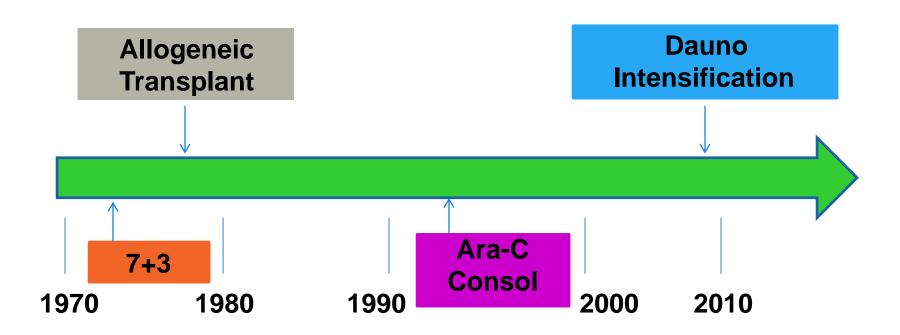
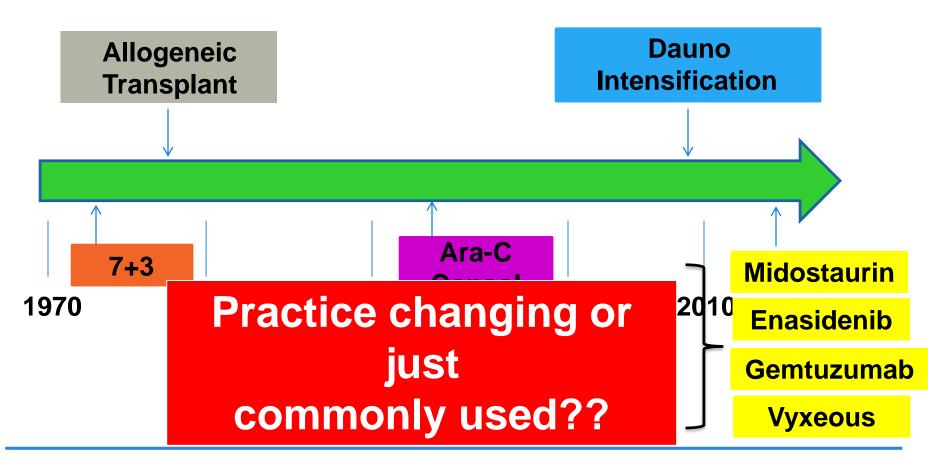


Acute Myeloid Leukemia: Targets and Curability, so Close But a Journey So Far


Martin S. Tallman, M.D.
Chief, Leukemia Service
Memorial Sloan Kettering Cancer Center
Professor of Medicine
Weill Cornell Medical College
New York, NY

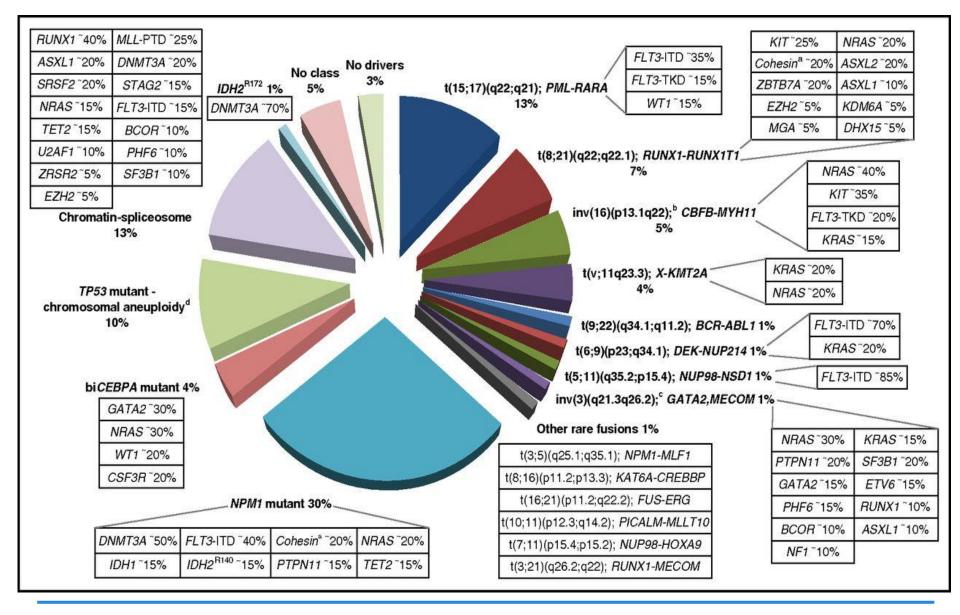
Disclosure


Principal investigator role	Cellerant, ADC Therapeutics, Orsenix, Arog, Bioline
Employee	None
Consultant	None
Major Stockholder	None
Speakers' Bureau	None
Scientific Advisory Board	Daiichi Sankyo
Research Funding	Cellerant, ADC Therapeutics, Orsenix, Arog, Bioline

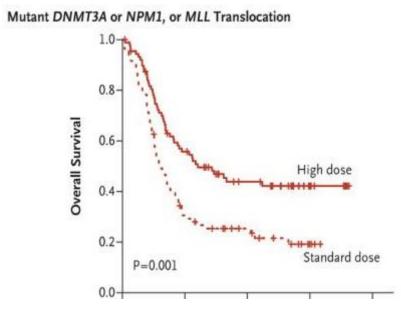
Presentation includes the following off-label drug use: Gilteritinib, Quizartinib, Crenolanib, Venetoclax, Selinexor, Tamobarotene, Entospletinib, Palbociclib, Cobimetinib, Pevonedistat, H3B-8800

