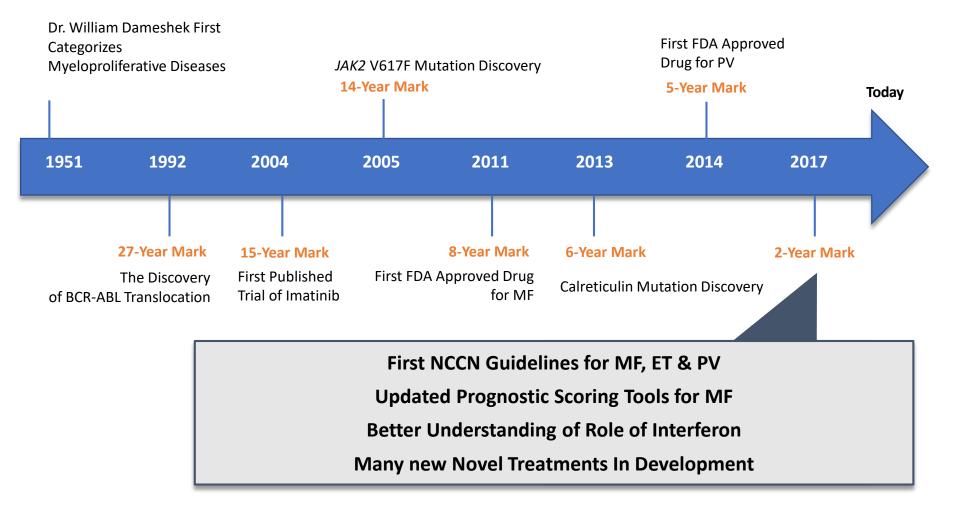
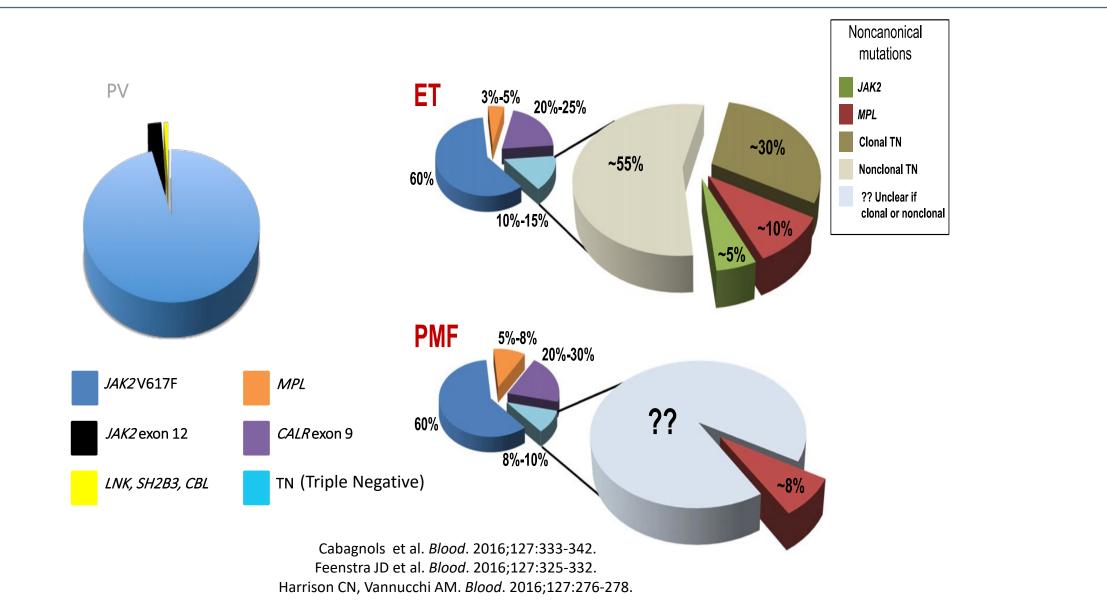
Practical Considerations in the **Treatment Myeloproliferative Neoplasms: Prognostication and Current Treatment**

Indy Hematology

Angela Fleischman MD PhD


UC Irvine

March 9, 2019


Disclosures: Angela Fleischman

• Incyte – speaker's bureau

2019 In Perspective for Myeloproliferative Neoplasms (MPNs)

The Molecular Anatomy of MPNs: Few Patients Without an Evident Clone

MPN Clinical Oral Abstracts: American Society of Hematology (ASH) 2018 Prognostication in MPN

