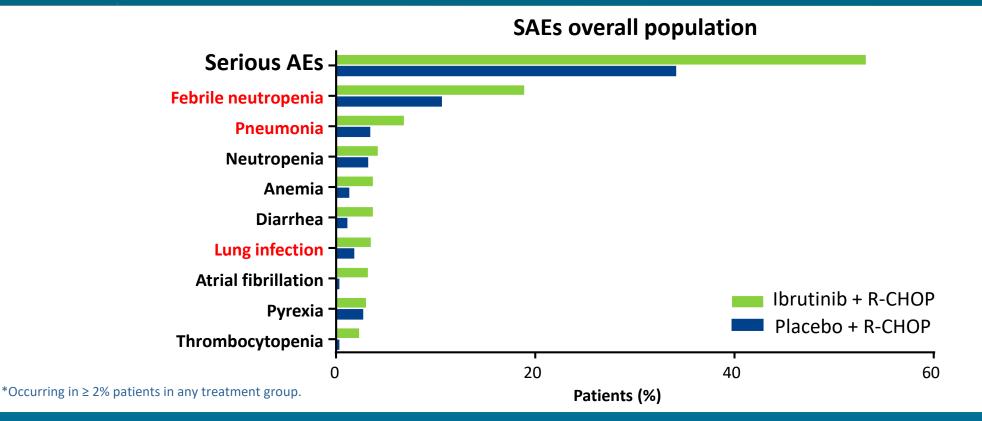
### Primary End Point EFS in the ITT and ABC Population






- Overall response (89.3% vs 93.1%) and CR rates (67.3% vs 68.0%) were similar in the ibrutinib + R-CHOP and placebo + R-CHOP arms in the ITT population
- CNS progression was observed: 10 (2.4%) vs 16 (3.8%) patients in the ibrutinib + R-CHOP and placebo + R-CHOP arms




### **EFS and OS in Patients < 60 Years**



- Ibrutinib + R-CHOP improved EFS and OS vs placebo + R-CHOP in patients < 60 years of age</p>
- Subgroup analyses showed that EFS benefit was consistent across most subgroups for baseline factors
- A similar trend with age was seen in patients with the ABC subtype (HR [95% CI]: 0.532 [0.307-0.922] for EFS; HR [95% CI]: 0.345 [0.138-0.862] for OS)
- More patients on the placebo + R-CHOP arm received subsequent antilymphoma therapy (25.2% vs 33.5%)

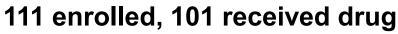
### Treatment-Emergent SAEs,\* Overall Population

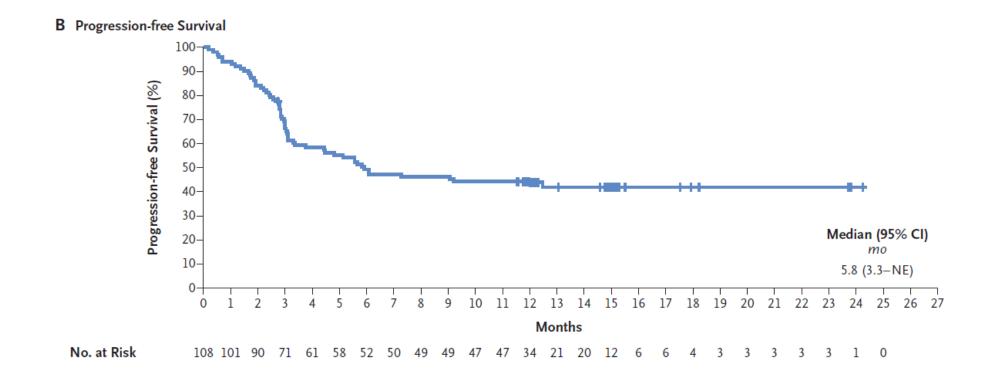




- TEAE types were consistent with those expected for ibrutinib and R-CHOP
- Prophylactic G-CSF was used in 66.1% vs 63.9% patients in the ibrutinib + R-CHOP and placebo + R-CHOP arms
  - 56.5% vs 56.2% in patients < 60 years</p>
  - 71.8% vs 70.0% in patients ≥ 60 years

# Treatment Received by Age < and ≥ 60 Years





|                                   | Age < 60 Years Age ≥ |           |             | 60 Years  |  |
|-----------------------------------|----------------------|-----------|-------------|-----------|--|
| n (%)                             | lbrutinib +          | Placebo + | lbrutinib + | Placebo + |  |
|                                   | R-CHOP               | R-CHOP    | R-CHOP      | R-CHOP    |  |
|                                   | (n = 154)            | (n = 185) | (n = 262)   | (n = 233) |  |
| R-CHOP* cycles received           | 143                  | 172       | 193         | 207       |  |
| ≥ 6 cycles                        | (92.9)               | (93.0)    | (73.7)      | (88.8)    |  |
| Ibrutinib/placebo cycles received | 138                  | 170       | 178         | 202       |  |
| ≥ 6 cycles                        | (89.6)               | (91.9)    | (67.9)      | (86.7)    |  |

\*Any component.

