Aggressive B and T cell lymphomas: Treatment paradigms in 2018

John P. Leonard M.D.

Richard T. Silver Distinguished Professor of Hematology and Medical Oncology

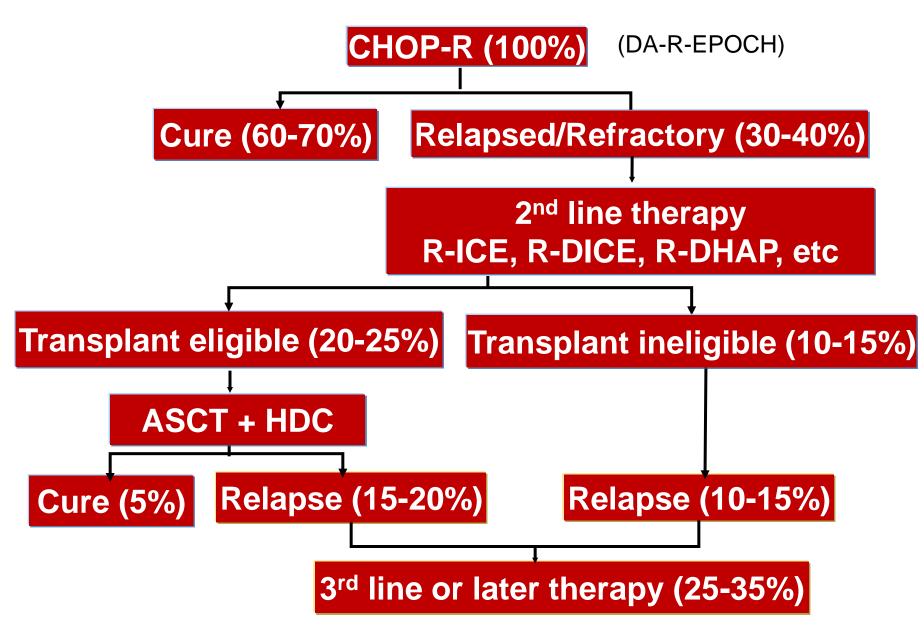
Associate Dean for Clinical Research

Associate Director, Meyer Cancer Center

Disclosures

Consulting advice:

Gilead, Juno, Celgene, Sutro, BMS, Genentech/Roche, Pfizer, Bayer, ADC Therapeutics, AstraZeneca, United Therapeutics, Biotest, Karyopharm, MEI Pharma, Novartis


> Weill Cornell Medicine

Diffuse large B cell lymphoma

- Median age 60, usually with advanced stage disease
 - LAN, extranodal disease, symptoms
- Practical objective of treatment cure (70%)
- Reasonably good clinical prognostic tools
- Most patients treated same (R-CHOP)
- Unmet need more cures, reduce toxicity
- Who should we treat differently?
- If refractory to second-line therapy, prognosis is poor

Treatment algorithm for DLBCL

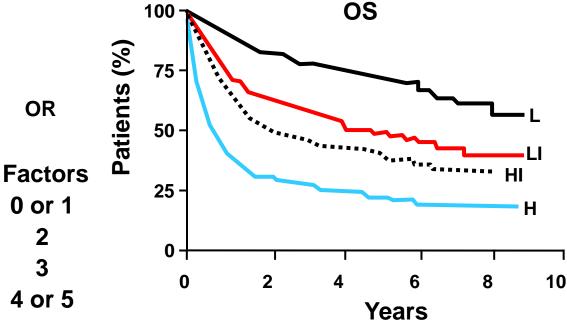
Comparison of CHOP-R and EPOCH-R

R-CHOP

Rituximab 375 mg/m² d1 Cyclophosphamide 750 mg/m2 d1 Doxorubicin 50 mg/m² d1 Vincristine 1.4 mg/m² (2 mg cap) d1 Prednisone 40 mg/m² d1-5

q3w × 6

DA*-R-EPOCH


Rituximab 375 mg/m² d1 Etoposide 50 mg/m²/d Cl d1-4* Doxorubicin 10 mg/m²/d Cl d1-4* Vincristine 0.4 mg/m²/d Cl d1-4 Cyclophosphamide 750 mg/m² d5* Prednisone 60 mg/m² bid d1-4 G-CSF 5 μ g/kg d6-ANC recovery q3w × 6

International Prognostic Index (IPI) in aggressive NHL

Prognostic factors (APLES)

- <u>Age >60 years</u>
- <u>Performance status >1</u>
- <u>L</u>DH >1× normal
- <u>E</u>xtranodal sites >1
- <u>Stage III or IV</u>
- **Risk Category**
- Low (L)
- Low intermediate (LI)
- High intermediate (HI)
- High (H)

International NHL Prognostic Factors Project. *N Engl J Med.* 1993;329:987. Armitage. *CA Cancer J Clin.* 2005;55:368.