Sunday	Мог	nday		
A352. Updated Results of Phase 2 Study of Ruxolitinib in Combination with 5-Azacitidine in Patients with Myelofibrosis	A689. Comprehensive Clinical-Molecular Transplant Risk Model for Myelofibrosis Undergoing Allogeneic Stem Cell Transplantation	A577. Randomized Trial of Pegylated Interferon Alfa-2a Versus HU Therapy for the Treatment of High Risk PV and ET		
A350. Phase 2 Study of Ruxolitinib in Patients with Chronic Neutrophilic Leukemia or Atypical Chronic Myeloid Leukemia	A581. Ruxopeg, a Multi-Center Bayesian Phase 1/2 Adaptive Randomized Trial of the Combination of Ruxolitinib and Pegylated Interferon Alpha 2a in Patients with MPN-Associated MF	A688. Alisertib (MLN8237), an Oral Selective Inhibitor of Aurora Kinase a, Has Clinical Activity and Restores GATA1 Expression in Patients with Myelofibrosis		
A354. Safety and Efficacy of Combined Ruxolitinib and Thalidomide in Patients with Myelofibrosis: Initial Results of a Phase II Study	A685. Imetelstat Is Effective Treatment for Patients with Int-2 or High-Risk MF Who Have Relapsed on or Are Refractory to JAK Inhibitor Therapy: Results of a Phase 2 Randomized Study of Two Dose Levels	A687. LCL161, an Oral Smac Mimetic/IAP Antagonist for Patients with Myelofibrosis (MF): Novel Translational Findings Among Long-Term Responders in a Phase 2 Clinical Trial		
A349. A New Prognostic Score for Advanced SM Based on Clinical and Genetic Characteristics of 210 Consecutive Patients	A686. PRM-151 in Myelofibrosis: Efficacy and Safety in an Open Label Extension Study	A580. Long-Term Efficacy and Safety of Recombinant Interferon Alpha-2 Vs. HU in PV: Preliminary Results from the Three-Year Analysis of the Daliah Trial - a Randomized Controlled Phase III Clinical Trial		
A353. Phase 2 Study of the Safety and Efficacy of INCB050465, a Selective PI3K Inhibitor, in Combination with Ruxolitinib in Patients with MF		A578. Mutation-Enhanced International Prognostic Systems for Essential Thrombocythemia (MIPSS-ET) and Polycythemia Vera (MIPSS-PV)		

IPSS and DIPSS Scoring System for MF

International Pro	ognostic S At diagi	coring Sys	stem (IPSS)		: Internatio treatment	onal Prognos	tic Scoring System
IPSS risk and survival ¹			DIPSS risk and survival ⁶				
	Risk category	Number of risk factors	Median survival, years	Risk category	Number of risk factors	Median survival, years	
	Low	0	11.3	Low	0	Not Reached	
	Intermediate-1	1	7.9	Intermediate-1	1–2	14.2	
	Intermediate-2	2	4.0	Intermediate-2	3–4	4	
	High	≥3	2.3	High	5–6	1.5	

- Age >65 years
- Constitutional symptoms
- Hemoglobin <10 g/dL
- WBC count >25 × $10^{9}/L$
- Blood blasts ≥1%

1 point each 2 points for Hgb <10g/dL in DIPSS

Multiple Prognostic Scoring Systems in MF Utilizing Karyotype and Genetic Data

Leukemia

Article | OPEN | Published: 23 March 2018

Chronic myeloproliferative neoplasms

GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis

Ayalew Tefferi 🔀 Paola Guglielmelli, Maura Nicolosi, Francesco Mannelli, Mythri Mudireddy, Niccolo Bartalucci, Christy M. Finke, Terra L. Lasho, Curtis A. Hanson, Rhett P. Ketterling, Kebede H. Begna, Naseema Gangat, Animesh Pardanani & Alessandro M. Vannucchi

Leukemia **32**, 1631–1642 (2018) | Download Citation 🛓

GIPSS is based exclusively on mutations and karyotype.

Journal of Clinical Oncology®

An American Society of Clinical Offcology Journal

Enter words / phrases / DOI / ISBN / authors / keywords / etc.

Newest Articles	Issues	Browse By Topic	Special Content	Authors	Subscribers			
CORRESPONDENCE								
Enhanced I	MIPSS70+ Version 2.0: Mutation and Karyotype- Enhanced International Prognostic Scoring System for Primary Myelofibrosis							

Ayalew Tefferi ^{CCI}, Paola Guglielmelli, Terra L. Lasho, Naseema Gangat, Rhett P. Ketterling <u>Animesh Pardanani</u>, and ...

MIPSS70+ version 2.0 utilizes both genetic and clinical risk factors. MIPSS70+ version 2.0 requires an online score calculator (http://www.mipss70score.it)

http://www.mipss70score.it/

#	Question	Answer
1	Anemia (hemoglobin <100g/L)	● Yes ● No
2	Leucocytosis >25x10°/L	Yes No
3	Thrombocytopenia (platelet count <100x10º/L)	Yes No
4	Peripheral blood blast count ≥2%	Ves No
5	Bone marrow fibrosis grade ≥2	Yes
6	Constitutional symptoms	🔍 Yes 🔍 No
7	Absence of CALR type 1/like mutation	🔍 Yes 🔍 No
8	HMR* category	🔍 Yes 🔍 No
9	≥2 HMR mutated genes	© Yes ◎ No
10	Unfavorable karyotype**	🔍 Yes 🔍 No 🔍 Not available

Score	Result
MIPSS70	
MIPSS70-plus	

* presence of at least one mutated gene among ASXL1, EZH2, SRSF2, IDH1/2

— Vannucchi AM, Lasho TL, Guglielmelli P, et al: Mutations and prognosis in primary myelofibrosis. Leukemia 27:1861-9, 2013

** indicates any abnormal karyotype other than normal karyotype or sole abnormalities of 20q-, 13q-, +9, chromosome 1 translocation/duplication, -Y or sex chromosome abnormality other than -Y
— Tefferi A et al. Revised cytogenetic risk stratification in primary myelofibrasis. 2017; under submission.

GIPSS features four and MIPSS70+ *version 2.0* five risk categories.