- In the safety population, ibrutinib/placebo and R-CHOP exposure was reduced in the ibrutinib + R-CHOP arm compared with the placebo + R-CHOP arm
- The reduced ibrutinib/placebo and R-CHOP exposure was primarily seen in older patients

### Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

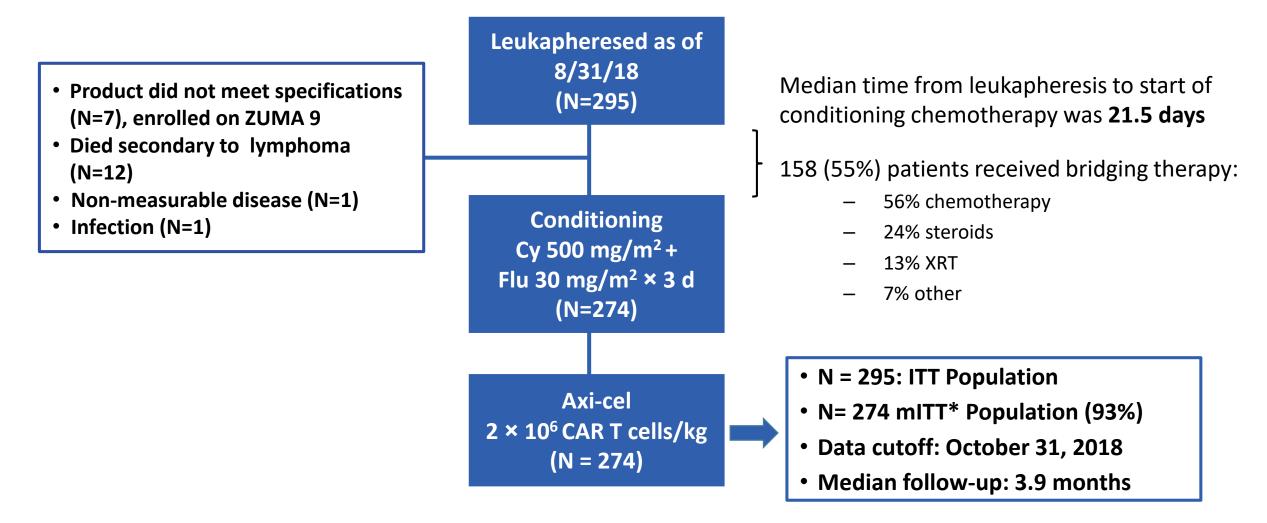




Neelapu et al; NEJM 377;26:2531-44, 2017






American Society of Hematology Helping hematologists conquer blood diseases worldwide

## Axicabtagene Ciloleucel (Axi-cel) CD19 Chimeric Antigen Receptor (CAR) T-cell Therapy for Relapsed/Refractory Large B-cell Lymphoma: Real World Experience

Loretta J. Nastoupil\*, Michael D. Jain\*, Jay Yaakov Spiegel, Armin Ghobadi, Yi Lin, Saurabh Dahiya, Matthew Lunning, Lazaros Lekakis, Patrick Reagan, Olalekan Oluwole, Joseph McGuirk, Abhinav Deol, Alison R. Sehgal, Andre Goy, Brian T. Hill, Andreadis Charalambos, Javier Munoz, Jason Westin, Julio C. Chavez, Amanda Cashen, Nabil N. Bennani, Aaron Rapoport, Julie M. Vose, Lei Feng David B. Miklos\*\*, Sattva S. Neelapu\*\*, Frederick L. Locke\*\*

> \*LJN and MDJ are co-first authors \*\*DBM, SSN, and FLL are co-senior authors

## Axi-Cel SOC Consort Diagram



\*includes 3 patients treated on ZUMA9 with product that was out of spec

American Society *of* Hematology ASH 201

ASH 2018 Abstract 91

# Characteristics Differentiating Patients in the Real World from ZUMA-1

• 124 of 286\* (43%) patients would not have met eligibility for ZUMA-1 at the time of leukapheresis.

| Criteria Excluded from ZUMA-1    | N=124<br>N (%) |  |  |
|----------------------------------|----------------|--|--|
| Platelets < 75                   | 37 (13)        |  |  |
| Active DVT/PE                    | 27 (9)         |  |  |
| Prior CD19 or CAR T cell therapy | 24 (8)         |  |  |
| GFR < 60                         | 22 (8)         |  |  |
| History of CNS lymphoma          | 22 (8)         |  |  |
| Symptomatic pleural effusion     | 11 (4)         |  |  |
| LVEF < 50%                       | 10 (4)         |  |  |
| Prior allogeneic SCT             | 7 (2)          |  |  |