Practice Changing Treatments in AML

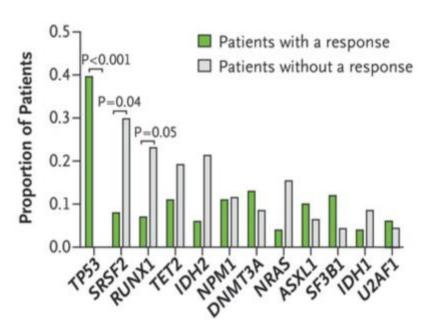
Practice Changing Treatments in AML



Thomas et al. NEJM, 1979; Mayer et al. NEJM, 1994; Fernandez et al. NEJM, 2009; Stone et al. NEJM, 2017


Acute Myeloid Leukemia State-of-the-Art 2018

- Defined by cytogenetic and molecular interactions
- Intensified induction/less intensive consolidation
- Increased importance of minimal residual disease
- Expanded availability of allogeneic transplantation
- Paradigm shift in older patients
- Incorporation of novel agents


Molecular Classes of AML and Recurrent Gene Mutations

Risk-Stratification and Prognostication of AML Informed by Mutational Profile

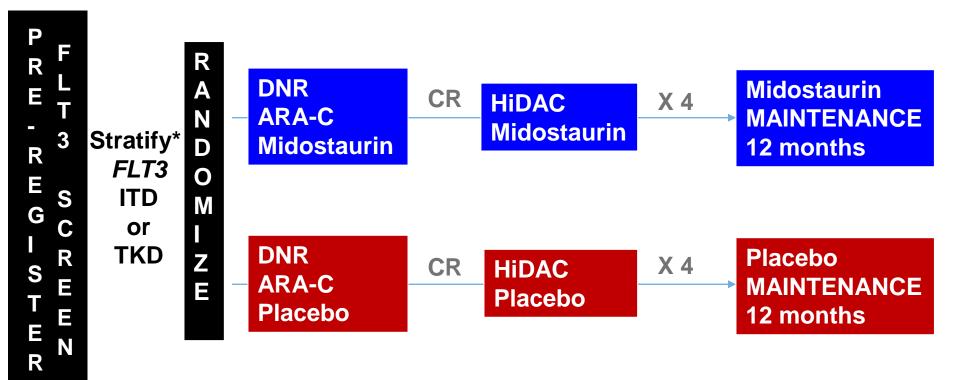
Patel et al. NEJM, 2012

Welch et al. NEJM, 2016

Mutation Patterns in Older Adults Predict Response to Chemotherapy

	Good Risk	Poor Risk
•	CR 81%: <i>NPM1</i> plus	CR 32%
	 Chromatin mutations 	U2AF1
	 Cohesin mutations 	WT1
	FLT3-TKD	Complex karyotype
	 Spliceosome mutations 	
	 RAS pathway mutations 	
	– FLT3-ITD ^{wt}	
•	DFS 46%: <i>NPM1</i> plus	DFS 2%
	– ASXL1	FLT3
	– SF 1	RUNX1
	– SMC1A	TP53, U2AF1
	– SRSF2	
•	OS 45%: <i>NPM1</i> plus	OS 4%
	 Chromatin mutations 	BCOR
	IDH2 mutation	FLT3-ITD
	– SF 1	U2AF1, WT1

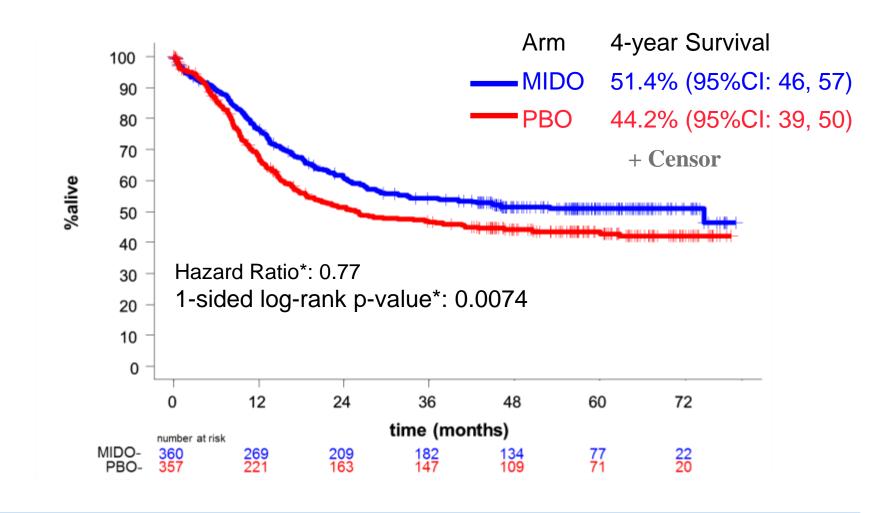
- SRSF2


t(9;11), complex karyotype

Gene Mutations Important in Everyday Practice

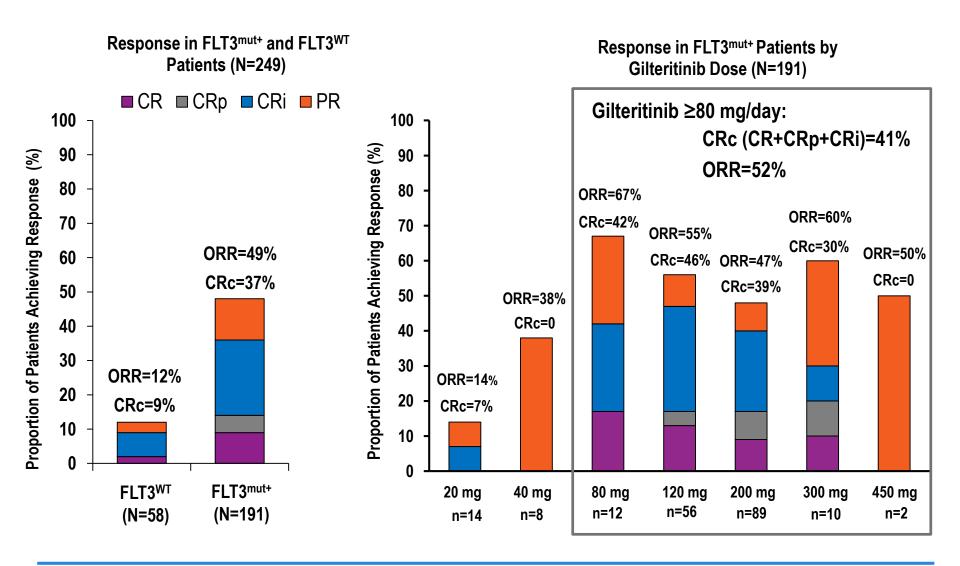
"Clinically Actionable"