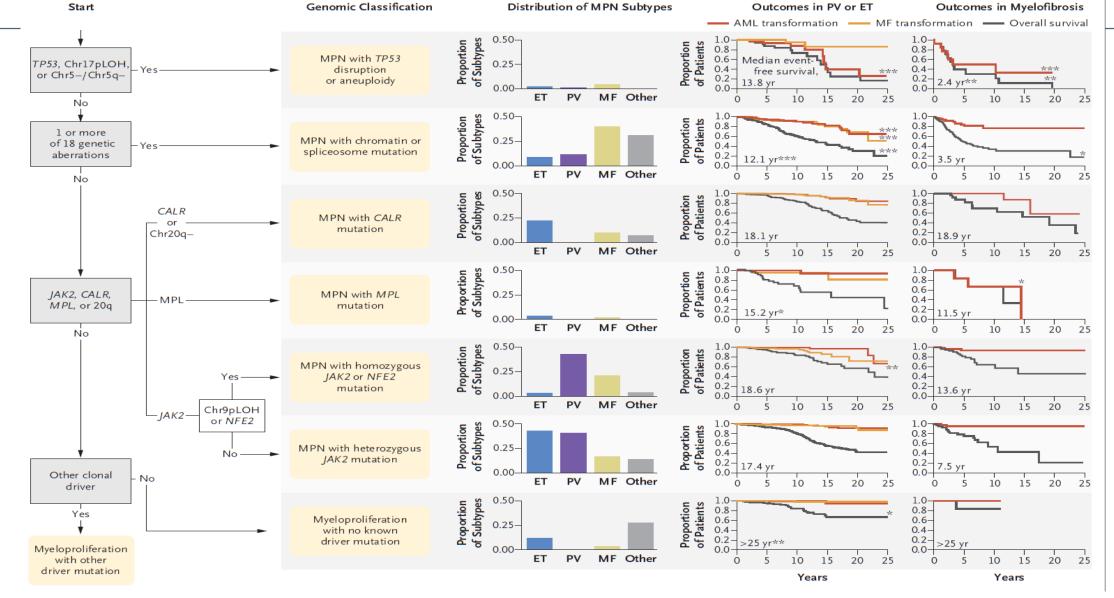
What about prognostic scoring in PV/ET?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Classification and Personalized Prognosis in Myeloproliferative Neoplasms

J. Grinfeld, J. Nangalia, E.J. Baxter, D.C. Wedge, N. Angelopoulos, R. Cantrill,
A.L. Godfrey, E. Papaemmanuil, G. Gundem, C. MacLean, J. Cook, L. O'Neil,
S. O'Meara, J.W. Teague, A.P. Butler, C.E. Massie, N. Williams, F.L. Nice,
C.L. Andersen, H.C. Hasselbalch, P. Guglielmelli, M.F. McMullin,
A.M. Vannucchi, C.N. Harrison, M. Gerstung, A.R. Green, and P.J. Campbell


N ENGLJ MED 379;15 NEJM.ORG OCTOBER 11, 2018

Cohort of 2035 patients

- 1321 patients with ET
- 356 with PV
- 309 with MF
- 49 with other MPN

- Sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes.
- Developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients.

Genomic Subgroups in MPN and Phenotypic Characteristics

Grinfeld et al, NEJM 2018

https://cancer.sanger.ac.uk/mpn-multistage/

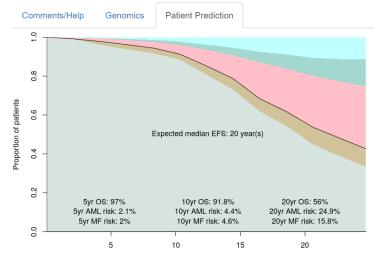
-

-

MPN Personalised Risk Calculator

	rombocytosis (n=1244)	
e existin	g or new patient data	
nput new p	tient data	
	w Patient Data for new patient. Unknown data will be imputed from avai pols	lable variables.
Haemogloble	(91)	

Commentu/Help Genomics Patient Prediction This application is based on data and prognostic models from Grinfeld and Nangalia et al. 2018 The Genomics tab allows the user to view the frequency of mutations(s) across MPN subtypes. Alternatively, to generate individual patient predictions, first select the diagnosis of interest: ET, PV, MF or other (MPNu, MDS/MPN overlap etc) Then choose between: • • inputing variables for a new or hypothetical patient by manually inputing variables, or • • inputing variables for a new or hypothetical patient by manually inputing variables, or • • inputing variables for a new or hypothetical patient by downloading, completing and uploading a civ template file • The output is viewed on the Patient Prediction tab. • This calculator is intended as an adjunct to the paper and for research purposes only. • It has not been prospectively validated and predictions derived from it should be used with caution. • Data regarding the accuracy of the model are provided in the paper. In general, predictions are accurate in approximately 80% of cases

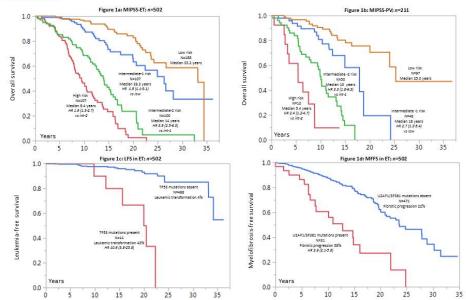

Outcome predictions are from diagnosis and uses the risk associated with variables from time of diagnosis. If time of genomic sampling is post diagnosis then we suggest adjusting patient age to time of genomic sampling, and to use this as the starting time for predictions.