## Hospitalization Period and Grade 5 AEs

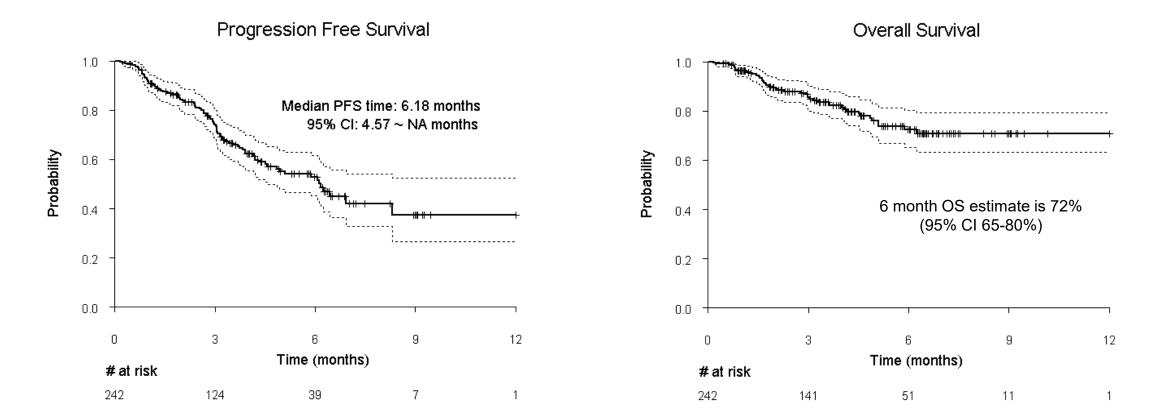
|                          | SOC Axi-cel<br>N = 274 | ZUMA-1 <sup>1</sup><br>N = 108 |
|--------------------------|------------------------|--------------------------------|
| Tocilizumab usage        | 63%                    | 45%                            |
| Corticosteroid usage     | 55%                    | 29%                            |
| Median hospital stay     | 14 days                | N/A                            |
| ICU stay, N (%)          | 85 (32%)               | N/A                            |
| Grade 5 AEs, N (%)       | 7 (3%)                 | 4 (4%)                         |
| Treatment-related deaths | 2 (1%)                 | 2 (2%)                         |

- 7 deaths due to non-relapse mortality after SOC axi-cel
  - Infection (N=5; infection, sepsis, fungemia, candidemia, pneumonia)
  - HLH (N=1)
  - Cerebral Édema (N=1)

<sup>1</sup>Neelapu, Locke et al. *NEJM*. 2017 Dec 28;377(26):2531-2544



### Efficacy of Axi-Cel in the Real World


|                                                                                                                                           | SOC Axi-cel<br>Evaluable | SOC Axi-Cel | ZUMA-1 <sup>1</sup><br>N=108 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|------------------------------|--|--|
| Median follow up, months                                                                                                                  |                          | 3.9         | 15.4                         |  |  |
|                                                                                                                                           |                          |             |                              |  |  |
| Day 30 ORR, N (%)                                                                                                                         | 238<br>248ª              | 191 (80)    | N/A                          |  |  |
| Day 30 CR, N (%)                                                                                                                          |                          | 113 (47)    | N/A                          |  |  |
| Best ORR at Day 90, N (%)                                                                                                                 |                          | 201 (81)    | 89 (82)                      |  |  |
| Best CR at Day 90, N (%)                                                                                                                  |                          | 142 (57)    | 63 (58)                      |  |  |
| valuable patients as of data cut-off date of October 31, 2018 <sup>1</sup> Neelapu, Locke et al. <i>NEJM</i> . 2017 Dec 28;377(26):2531-2 |                          |             |                              |  |  |

CONTRACTOR OF ANTRACTOR

American Society *of* Hematology ASH 2

ASH 2018 Abstract 91

# PFS and OS at Median F/U of 3.9 Months in the Real World

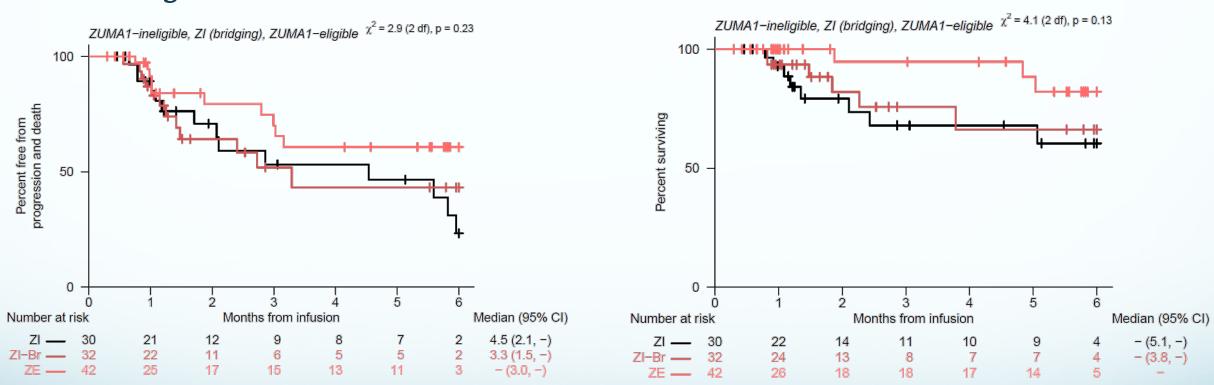


mITT population, OS calculated from time of CAR T infusion until death or last contact.