What does the physician need or want to know when approaching a new DLBCL patient?

- Clinical features
 - International Prognostic Index
 - Primary mediastinal (R-EPOCH)
 - CNS, testicular (variations of rx)
- Pathological and molecular features
 - BM involvement (variations of rx)
 - Double hit (FISH) > Double protein (R-EPOCH)
 - Cell of origin (Germinal Center/Activated B Cell)

When do I treat patients with DLBCL today with something other than R-CHOP x 6?

Double hit subtype

Data not robust in double protein subtype

Primary mediastinal

HIV associated

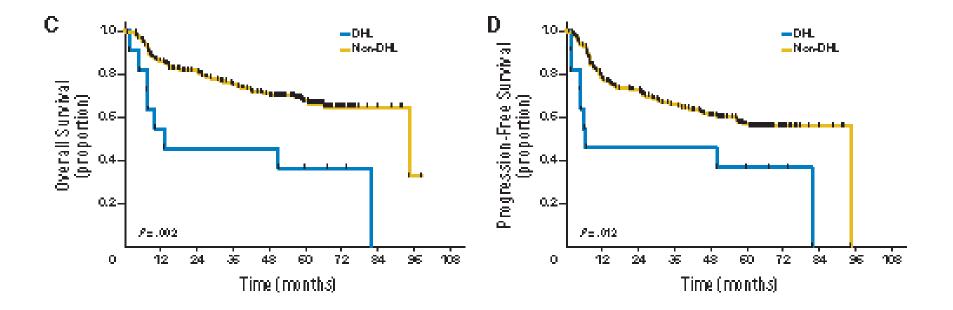
Testicular

Limited stage (?)