Shiny implementation - Jacob Grinfeld (ig738@cam.ac.uk) CoxHD package and multistate models - Moritz Gerstung, with additional work by Rob Cantrill and Jacob Grinfeld. Last updats: July 2016

SH2B3	KRAS	PTPN11	CUX1
Present	Present	Present	Present
Absent	Absent	Absent	Absent
Unknown	Unknown	Unknown	Unknown
SETBP1	KIT	BCOR	IDH1
Present	Present	Present	Present
Absent	Absent	Absent	Absent
Unknown	Unknown	Unknown	Unknown
RUNX1	GATA2	PHF6	FLT3
Present	Present	 Present 	Present

Calculate Risk from Selected Variables

Calculate Risk from Selected Variables

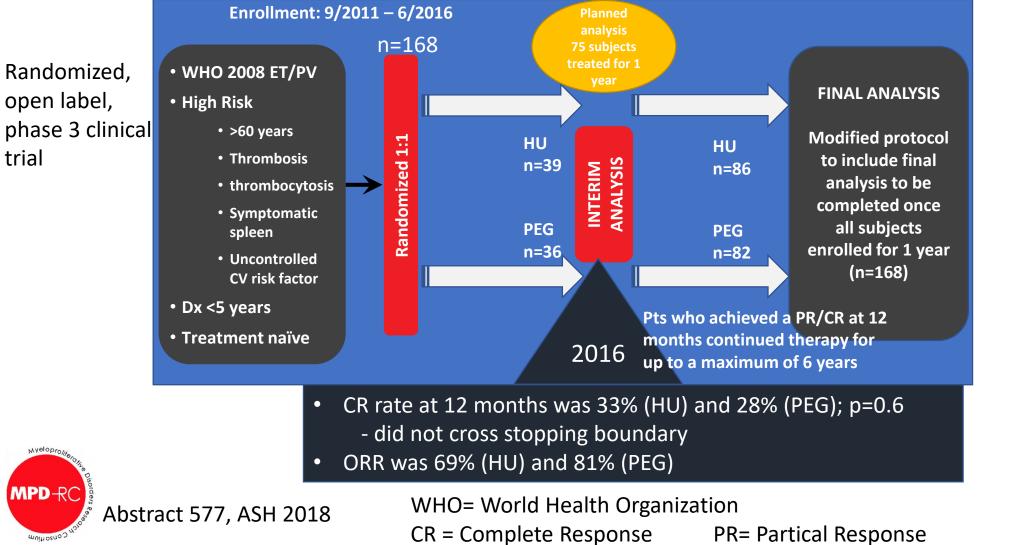

Time from diagnosis (years)

Mutation-Enhanced International Prognostic Systems for Essential Thrombocythemia (MIPSS-ET) and Polycythemia Vera (MIPSS-PV) Ayalew Tefferi et al

- Spliceosome mutation information enhances survival prediction in ET and PV and identifies those at risk for fibrotic progression
- *TP53* mutations predict leukemic transformation in ET

Figure 1: Mutation-enhanced international prognostic scoring systems in essential thrombocythemia (MIPSS-ET; figure 1a) and polycythemia vera (MIPSS-PV; figure 1b). Analysis was based on a combined dataset of 713 cases, informative for all listed risk factors, from the Mayo Clinic, USA and University of Florence, Italy. Impact of mutations on leukemia-free figure 1a) and myelolibrois-free (figure 1d) survival in ET is also outlined.

ET survival risk factors: SRSF2/SF381 mutations (2 points), age >60 years (4 points) and male sex (1 point) – low "O" points; intermediate-1 "1-2 points"; intermediate-2 "3-4 points"; high "25" points PV survival risk factors: SRSF2/Matations (2 points), age >60 years (2 points), leukocyte count 211 x 10"/ (1 point) and abnormal karyotype (1 point) – low "O1" points; intermediate-2 "3" points; high "24" points



MPN Clinical Oral Abstracts: American Society of Hematology (ASH) 2018 Interferon-alpha in MPN

Sunday	Мо	nday
A352. Updated Results of Phase 2 Study of Ruxolitinib in Combination with 5-Azacitidine in Patients with Myelofibrosis	A689. Comprehensive Clinical-Molecular Transplant Risk Model for Myelofibrosis Undergoing Allogeneic Stem Cell Transplantation	A577. Randomized Trial of Pegylated Interferon Alfa-2a Versus HU Therapy for the Treatment of High Risk PV and ET
A350. Phase 2 Study of Ruxolitinib in Patients with Chronic Neutrophilic Leukemia or Atypical Chronic Myeloid Leukemia	A581. Ruxopeg, a Multi-Center Bayesian Phase 1/2 Adaptive Randomized Trial of the Combination of Ruxolitinib and Pegylated Interferon Alpha 2a in Patients with MPN-Associated MF	A688. Alisertib (MLN8237), an Oral Selective Inhibitor of Aurora Kinase a, Has Clinical Activity and Restores GATA1 Expression in Patients with Myelofibrosis
A354. Safety and Efficacy of Combined Ruxolitinib and Thalidomide in Patients with Myelofibrosis: Initial Results of a Phase II Study	A685. Imetelstat Is Effective Treatment for Patients with Int-2 or High-Risk MF Who Have Relapsed on or Are Refractory to JAK Inhibitor Therapy: Results of a Phase 2 Randomized Study of Two Dose Levels	A687. LCL161, an Oral Smac Mimetic/IAP Antagonist for Patients with Myelofibrosis (MF): Novel Translational Findings Among Long-Term Responders in a Phase 2 Clinical Trial
A349. A New Prognostic Score for Advanced SM Based on Clinical and Genetic Characteristics of 210 Consecutive Patients	A686. PRM-151 in Myelofibrosis: Efficacy and Safety in an Open Label Extension Study	A580. Long-Term Efficacy and Safety of Recombinant Interferon Alpha-2 Vs. HU in PV: Preliminary Results from the Three-Year Analysis of the Daliah Trial - a Randomized Controlled Phase III Clinical Trial
A353. Phase 2 Study of the Safety and Efficacy of INCB050465, a Selective PI3K Inhibitor, in Combination with Ruxolitinib in Patients with MF		A578. Mutation-Enhanced International Prognostic Systems for Essential Thrombocythemia (MIPSS-ET) and Polycythemia Vera (MIPSS-PV)

Results of the Myeloproliferative Neoplasms - Research Consortium (MPN-RC) 112 Randomized Trial of Pegylated Interferon Alfa-2a (PEG) Versus Hydroxyurea (HU) Therapy for the Treatment of High Risk PV and ET

John Mascarenhas et al

Primary objective

 Compare the CR rate following HU vs. PEG at 12 months with 3 month confirmation.