<u>Gene</u>	<u>Incidence</u>	<u>Associations</u>	<u>Impact</u>
FLT3-	25%	NPM1	Unfavorable
ITD/(TKD)			
NPM1	33%	FLT3	Favorable
dCEBPlpha	8%	FLT3	Favorable
C-KIT	15%	CBF	Unfavorable [in t(8;21), but less clear in inv(16)]; ¹ D816 worse than others
IDH1 and 2	22%	NPM1	Favorable
P53	7%	t-AML, Complex	Unfavorable
		karyotype (60%) As	SH abstr 2785, 2016


RATIFY (C10603) Trial Schema

Stratification: TKD; ITD with allelic ratio <0.7 'vs' ≥0.7

Overall Survival


23% reduced risk of death in the Mido arm

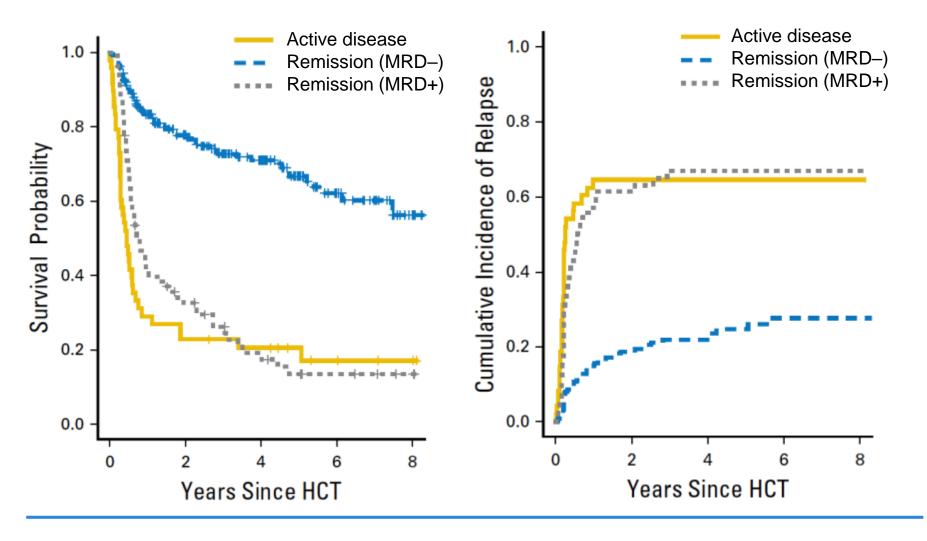
Midostaurin in AML

- First agent with (sustained) regulatory approval in 40 years
- BUT, will it be practice changing? Will it have a true (clinically meaningful) impact?
 - OS increase only 7%
 - Benefit more in FLT3-TKD than ITD
 - Which phase of treatment important?
 - Among least potent FLT3 inhibitors
 - Role in maintenance unclear¹
 - Beneficial effect of Midostaurin most pronounced in *NPM1*^{wt}/*FLT3*^{high} *group*²

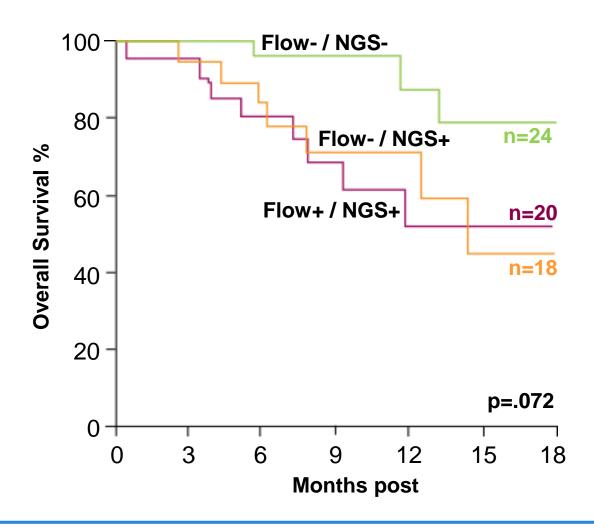
Antileukemic Activity of Gilteritinib

Second Generation FLT3 Inhibitors

- Gilteritinib: inhibits FLT3-ITD and D835
 - rando trial vs Midostaurin + induction chemo
 - vs placebo as maint <u>posttransplant</u> (MORPHO)
 - vs chemo in <u>rel/refr</u> (registration)
 - with 7+3 and HiDAC, CRc 90% in FLT3 pos¹
- Quizartinib: most potent FLT3 inhibitor
 - rando trial vs placebo + <u>induction</u> chemo (QuANTUM-First)
 - vs salvage chemo in R/R (QuANTUM-R)
 - with AZA or LoDAC in R/R, high ORR²
- Crenolanib: inhibits FLT3-ITD, D835, PDGFa and b
 - with induction chemo CR 83%, 72% with 1 cycle³


FLT3 Mutations in AML

- Frequent in normal cytogenetic AML
- Associated with high WBC, packed marrow
- ITD associated with high relapse rate, poor OS; TKD less so
- Most common in APL, but appears not prognostic
- Resistance mechanisms include point mutations, high levels of *FLT3* ligand