CNS

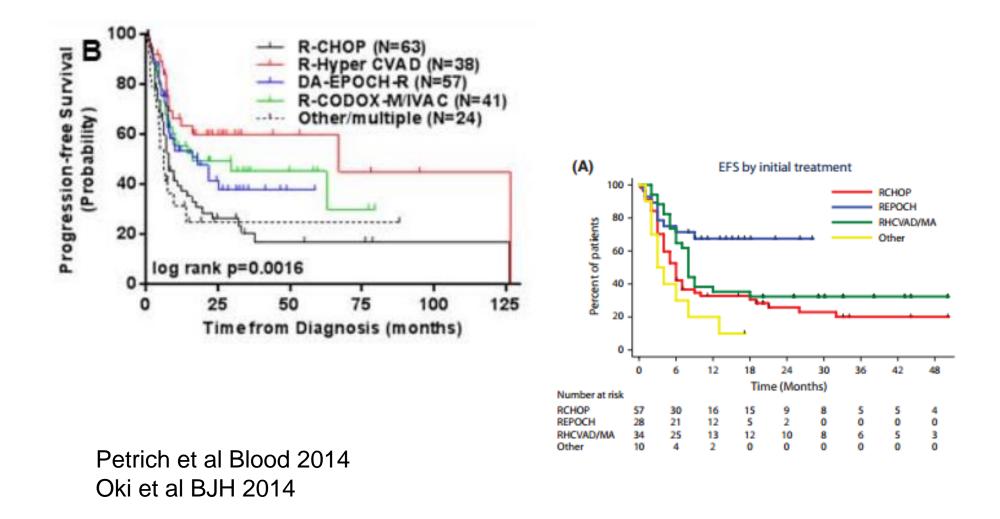
Elderly

Double hit vs Double protein DLBCL 10-25% of DLBCL

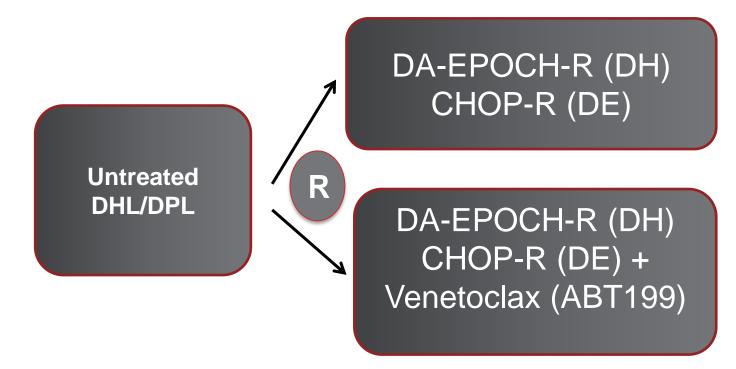

- Double-hit lymphoma: High-grade B-cell lymphoma with translocations of MYC as well as BCL2, BCL6, or both ("triple-hit")
 - Histologically classified as DLBCL or B-cell lymphoma unclassifiable with intermediate features between DLBCL and Burkitt Lymphoma
 - Cell of origin: Virtually always germinal center subtype
 - Outcome poor with standard therapies
- Double-expressing lymphomas: DLBCL with dual immunohistochemical expression of MYC (≥40%) and BCL2 (≥70%) in the absence of translocations
 - Cell of origin: Usually activated B cell subtype
 - Outcome inferior to other DLBCLs, but not as poor as DHL

Caveats in understanding clinical characteristics and outcomes in "double hit and double protein" lymphoma

- Clinical features of the subtype are less favorable
- Selection biases of series
- Variability in molecular testing
- Challenges and changes in morphologic/pathologic classification
- Non-uniform therapy
- Single vs multicenter
- Retrospective

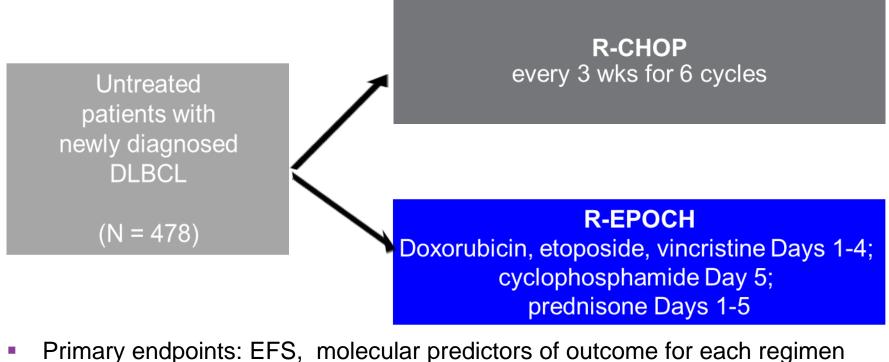

FISH DH DLBCL and treatment with R-CHOP

Green et al, JCO 2012


Weill Cornell Medicine

DA-EPOCH-R in double hit lymphoma

Weill Cornell


Planned Intergroup Trial in DH/DE DLBCL Phase I then Phase II-III BCL-2 inhibitor Venetoclax

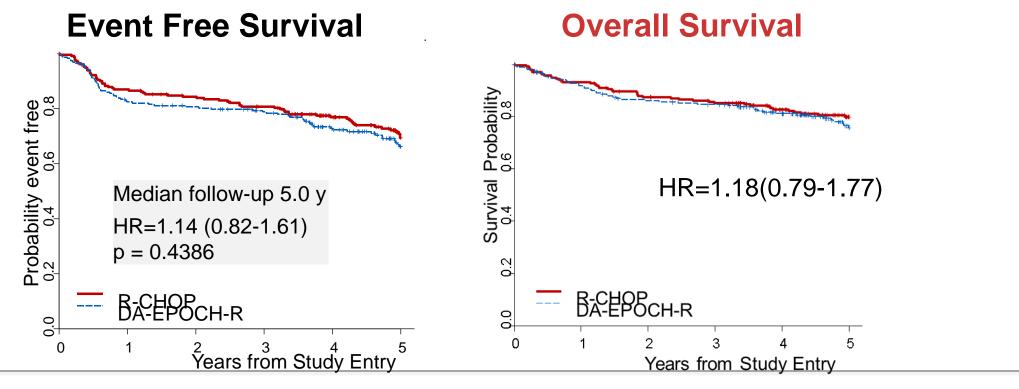
Ph I Investigator-initiated study (Alliance Foundation) WCM/NYP Coordinating Site (Rutherford) Phase II/III NCI/Alliance/Intergroup (Abramson MGH)