Secondary objectives

- Toxicity and tolerability PR rates
- Incidence of specific predefined Toxicities and tolerance to therapy
- Impact of therapy on key biomarkers
- Survival and incidence of myelodysplastic syndrome, myelofibrosis, or leukemic transformation
- Incidence of major cardiovascular events.

CRITERIA FOR RESPONSE IN by Modified ELN criteria

EΤ

Complete response (CR)

- Platelet count ≤ 400 x 10^9 /L AND
- No disease-related symptoms* AND
- Normal spleen size on imaging AND
- WBC $\leq 10 \times 10^9$ /L

Partial response (PR)

In patients who do not meet criteria for complete response Platelet count $\leq 600 \times 10^9$ /L OR >50% reduction from baseline

No response (NR)

Any response that does not satisfy partial criteria

PV

Complete response (CR)

- Hematocrit \leq 0.45 without phlebotomy AND
- Platelet count \leq 400 x 10⁹/L AND
- WBC \leq 10 x 10⁹/L AND
- Normal spleen size on imaging AND
- No disease related symptoms*

Partial response (PR)

In patients who do not meet criteria for complete

response,

Hematocrit ≤45% without phlebotomy OR

response in any 3 of the remaining 4 criteria

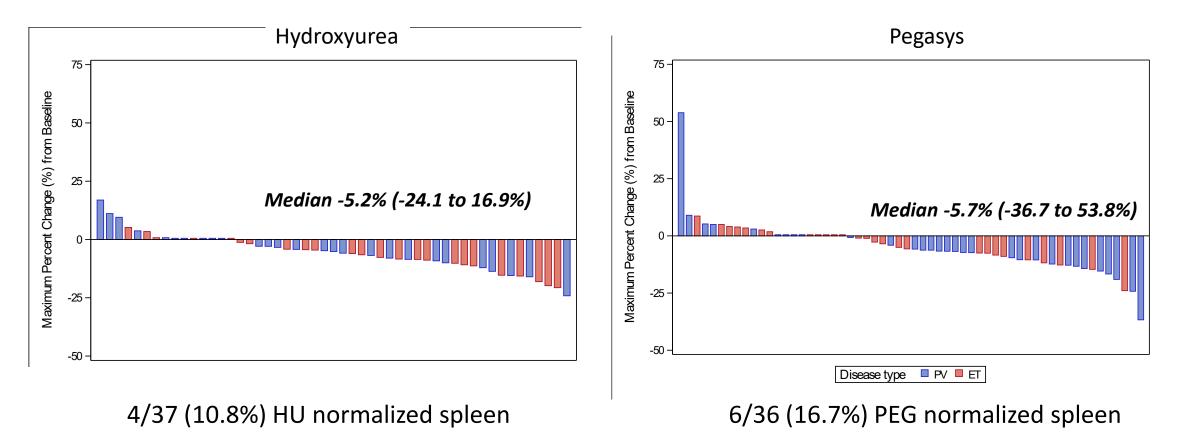
No response (NR)

Any response that does not satisfy partial response

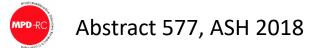
*Disease-related symptoms: microvascular disturbances, pruritus, headache