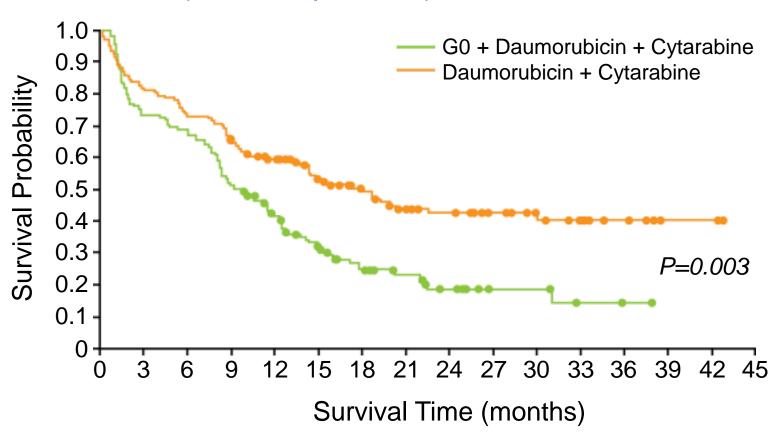

Minimal Residual Disease

- Detected by increasingly sensitive techniques (immunophenotyping, PCR, sequencing)
- Most studied in patients with NPM1 mutation and CBF AMLs^{1,2}
- Persistence of somatic mutations with VAF>1% in CR assoc.
 with increased risk of death and relapse³
- Complex due to genetic heterogeneity and multiple subclones
- Has prognostic implications following chemotherapy and before allogeneic transplantation
- Will rapidly become incorporated in routine clinical practice

Equivalent Post-Transplant Outcomes for Pre-transplant AML MRD (by FC) and Active AML

Flow Cytometry and NGS in AML Assessment Pre-allogeneic Transplant

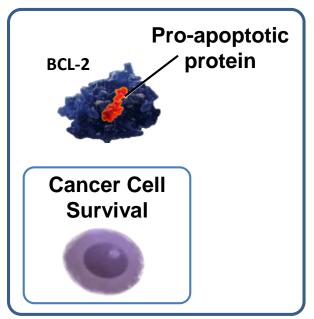
Limitations of MRD Detection in AML

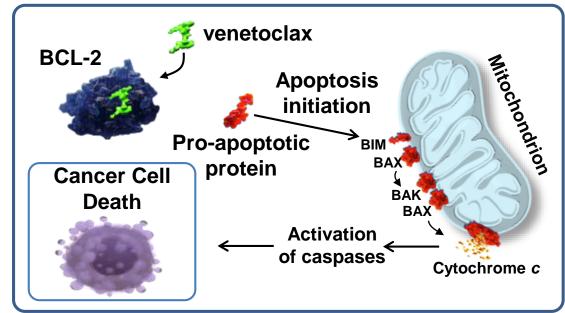

- Methodologies not standardized
- Thresholds for defining MRD vary
- Heterogeneity of the disease
- Clonal hematopoiesis
- Variable distribution of leukemia cells after treatment
- Lack of effective agents to target MRD
- Randomized trials needed to show benefit of intervention

Agents With Regulatory Approval (or Breakthrough Designation)

Agent	Target	Population	Setting
Midostaurin	FLT3	FLT3-ITD or TKD	Treatment naïve w chemo in induc and consol
Gemtuzumab ozogamicin	CD33	CBF and possibly intermed-risk	Treatment naïve CD33+ adults w chemo or single agent or Rel/refr adults and peds
CPX-351	Cytotoxic	t-AML or AML with MRC	Treatment naïve with t-AML or AML with MRC
Enasidenib	IDH2	IDH mutated	Rel/refr AML w m/DH2
Venetoxlax	BCL-2	Elderly adults	Treatment naïve (with LoDAC)

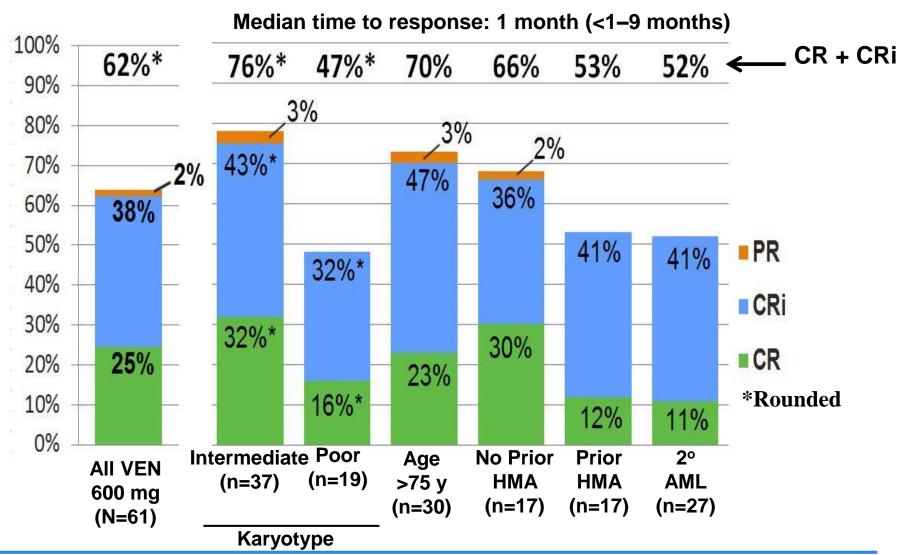
Gemtuzumab Ozogamicin (Fractionated) in Newly Diagnosed AML Ages 50-70