Alliance/CALGB 50303: R-CHOP vs R-EPOCH in Newly Diagnosed DLBCL

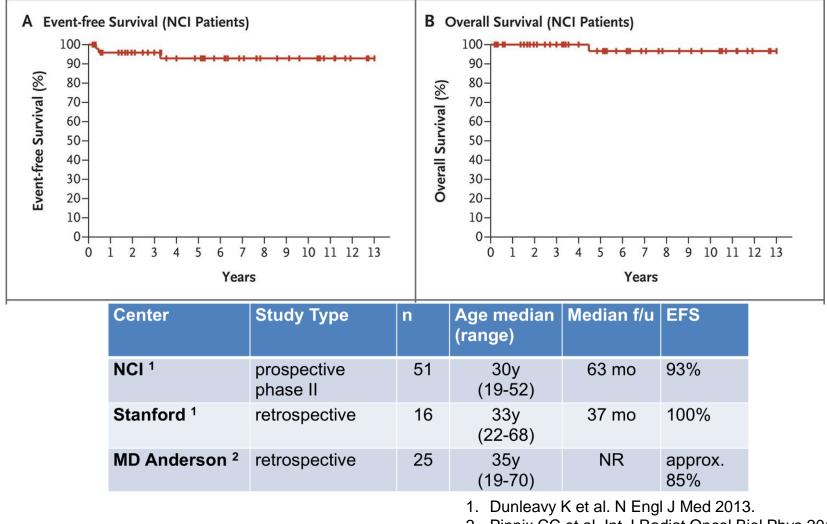
Secondary endpoints: RR, OS, toxicity, use of molecular profiling

Bartlett et al, ASH 2016 Clinical Trials.gov. NCT00118209. http://www.clinicaltrials.gov

Alliance 50303: Design


- N = 524; enrolled 2005 2013; Data cutoff November 2016
- Analysis planned after 242 events, but due to low event rate DSMB released data July 2016 with 167 events

Characteristic	R-CHOP (%)	DA-EPOCH R (%)	P-value
Median Age (range)	58 (18-86)	57 (19-84)	0.677
ECOG 0-1 vs. 2	88 vs. 12	87 vs. 13	0.518
Stage 3/4	73	77	0.641
IPI 0-2	65	61	0.405
GRADE ≥ 3 TOXICITY			
Treatment related deaths	2	2	0.975
Platelets	11	65	<0.001
Febrile neutropenia	17	35	<0.001
Infection	11	14	0.169
Neuropathy – sensory/motor	2/1	14/8	<0.001


Alliance 50303: Outcomes

	R-CHOP	DA-EPOCH-R	P-value
ORR	89%	89%	0.983
CR/CRu	62%	61%	
PR	27%	27%	

Weill Cornell Medicine

DA-EPOCH-R without RT for PMBCL

2. Pinnix CC et al, Int J Radiat Oncol Biol Phys 2015.

DA-EPOCH-R in children and adults with PMBCL: A retrospective multicenter analysis

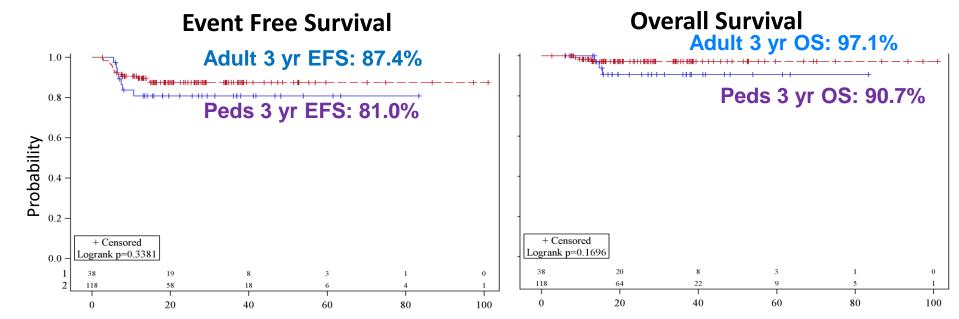
Objectives:

- Describe outcomes in a large number of patients with PMBCL treated with DA-EPOCH-R
- Compare pediatric and adult experience

Methods:

- Collected data from 24 academic medical centers on patients treated from 2005-2015
- No age restriction
- Excluded pediatric patients enrolled on ANHL1131