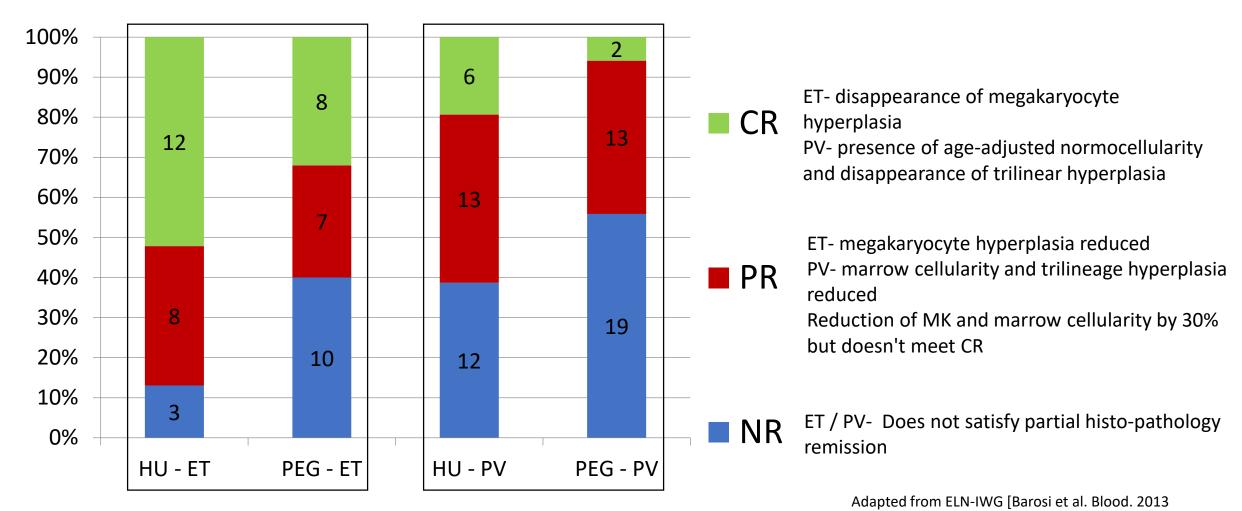
MPN-RC 112 Response: 12 MONTHS

		IU): 86 pts -, ET: 42		168 pts rando Polycythemia Ve ential Thrombocyt	era: 87		(PEG): 82 pts 43, ET: 39		
		,	R	esponse at 12	months				
	ET	PV	Totai			ET	PV	Total	
CR	19 (45.2%)	13 (29.5%) (32 (37.2%)	ORR=	CR	17 (43.6%)	12 (27.9%)	29 (35.4%)	ORR=
PR	11 (26.2%)	17 (38.6%) (28 (32.6%)	69.8%	PR	10 (25.6%)	25 (58.1%)	35 (42.7%)	78.0%
NR	1	2	3	75.0% accounting	NR	3	2	5	
UE*	11 (3 **)	12 (3 **)	23 <mark>(6 **</mark>)	for withdrawals	UE*	9	4	13	
TOTAL	42	44	86		TOTAL	39	43	82	


24 Month Response Data

• When considering all 106 patients who were eligible to receive treatment for 24 months (due to study closure)


	HU (n=54)			PEG (n=52)			
				р=	0.22		
	ET	PV	Total	ET	PV	Tota	
CR	6 (25%)	5 (16.7%)	11 (20.4%)	9 (37.5%)	7 (25%)	15 (28.8%)	
PR	2 (8%)	9 (30%)	11 (2 0 .4%)	5 <u>p=0.0</u> (20.8%)	<u>410 (35.7%)</u>	16 (30.8%)	
ORR	8/24 (33.3%)	14/30 (46.7%)	22 /54 (40.7%)	14/24 (58.3%)	17/28 (60.7%)	31/52 (59.6%)	


Spleen reduction by ultrasound

In patients with spleen \geq 13 cm at baseline:

Bone marrow response by Treatment Arm and Disease type Best Response (n=113)

HU 18/54 (33.3%) vs. 10/59 (16.9%) for PEG, p=0.052

Abstract 577, ASH 2018

6;121(23):4778-81]

Summary of Grade 3/4 Adverse Events by Disease Strata

- Adverse event of Grade 3 or higher (any attribution): 60 pts (37.0%)
 - HU: 22 (27.5%)
 - PEG: 38 (46.3%)

	HU	PEG	Total
ET	12 (30.8%)	20 (51.3%)	32 (41.0%)
PV	10 (24.4%)	18 (41.9%)	28 (33.3%)
	22 (27.5%)	38 (46.3%)	60 (37.0%)

Adverse event of Grade 4 or higher: 6 pts (3.7%)
 HU: n=4 (hyperuricemia, lung cancer, thrombocytopenia, sepsis)
 PEG: n=2 (hyperuricemia, dyspnea)

Conclusions

- Conducting independent randomized studies in MPN is challenging but necessary to establish optimal therapy
- No difference in hematologic CR between the two treatment arms at 12 and 24 months
- Toxicity is not a major reason for discontinuation in either arm
- BM pathologic responses appear more frequent in ET versus PV and no difference between treatment arms
- Meaningful differences in response and toxicity between these two agents over time were not observed and both agents appear to be effective therapies for treatment naïve ET/PV patients

Impact on MPN Symptoms and Quality of Life of Front Line Pegylated Interferon Alpha-2a Vs. Hydroxyurea in High Risk Polycythemia Vera and **Essential Thrombocythemia** Ruben Mesa et al. MPN-SAF TSS mean changes from baseline during treatment

20

 On HU, pts experienced worsening QoL +/-SE) 10 -(physical, cognitive functioning. HRQoL) and some pe Suggests obtaining CHR may (inactivity, concentra have negative effects on patient

• On PEG, pts experien **Symptoms** fever, dyspnea, appetite loss and PEGrelated symptoms including flu-like symptoms, injection site irritation, blurry vision, and visual changes (all p < 0.05), but not sad mood (not corrected for antidepressants).

Change in TSS significantly differed (p=0.01) between arms:

Arm HU PEG

MPN-SAF TSS

- Increasing symptoms on HU vs PEG at 3 and 6 mo
- Lower symptom burden on HU vs PEG at 9 and 12 mos

12

Long-Term Efficacy and Safety of Recombinant Interferon Alpha-2 Vs. Hydroxyurea in Polycythemia Vera: Preliminary Results from the Three-Year Analysis of the Daliah Trial - a Randomized Controlled Phase III Clinical Trial *Trine Knudsen et al*

- Examined the difference in efficacy and safety of low-dose r-IFNα in PV patients ≤ 60 or > 60 years of age compared to HU > 60 years of age.
- 90 newly diagnosed or previously phlebotomized PV patients only
- Patients ≤ 60 years were randomized (I:I) to r-IFNα-2a (Pegasys[®]) or to r-IFNα-2b (PegIntron[®])
- Patients > 60 years were randomized (I:I:I) to either r-IFN α -2a, r-IFN α -2b or to HU
- Starting dose of r-IFN α -2a and r-IFN α -2b was 45 or 35 μ g/week
- HU dose was 500 to 2000 mg/day.