Kaplan-Meier Plot of Event-Free Survival (mITT Population) ALFA-0701 Trial

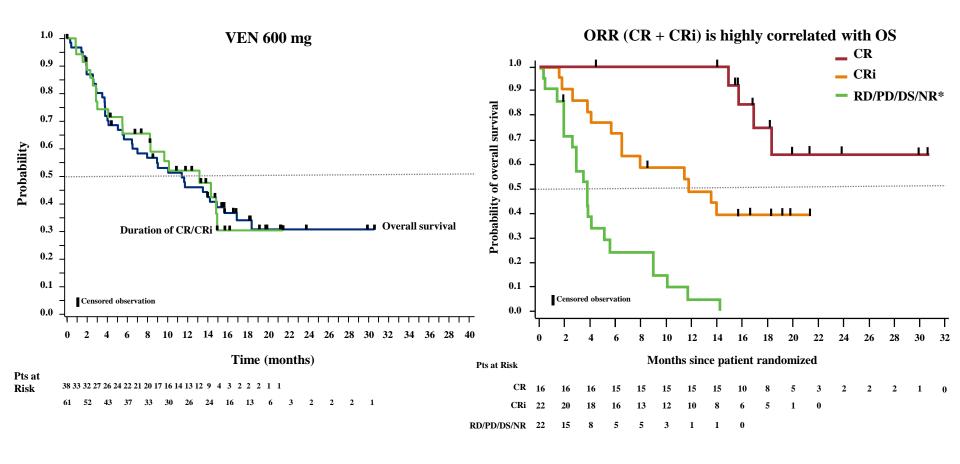

Gemtuzumab Ozogamicin: Reapproved

- First ab-drug conjugate approved for human use-2000
- Withdrawn, lack of OS benefit and toxicity-2010
- Reapproved for adults with new AML and pts > age 2 with R/R disease-2017
- CD33 single nucleotide polymorphism rs121459419 C—T may be biomarker for response
- OS benefit in fav-risk and trend in intermed-risk
- Risk of SOS/VOD 8% in 146 pts (69 with prophylaxis: heparin or ursodiol or defibrotide) after allograft
- Expression of CD33 blast expression impacts outcome

Venetoclax: Promotes Apoptosis Through Selective Inhibition of BCL-2



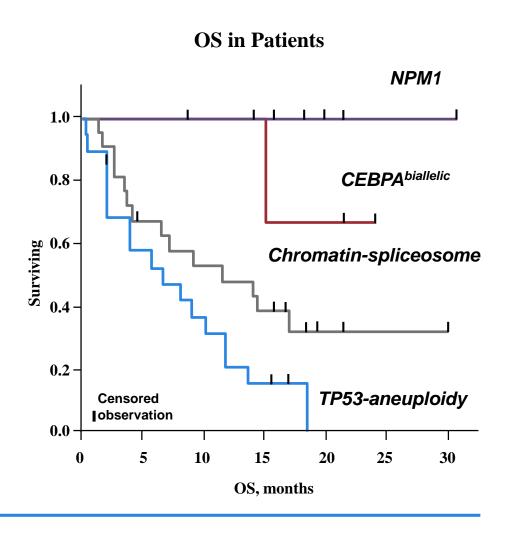
BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins.¹⁻³



Venetoclax binds selectively to BCL-2, freeing pro-apoptotic proteins that initiate programmed cell death (apoptosis).⁴⁻⁶

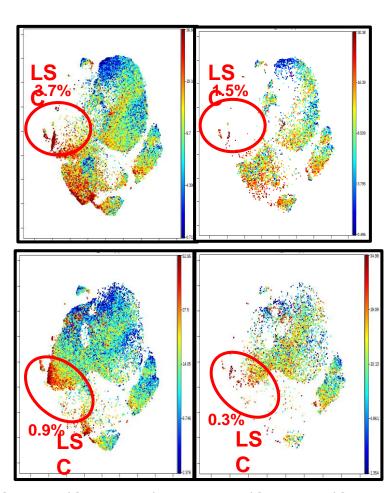
CR/CRi Rates LoDAC + Venetoclax

DOR, Survival, and Survival by Response

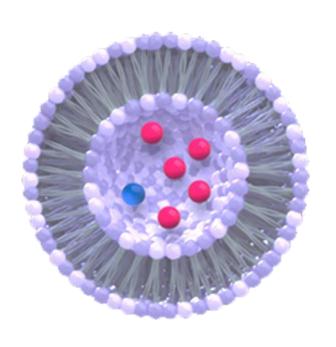


Outcomes According to Molecular Drivers of AML

Cytogenetics	ORR (CR + CRi)	Median OS,
Intermediate risk n = 37	28 (76%)	15.7
Adverse risk n = 19	9 (47%)	5.7

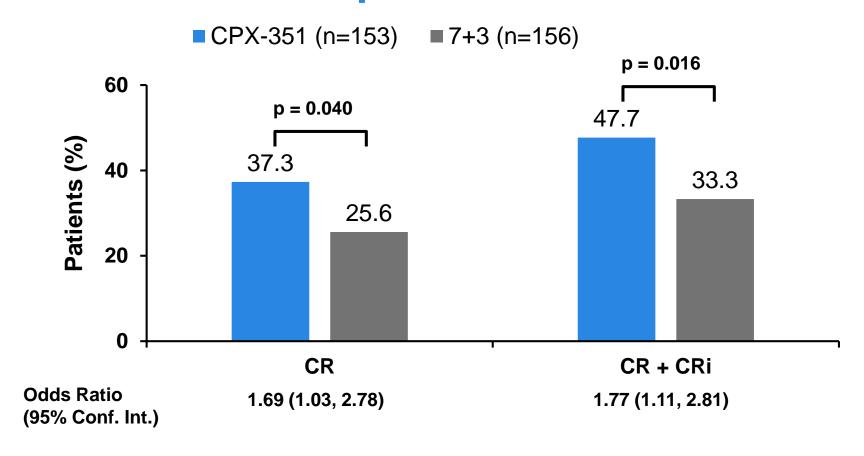

Molecular Subgroups

NPM1 n = 7*	7 (100%)	NR
CEBPA ^{biallelic} n = 3	3 (100%)	NR
Chromatin- spliceosome n = 22	15 (68%)	11.4
TP53- aneuploidy n = 20	10 (50%)	6.5