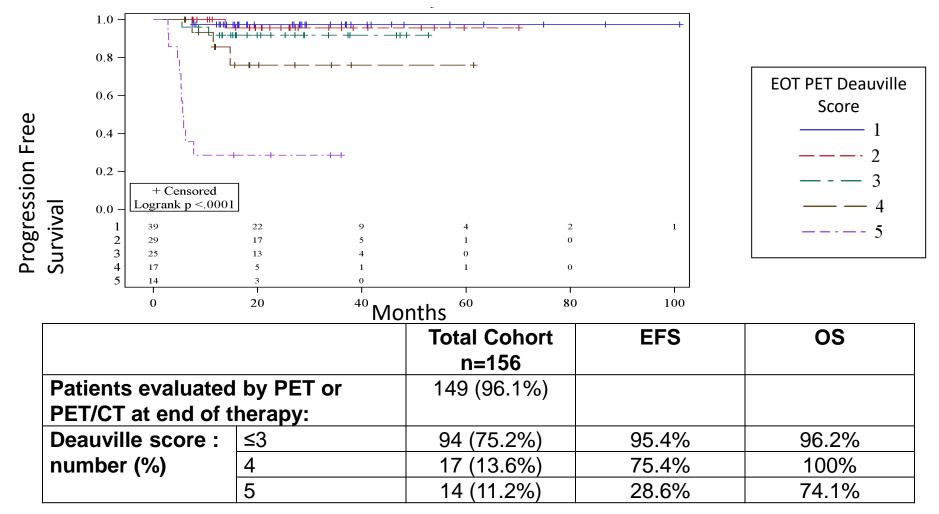
Roth et al. BJH 2017


Patient Characteristics

			Total Cohort n=156	Pediatrics (age <21) n=38	Adult (age ≥21) n=118	p value peds vs. adult
	Age in yrs: media	n (range)	31y (9-70)	16y (9-20)	34y (21-70)	<0.01
	Female sex: num	ber (%)	100 (64.1%)	21 (55.3%)	79 (66.9%)	0.243
	ECOG performan median (range)	ce status:	1 (0-4)	N/A	1 (0-4)	N/A
	Stage: number	1	26 (16.8%)	1 (2.6%)	25 (21.4%)	N/A*
	(%)	II	68 (43.9%)	9 (23.7%)	59 (50.4%)	
			30 (19.4%)	23 (60.5%)	7 (6.0%)	
		IV	31 (20.0%)	5 (13.2%)	26 (22.2%)	
	B symptoms: num	nber (%)	61 (39.9%)	11 (30.6%)	50 (42.7%)	0.244
	Bulky tumor >10c	m: number (%)	95 (62.9%)	29 (78.4%)	66 (57.9%)	0.031
_	LDH > ULN: num	ber (%)	125 (82.8%)	30 (85.7%)	95 (81.9%)	0.799
	Extranodal diseas	se: number (%)	51 (32.9%)	15 (39.5%)	36 (30.8%)	0.328
	Pleural effusion: r	number (%)	73 (48.0%)	20 (58.8%)	53 (44.9%)	0.176
	Pericardial effusion	on: number (%)	82 (53.9%)	19 (55.9%)	63 (53.4%)	0.847
	CD20+ malignant	cells: number	146 (98.6%)	30 (100%)	116	1.000
	(%)				(98.3%)	

Roth et al, BJH 2017

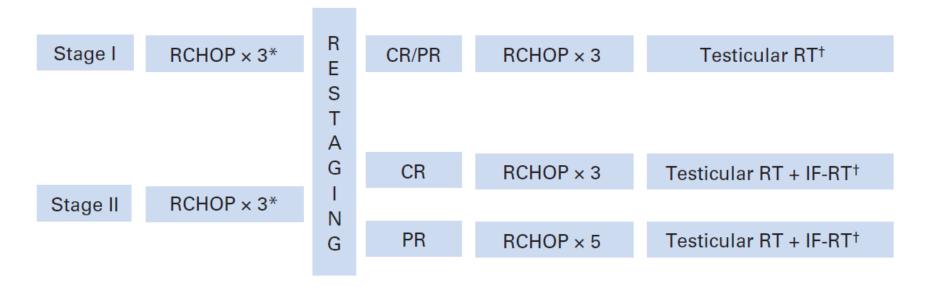
DA-R-EPOCH in PMBCL



	Total Cohort n=156	Pediatrics (age<21) n=38	Adult (age ≥ 21) n=118	P value for peds vs. adult
3 yr EFS (95% CI)	85.9 (80.3-91.5)	81.0 (68.3-93.7)	87.4 (81.2-93.6)	0.338
3 yr OS (95% CI)	95.4 (91.8-99.0)	90.7 (80.6-100.0)	97.1 (94.0-100.0)	0.170
Follow up in mo: Median (range)	22.6 (2.1-101.0)	24.0 (6.0-83.3)	22.6 (2.7-101.0)	0.780