#### ASH 2018 Abstract 91

## Axicabtagene Ciloleucel in the Real World: Outcomes and Predictors of Response, Resistance & Toxicity (ASH 2018 Abstract 92)

**Caron A. Jacobson, MD**<sup>1</sup>, Bradley Hunter, MD, MPH<sup>1</sup>, Philippe Armand, MD, PhD<sup>1</sup>, Yusuke Kamihara, MD, PhD<sup>1</sup>, Jerome Ritz, MD, PhD<sup>1</sup>, Scott J Rodig, MD<sup>2</sup>, Kyle Wright, M.D., Ph.D.<sup>2</sup>, Mikel Lipschitz, M.S.<sup>2</sup>, Robert A. Redd, MS<sup>1</sup>, Joseph Maakaron, MD<sup>3</sup>, Samantha Jaglowski, MD, MPH<sup>3</sup>, Marcela V. Maus, MD, PhD<sup>4</sup>, Yi-Bin Chen, MD<sup>4</sup>, Jeremy S. Abramson, MD, MMSc<sup>4</sup>, Justin Kline, MD<sup>5</sup>, Jonathon B. Cohen, MD, MS<sup>6</sup>, Stephen D. Smith, MD<sup>7</sup>, David G. Maloney, MD, PhD<sup>8</sup>, Ajay K. Gopal, MD<sup>8</sup>, Matthew J. Frigault, MD<sup>4</sup>\* and Utkarsh H. Acharya, DO<sup>7,8</sup>\*


<sup>1</sup>Dana Faber Cancer Institute, Boston, MA, <sup>2</sup>Brigham and Women's Hospital, Boston, MA, <sup>3</sup>Ohio State University, Columbus, OH, <sup>4</sup>Massachusetts General Hospital Cancer Center, Boston, MA, <sup>5</sup>University of Chicago, Chicago, IL, <sup>6</sup>Emory University, Atlanta, GA, <sup>7</sup>Seattle Cancer Care Alliance, University of Washington, Seattle, WA, <sup>8</sup>University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA

\*Contributed equally to this work

### **ZUMA-1 Eligibility and Bridging Therapy: Outcomes**

**Progression-free Survival** 

#### **Overall Survival**



ZUMA-1 Ineligible: Other (+/- Bridging)

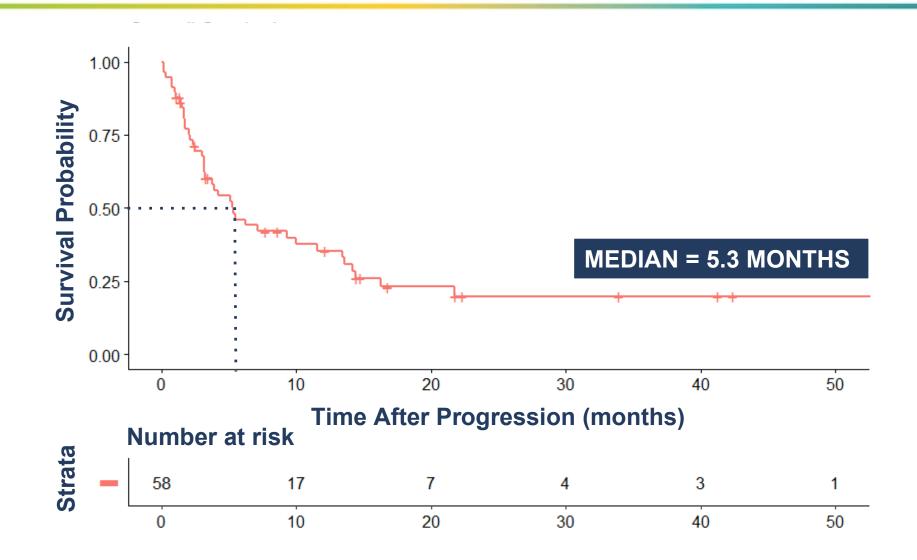
- ZUMA-1 Ineligible: Bridging only
- ZUMA-1 Eligible



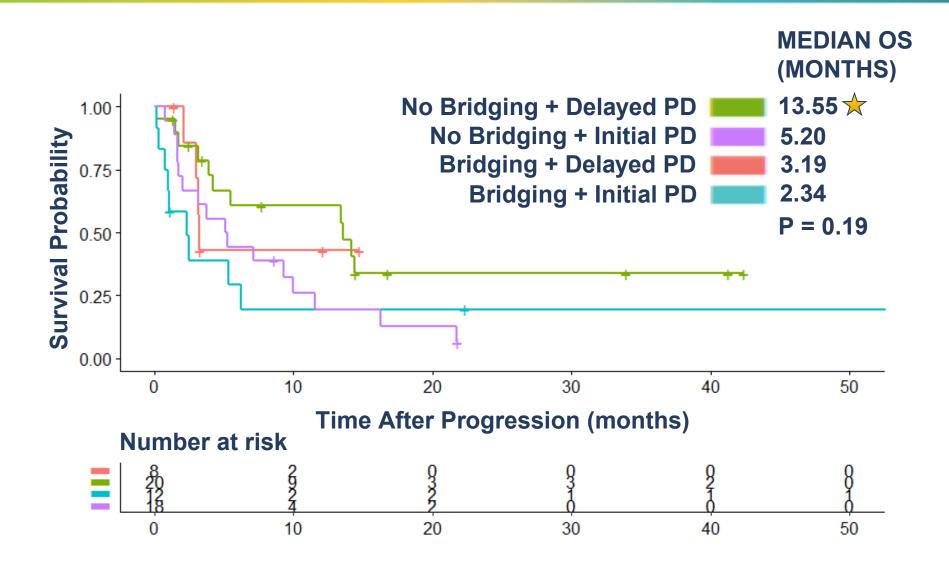
Fred Hutch · Seattle Children's · UW Medicine