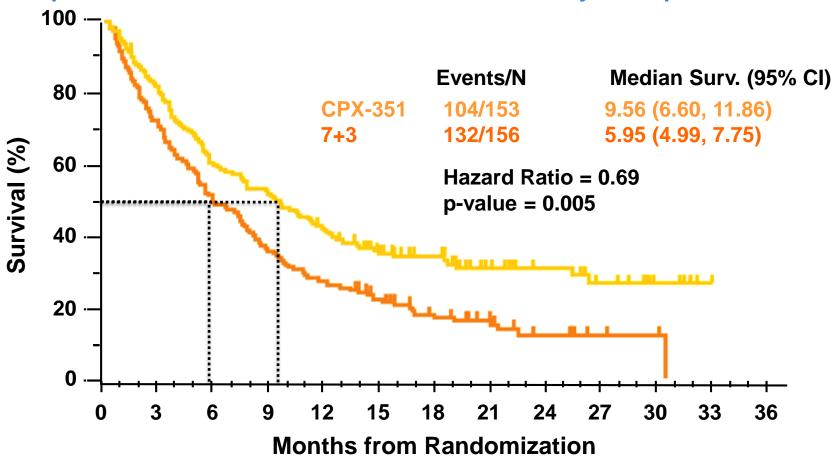

Venetoclax and Azacitidine Results in Rapid Eradication of Blasts and LSCs

	Peripheral Blood Blasts (%)				
	Pre- Treatment	24 Hours Post- Treatment	72 Hours Post- Treatment		
Pt 1	71%	50%	16%		
Pt 2	81%	72%	34%		

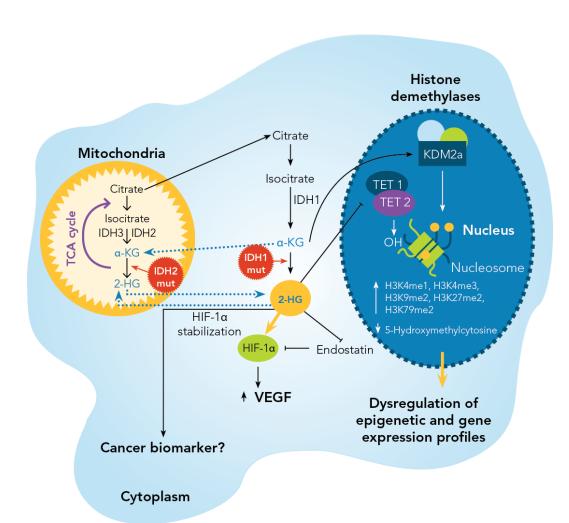
LSCs defined as Lin-/CD34+/CD123+/HLA-DR+/CD117+/CD33


CPX-351 Uses a Nano-Scale Delivery Complex

- 100 nm bilamellar liposomes
- 5:1 molar ratio of cytarabine to daunorubicin
- 1 unit = 1.0 mg cytarabine plus 0.44 mg daunorubicin


US FDA Approved August 2017 for t-AML and AML with MRC

Patients Treated With CPX-351 Exhibited Statistically Significant Improvements in Response Rate



Overall Survival Was Greater in the CPX-351 Arm Compared to the 7+3 Arm

Kaplan-Meier Curve for Overall Survival ITT Analysis Population

Role of *IDH* in Malignancy

- IDH is critical metabolic enzyme in the citric acid cycle
- IDH1 in cytoplasm and IDH2 in mitochondria
- Cancer-associated IDHm produces 2hydroxyglutarate (2-HG) and blocks normal cellular differentiation

Phase 1/2 Study Design

Dose-escalation
n=113
Enasidenib 50–650 mg/day

Phase 1 Expansion
n=126
Enasidenib 100 mg QD

Phase 2 Expansion
n=106
Enasidenib 100 mg QD

- Advanced heme malignancies with IDH2 mutation
- Continuous 28 day cycles
- Cumulative daily doses of 50-650 mg

R/R AML, age ≥60, or any age if relapsed post-BMT

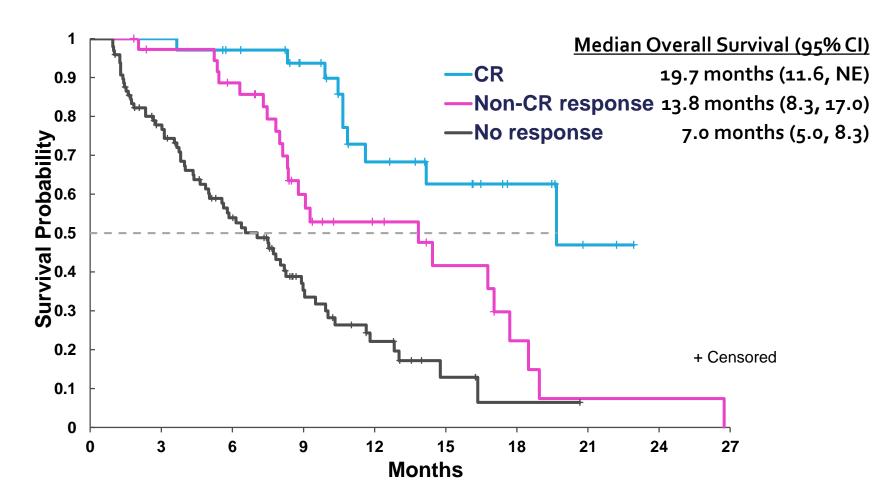
R/R AML, age <60, excluding pts relapsed post-BMT

Untreated AML, age ≥60, declined standard of care

Any hematologic malignancy ineligible for other arms

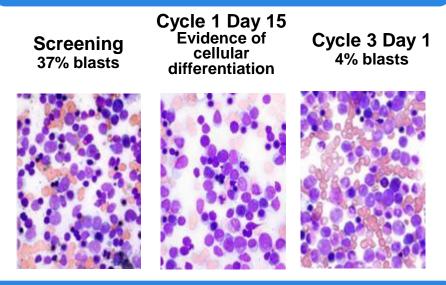
Enasidenib 100 mg QD R/R AML

R/R AML 100 mg/day: n=214

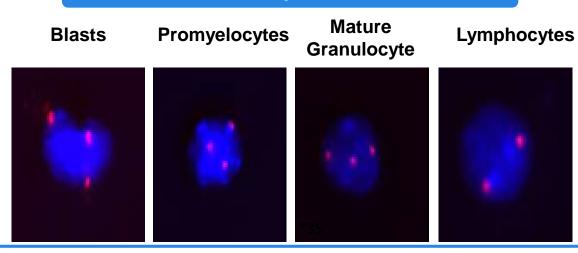

Key Endpoints:

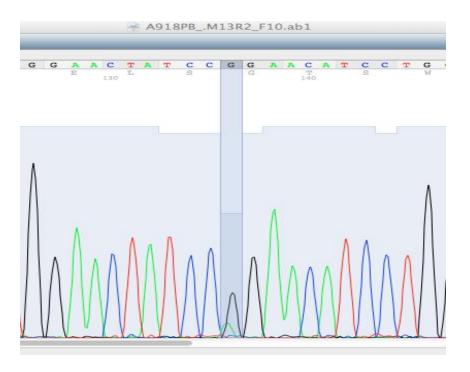
- Safety, tolerability, MTD, DLTs
 - MTD not reached at doses up to 650 mg/day
- Responses assessed by local investigator per IWG criteria¹
- Assessment of clinical activity, with focus on 100-mg daily dose in patients with R/R AML

Response in R/R AML

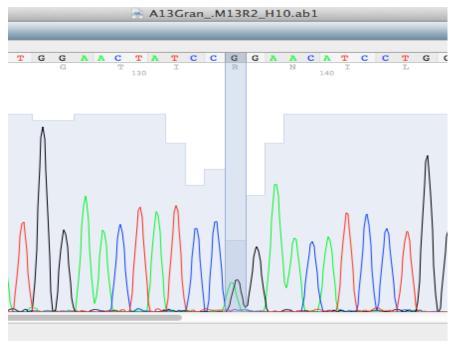

	Relapsed/Refractory AML	
	Enasidenib 100 mg/day (n=214)	All doses (N=281)
Overall response rate, % [n/N] [95% CI]	37% (79/214) [30.4, 43.8]	38% (108/281) [32.7, 44.4]
Best response		
CR, n (%) [95% CI]	43 (20.1) [14.9, 26.1]	55 (19.6) [15.1, 24.7]
CRi or CRp, n (%)	17 (7.9)	22 (7.8)
PR, n (%)	8 (3.7)	16 (5.7)
MLFS, n (%)	11 (5.1)	15 (5.3)
SD, n (%)	110 (51.4)	137 (48.8)
PD, n (%)	11 (5.1)	15 (5.3)
NE, n (%)	2 (0.9)	3 (1.1)
Time to first response (mos), median (range)	1.9 (0.5–11.1)	1.9 (0.5-11.1)
Duration of response (mos), median [95%CI]	5.6 [4.6, 7.4]	5.6 [4.6, 6.5]
Time to CR (mos), median (range)	3.7 (0.7–11.2)	3.8 (0.5-11.2)
Duration of response in pts with CR (mos) , median [95%CI]	8.8 [5.6, NR]	7.4 [6.4, 14.7]