Response Rates

- Overall Response Rate (ORR)
 68% (13/19) for HU
 42% (14/33) for r-IFNα ≤ 60 years
 - 39% (13/33) for r-IFN α > 60 years
- Partial Hematologic Remission (PHR)
 53% (10/19) for HU
 9% (3/33) for r-IFNα ≤ 60 years
 9% (3/33) for r-IFNα > 60 years
- Complete Hematologic Remission (CHR)

 - 16% (3/19) for HU 33% (11/33) for r-IFN $\alpha \le 60$ years 30% (10/33) for r-IFN $\alpha > 60$ years
- Maintenance of CHR

 - 11% (2/19) for HU
 21% (7/33) for r-IFNα ≤ 60 years
 - 18% (6/33) for r-IFN α > 60 years

Abstract 580, ASH 2018

Molecular Responses

47 JAK2^{V617F} positive patients were available for molecular response analysis after 36 months of therapy

- Partial Molecular Remission (PMR)
 - 21% (4/19) of HU treated patients
 - 24% (7/29) of r-IFN α treated patients \leq 60 years
 - 18% (6/33) of r-IFNα > 60 years
- Complete Molecular Remission (CMR)
 - 7% (2/29) of the r-IFN α treated patients \leq 60 years
- Median JAK2V617F reduction from baseline
 - 38% (31-63%) for HU
 - 79% (59-92%) for r-IFN $\alpha \le 60$ years
 - 73% (49-97%) for r-IFNα > 60 years

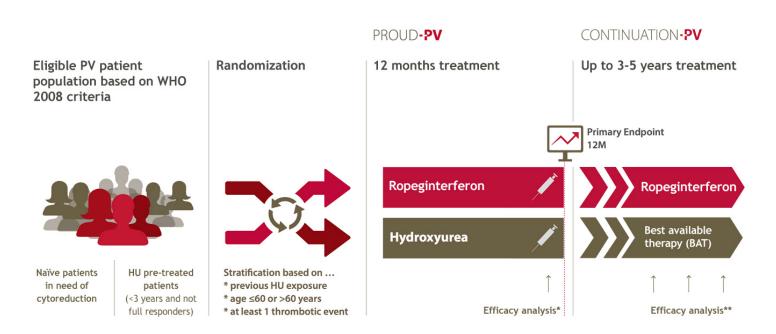
Comparable Adverse Events (AE's) HU vs PEG

Discontinuation of treatment for any reason after 36 months of therapy

- 21% (4/19) for HU
- 52% (17/33) for r-IFN $\alpha \le 60$ years
- 45% (15/33) for r-IFN α > 60 years

Toxicity related discontinuation

- 5% (1/19) for HU
- 30% (10/33) for both r-IFN $\alpha \le 60$ and > 60 years


Grade 3-4 AEs

32% (6/19) of HU treated patients 27% (9/33) in r-IFN α treated patients \leq 60 years 42% (14/33) r-IFN α treated patients > 60 years

Serious Adverse Events (SAEs) 21% (4/19) for HU 9% (3/33) for r-IFN $\alpha \le 60$ years 24% (8/33) for r-IFN $\alpha > 60$ years.

Abstract 580, ASH 2018

Evidence for Superior Efficacy and Disease Modification after Three Years of Prospective Randomized Controlled Treatment of Polycythemia Vera Patients with Ropeginterferon Alfa-2b Vs. HU/Best Available Therapy (BAT) *Heinz Gisslinger et al*

*) non-inferiority: Hematologic Response

**) benefit: durable Hematologic Response, Progression Free Survival (PFS), PV symptom relief

Primary Outcome Measures / Primary Endpoints

•Disease response rate* at 12 months

* defined as hematocrit <45% without phlebotomy (at least 3 months since last phlebotomy), platelets <400 G/L, leukocytes <10 G/L , and normal spleen size

Secondary Outcome Measures / Secondary Endpoints

- •Disease response rate at 3, 6 and 9 months
- •JAK2 allelic burden changes
- •Time to response
- Duration of response
- •Number of phlebotomies
- Blood parameters
- •Spleen size
- •Disease related symptoms
- •Adverse events
- •Protocol-specific adverse events of special interest

PROUD-PV Results

83 (Ropeg) and 70 (HU/BAT) patients completed the 36-month efficacy analysis time point

CHR

 Ropeg 70.5% vs HU/BAT 51.4% p=0.0122; RR [95% CI]: 1.38 [1.07-1.79]

CHR plus symptom improvement

 Ropeg 52.6% vs. HU/BAT 37.8%; p=0.0437; RR [95% CI]: 1.42 [1.01-2.00]

PROUD-PV Safety

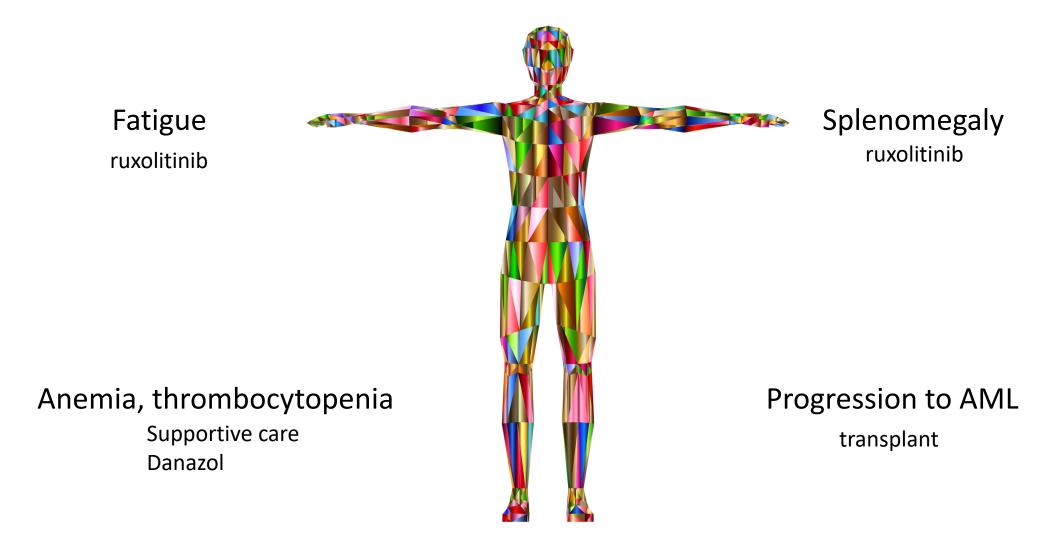
Comparable numbers of patients experienced adverse events