FRED HUTCH


CURES START HERE®

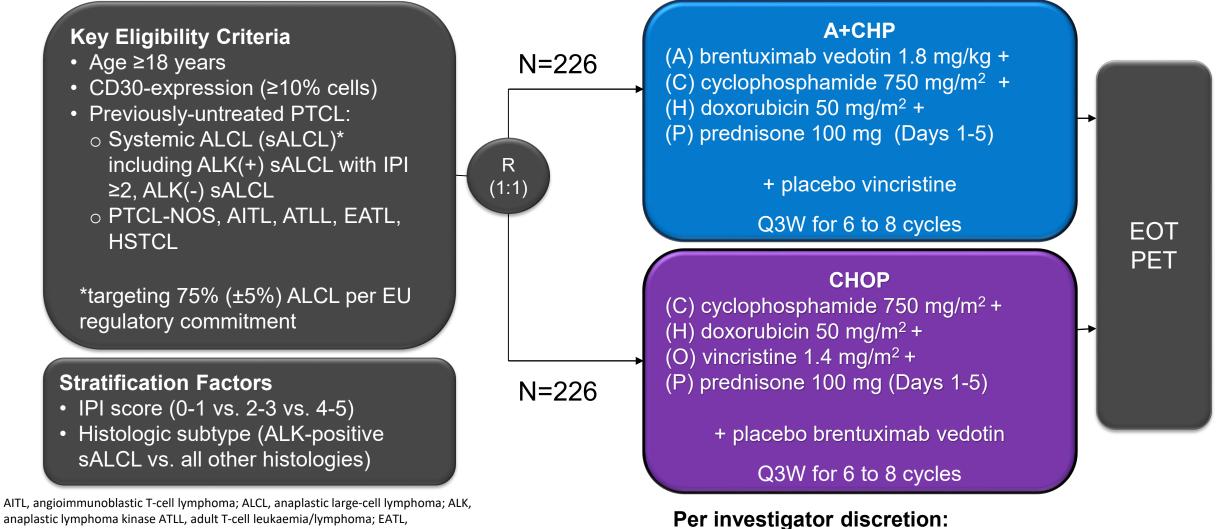
## Outcomes of Patients with Large B-Cell Lymphomas and Progressive Disease Following CD19-Specific CAR T-cell Therapy (ASH 2018 Abst 94)


Victor A. Chow, Ajay K. Gopal, David G. Maloney, Cameron J. Turtle, Stephen D. Smith, Mazyar Shadman, Ryan D. Cassaday, Brian G. Till, Yolanda D. Tseng, Edus H. Warren, Andrei R. Shustov, Manoj P. Menon, Sandra Kanan, Utkarsh H. Acharya, Erin Mullane, Lindsay M. Hannan, Jenna M. Voutsinas, Ted Gooley, and Ryan C. Lynch