Overall Survival by Best Response

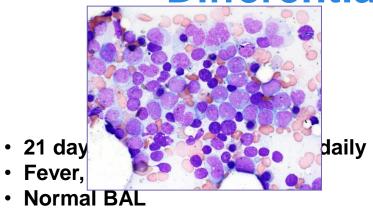

Morphological evidence of myeloid differentiation

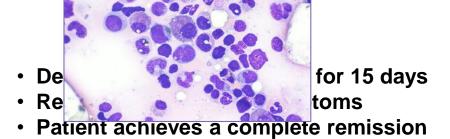

FISH evidence of myeloid differentiation

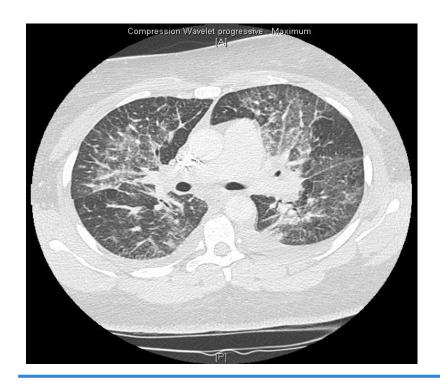
Patient 2 C2D1, trisomy 8

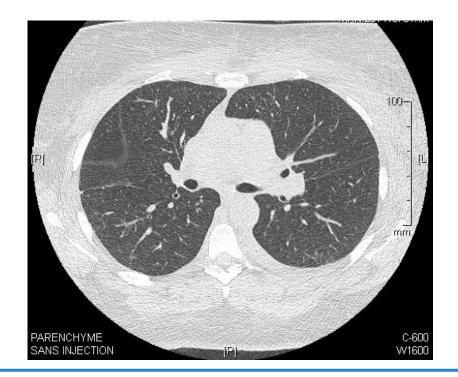


Molecular Evidence of Differentiation

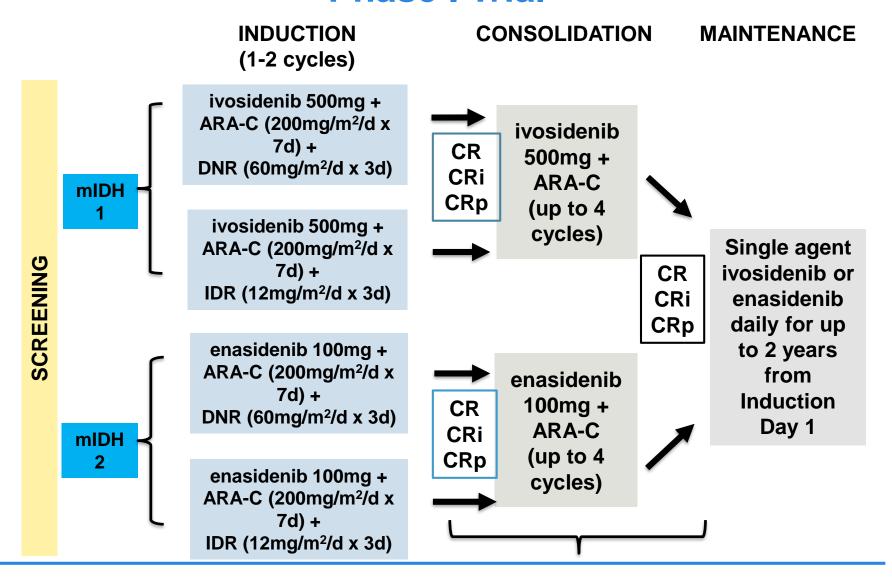

Screening - PBMC




Cycle 3 day 1 - Remission - Granulocytes



Differentiation Syndrome



Ivosidenib or Enasidenib Plus Chemotherapy Phase I Trial

Best Overall Response Summary

	Ivoside	nib (AG-12	20) + CT	Enaside	enib (AG-2	21) + CT
Response, n (%)	AII (n=30)	De novo (n=21)	sAML (n=9)	All (n=50)	De novo (n=27)	sAML (n=23)
CR+CRi/CRp	77	91	44	62	67	57
CR	63	71	44	50	59	39
CRi/CRp	13	19	-	12	7	17
MLFS	3	-	11	20	15	26
PR	7	5	11	-	-	-
Persistent disease	7	5	11	10	7	13
NE	7	-	22	8	11	4

Novel Agents in AML

Agent	Target
Selinexor	XPO1
Tamibarotene	RAR-alpha
Entospletinib	SYK
Palbociclib	CDK6
Cobimetinib	MAPK
Pevonedistat	NEDD8-activating enzyme
H3B-8800/E7070, E7820 (Spliceosome inhibitors)	SF3B1/RBM39

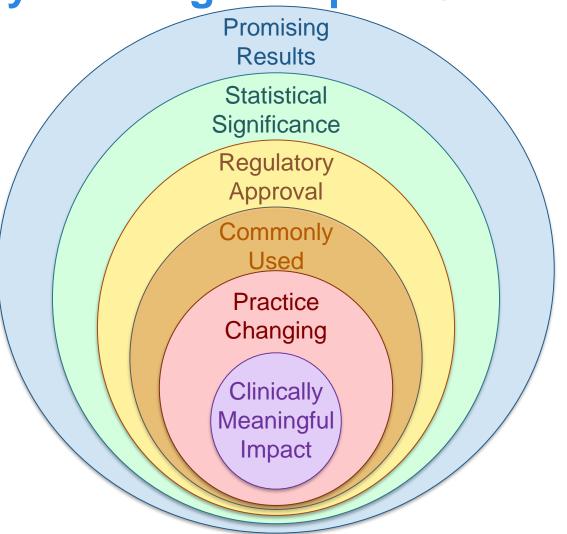
Daver et al. ASH abstr 1344, 2017; Drusbosky et al. ASH abstr 3909, 2017; Daver et al. ASH abstr 813, 2017; Guo et al. ASH abstr 3820, 2017; Yoshimi et al. ASH abstr 473, 2017

Questions Generated From New Drug Approvals

- Should Gemtuzumab be given to all CBF AMLs and older adults with fav- and intermed-risk?
- How should transplant strategies be affected by Gemtuzumab in induction?
- Must Gemtuzumab be given as in ALFA trial with specific induction and chemotherapy regimens (dauno in consol)? For Midostaurin?
- When a pt has AML with MRC and an IDH2 mutation, should pt be treated with CPX-351 or on trial with chemotherapy and Enasidenib? If AML-MRC and FLT3 pos: CPX-351 or Mido?

AML Treatment Strategies in 2018

AML subgroup	Candidate for intensive chemo	Not a candidate for intensive chemo	
All patients	Clinical trial preferred	Clinical trial preferred	
CBF	GO + chemo	HMA/LoDAC + Venetoclax*	
CD33 pos	GO + chemo, ? If pretransplant	GO or HMA/LoDAC + Venetoclax	
t-AML or AML w/MRC (incl complex cyto)	CPX-351 ind/consol, transplant	HMA/LoDAC + Venetoclax*	
TP53 mutant	Chemo vs decitabine x 10d	Decitabine x5d or x10d	
FLT3+	Mido + chemo ind/consol/maint, transplant	?AZA + sorafenib or HMA alone	
IDH1/2+	Chemo	HMA/LoDAC + Venetoclax*	
Marker -	Chemo	HMA/LoDAC + Venetoclax*	


*HMA/LoDAC + Venetoclax awaiting phase III data

AML Treatment Strategies in 2018: R/R

AML subgroup	Candidate for intensive chemo	Not a candidate for intensive chemo
All patients	Clinical trial preferred	Clinical trial preferred
R/R IDH2+	Enasidenib	Enasidenib
R/R <i>IDH1</i> +	Clinical trial with ivosidenib preferred	Clinical trial with ivosidenib preferred
R/R FLT3+	Strongly favor clinical trial	Strongly favor clinical trial
R/R TP53 mutant	Chemo vs decitabine x 10d	Decitabine x5d or x10d
R/R CD33+	Chemo or GO	HMA/LoDAC + Venetoclax* or GO
R/R post-allo transplant w extramedullary AML	Chemo vs HMA vs ipilimumab	HMA vs ipilimumab
R/R marker -	Chemo vs HMA vs HMA/LoDAC + Venetoclax*	HMA vs HMA/LoDAC + Venetoclax*

*Lower RR for HMA/LoDAC + Venetoclax in R/R setting (Dinardo et al. Am J Hematol 2018; Goldberg et al. ASH 2017, abstr 1353)

The Circuitous Road To A
Clinically Meaningful Impact Of A New Drug

Summary and Conclusions

- AML is a heterogeneous disease of diverse somatic genetic mutations
- Molecular genetics inform classification, prognosis, therapy and depth of remission
- Era of precision medicine is here
- Many novel agents with unique mechanisms of action available
- MRD has emerged an important prognostic factor
- Therapeutic paradigms are shifting