- 89.8% for Ropeg
- 90.6% for HU

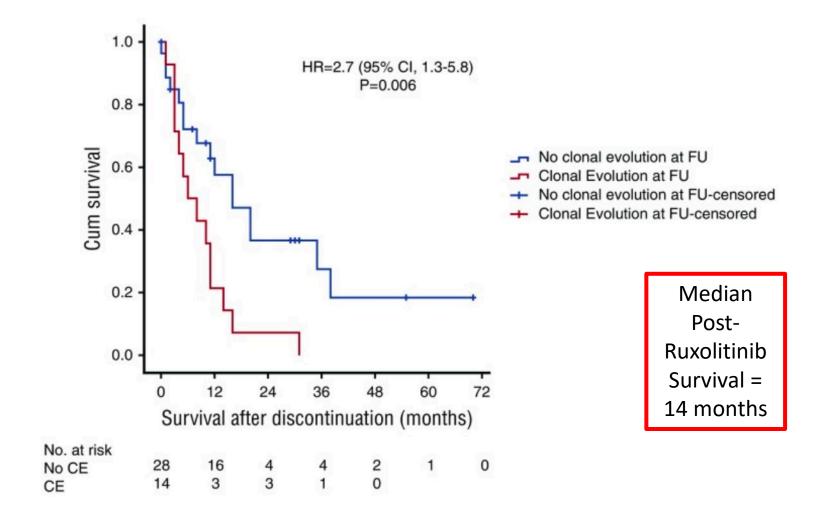
Treatment-related adverse events

- 74.8% for Ropeg
- 78.7% for HU

The most common (>10%) treatment-related adverse events anemia, thrombocytopenia and leukopenia occurred more frequently under HU, whereas GGT increase was mainly observed under Ropeg. No new safety signals appeared in the third year of treatment.


PROUD-PV molecular responses

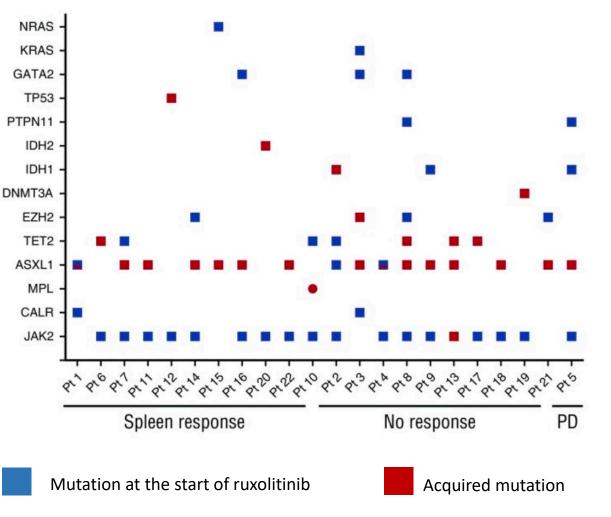
*JAK2*V617F molecular response:


- 66.0% on Ropeg vs 27.0% on HU/BAT (p<0.0001; RR [95% CI]: 2.31 [1.56-3.42])
- MR strongly correlated with CHR

Ropeg was found to reduce non-JAK2V617F mutations such as TET2 burden in some patients, HU was not

Approach to Treating Myelofibrosis

Survival After Ruxolitinib Discontinuation


Mutations During Ruxolitinib Treatment

62 paired samples

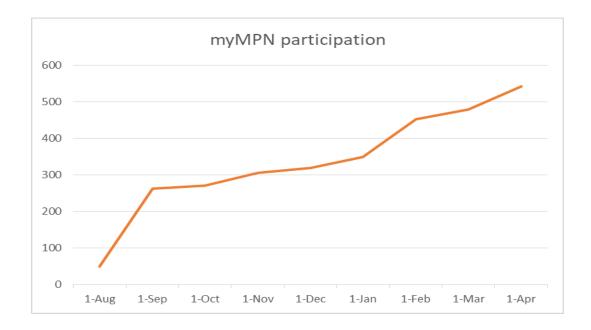
-beginning of ruxolitinib

-ruxolitinib discontination

Average time on rux: 13.1 mo

22 out of 62 acquired new mutations while on rux

-most frequent in ASXL1, TET2, EZH2, TP53


-also found 1 new MPL mutation

Blood. 2017 Aug 31; 130(9): 1125–1131.

My MPN Registry (Mobile MPN Monitoring): A Tool for People With PV, ET, or MF

- A digital hub for patients to record and anonymously share their unique MPN journey with the research community
- Registrants can access a secure online portal with a personalized dashboard; as they complete surveys listed on the dashboard, the registry will provide insights into how the user's MPN experience compares to other registry users
- All patient data is protected and only shared according to individual user privacy settings
- A place for eligible patients to connect with upcoming drug trials and research that will help increase our knowledge about PV, ET, and MF

ASH 2018. Abstract ID: #119033