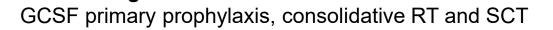
**UW** Medicine

### **Poor OS after progressive disease**




# Impact of bridging therapy and type of progression on survival

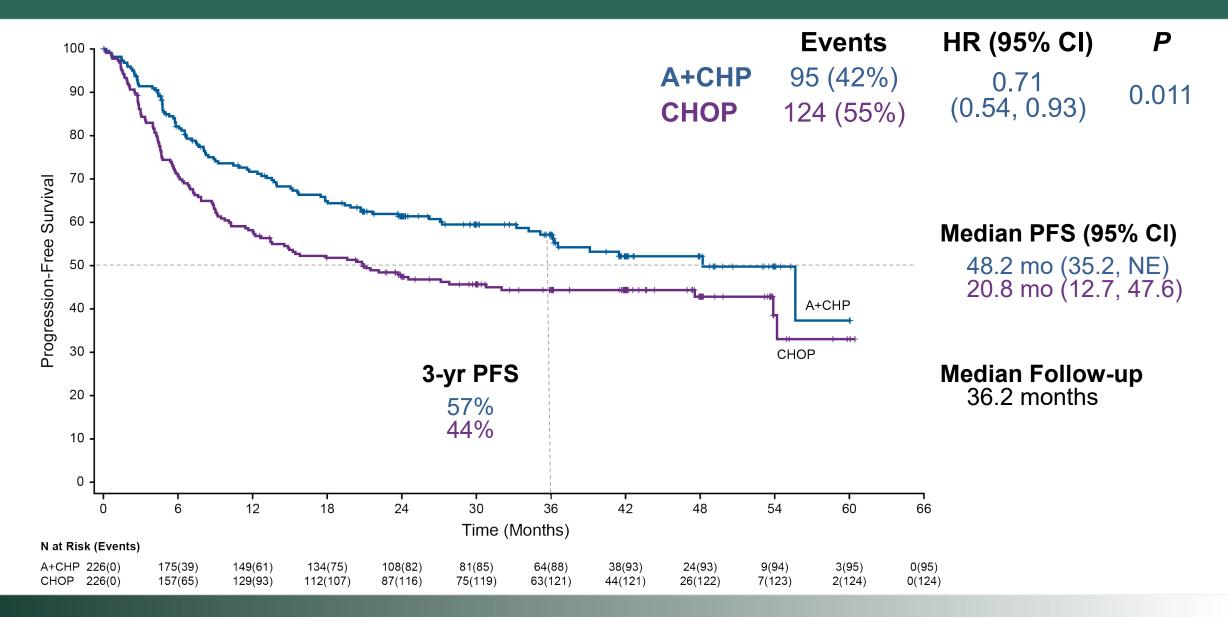



### The Phase 3 ECHELON-2 Trial: Results of a Randomized, Double-Blind, Active-Controlled Study of Brentuximab Vedotin and CHP (A+CHP) Versus CHOP in Previously Untreated Subjects with CD30-Expressing Peripheral T-Cell Lymphomas (PTCL)

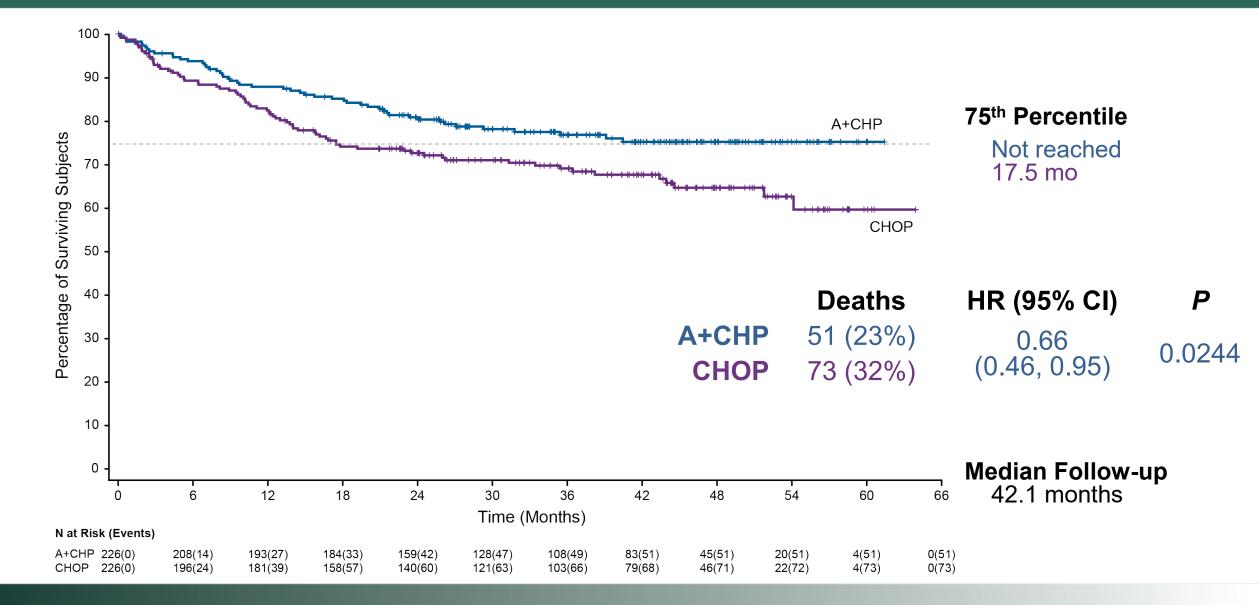
Steven Horwitz, Owen A O'Connor, Barbara Pro, Tim Illidge, Michelle Fanale, Ranjana Advani, Nancy L Bartlett, Jacob Haaber Christensen, Franck Morschhauser, Eva Domingo-Domenech, Giuseppe Rossi, Won Seog Kim, Tatyana Feldman, Anne Lennard, David Belada, Árpád Illés, Kensei Tobinai, Kunihiro Tsukasaki, Su-Peng Yeh, Andrei Shustov, Andreas Hüttmann,
Kerry J Savage, Sam Yuen, Swaminathan Iyer, Pier Luigi Zinzani, Zhaowei Hua, Meredith Little, Shangbang Rao, Joseph Woolery, Thomas Manley, Lorenz Trümper

### ECHELON-2 Study Design (NCT01777152)

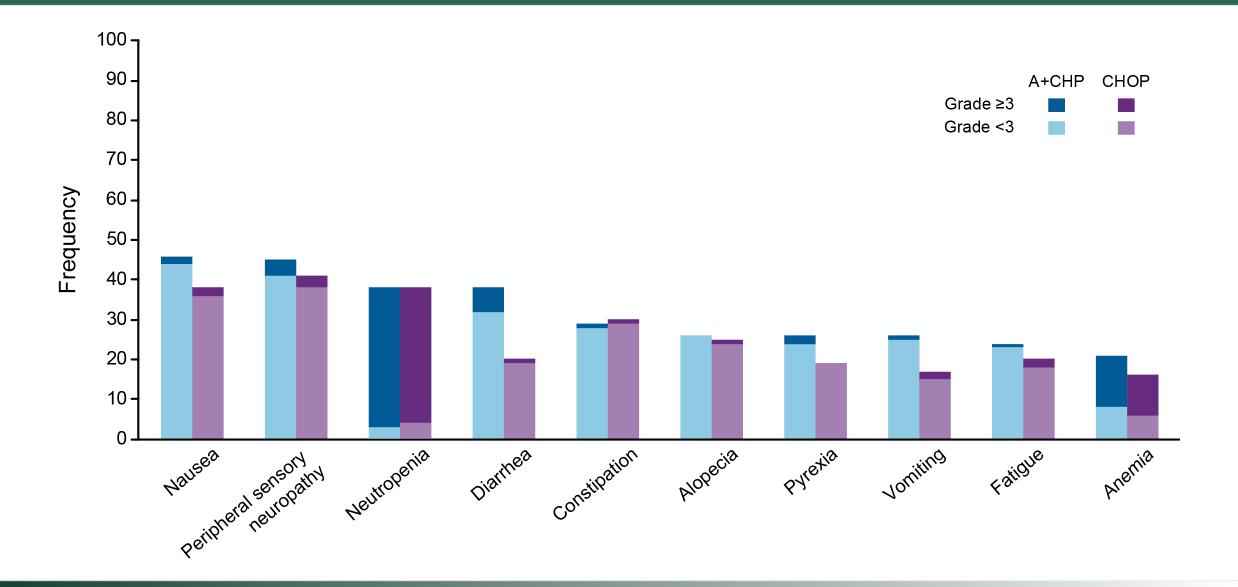



anaplastic lymphoma kinase ATLL, adult T-cell leukaemia/lymphoma; EATL, enteropathy-associated T-cell lymphoma; EOT, end of treatment; GCSF, granulocyte-colony stimulating factor; HSTCL, hepatosplenic T-cell lymphoma; IPI, international prognostic index




#### **Baseline Characteristics**

|                     | A+CHP<br>(N=226) | CHOP<br>(N=226) |                   | A+CHP<br>(N=226) | CHOP<br>(N=226) |
|---------------------|------------------|-----------------|-------------------|------------------|-----------------|
| Male, n (%)         | 133 (59)         | 151 (67)        | Disease diagnosis | , n (%)          |                 |
| Age in years,       | 2 28 (18-82)     | 58 (18-83)      | sALCL             | 162 (72)         | 154 (68)        |
| median (range)      |                  | ) 50 (10-05)    | ALK+              | 49 (22)          | 49 (22)         |
| IPI score, n (%)    |                  |                 | ALK-              | 113 (50)         | 105 (46)        |
| 0-1                 | 53 (23)          | 48 (21)         | PTCL-NOS          | 29 (13)          | 43 (19)         |
| 2-3                 | 140 (62)         | 144 (64)        | AITL              | 30 (13)          | 24 (11)         |
| 4-5                 | 33 (15)          | 34 (15)         | ATLL              | 4 (2)            | 3 (1)           |
| Stage III/IV, n (%) | 184 (81)         | 180 (80)        | EATL              | 1 (0)            | 2 (1)           |


#### **Progression-free Survival**



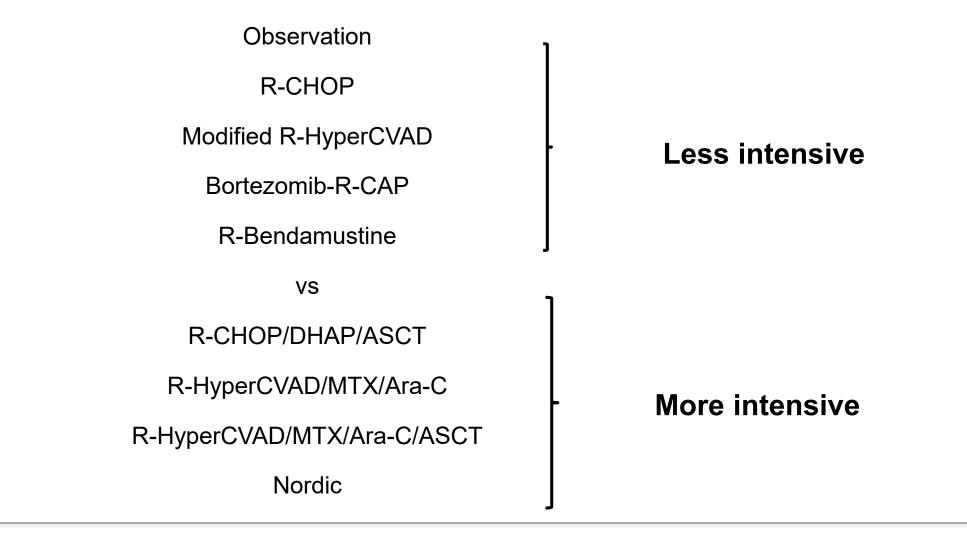
#### **Overall Survival**



#### Adverse Events in ≥20% of Subjects

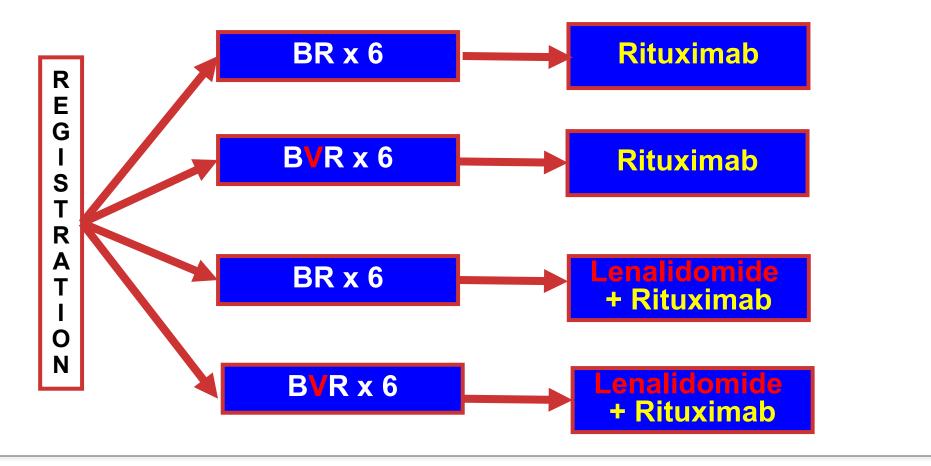


### Mantle cell lymphoma (10%)


#### Incurable, median survival 5-10 years

Key focus:

- More vs less intensive initial therapies
  - Bendamustine based rx in older pts standard
  - Does SCT improve survival in younger patients?
  - Role of MRD?
- Development of novel agents and translational studies to understand resistance and advance rational combinations

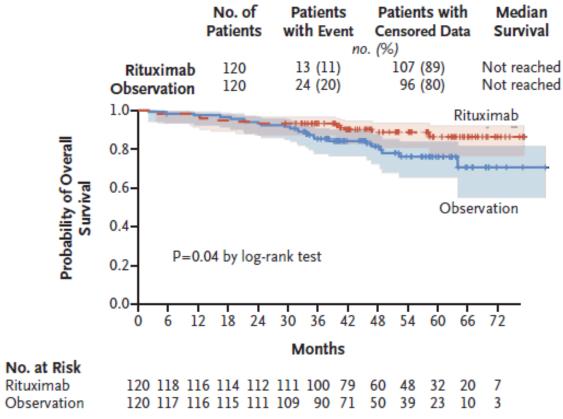



#### **MCL** "standard" initial treatment options



Weill Cornell Medicine

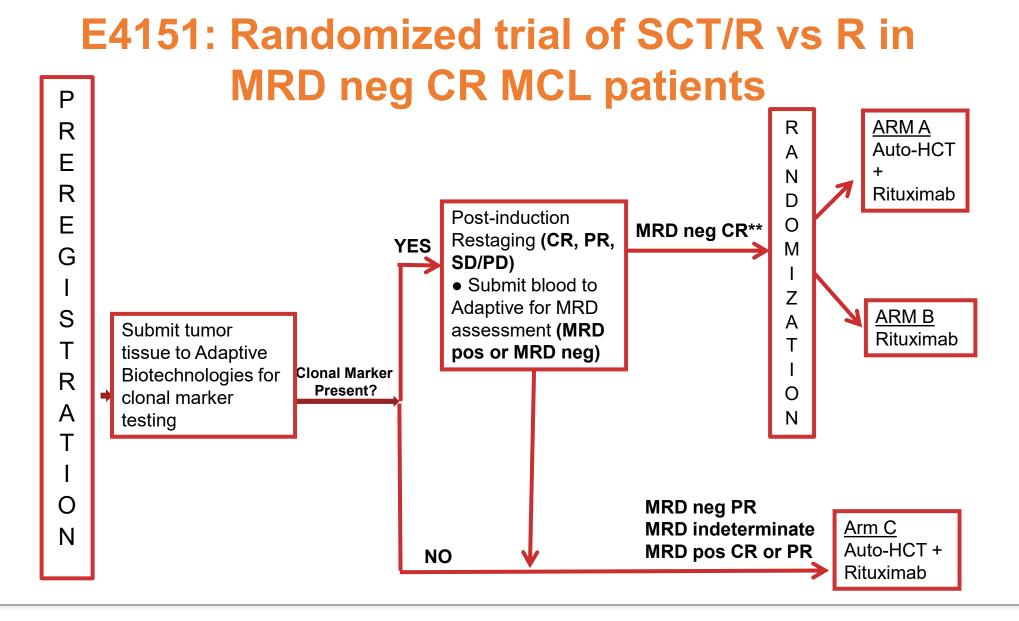
#### E1411: Randomized Phase 2 Intergroup Trial: Initial Therapy of Mantle Cell Lymphoma




Weill Cornell Medicine

- NewYork-Presbyterian

#### Maintenance Rituximab after AuSCT in Mantle Cell Lymphoma


C Overall Survival



Le Gouill et al; NEJM 377;13:1250-60, 2017



- NewYork-Presbyterian



Weill Cornell Medicine

- NewYork-Presbyterian

# Key take home points for aggressive• DLBCL

- Modifications to R-CHOP currently based on clinical and pathologic features (not COO)
- CAR-T cell rx available, undergoing further optimization
- T cell
  - CD30-directed therapy of value upfront and relapse
- MCL
  - Maintenance rituximab, ? role of MRD-directed therapy
  - BTK inhibitors in relapse