Roth et al, BJH 2017

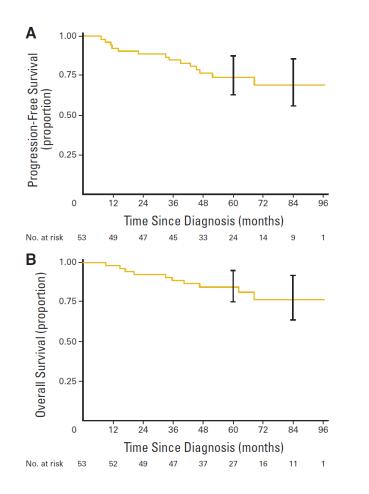
Outcome by end of therapy FDG-PET



Roth et al, BJH 2017

Approach to testicular DLBCL

IELSG10 – 53 patients


+ 4 doses IT MTX

Vitolo et al, JCO 2011

Approach to testicular DLBCL

IELSG10 – 53 patients

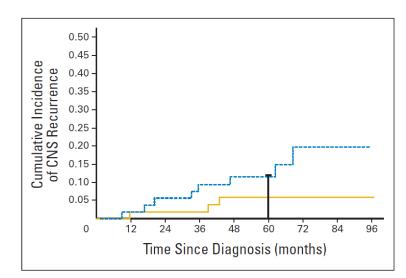


Fig 4. Cumulative incidence of CNS recurrence (solid gold line) and cumulative mortality without CNS involvement (dashed blue line); 5-year CNS cumulative incidence, 5.9% (95% Cl, 0% to 12%). Vertical bar represents 95% Cl.

Vitolo et al, JCO 2011

Weill Cornell Medicine

Approach to limited stage DLBCL S0014 – R-CHOP x 3 + IFRT

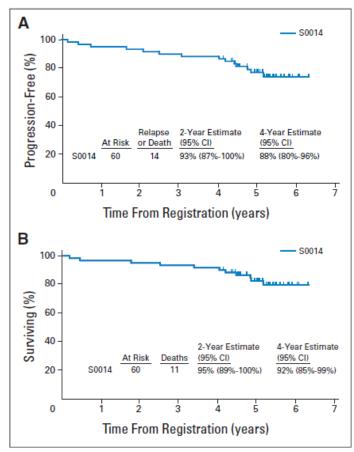
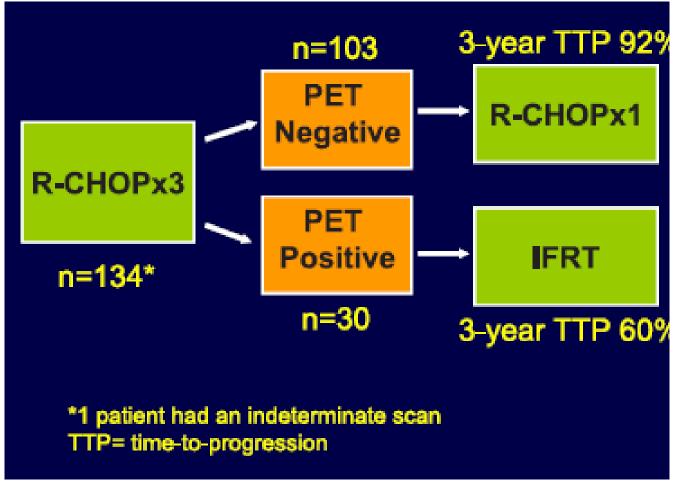
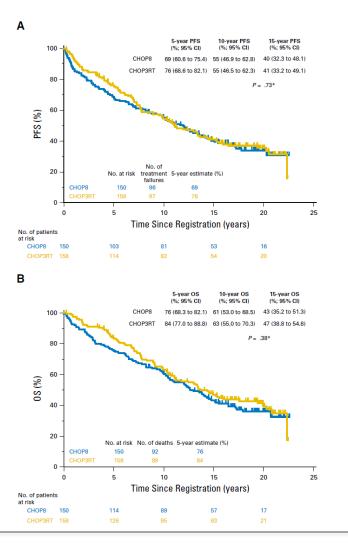



Fig 1. (A) Progression-free and (B) overall survival of 60 eligible patients enrolled in a Southwest Oncology Group (SWOG) trial of three cycles of R-CHOP followed by involved-field radiation therapy. R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone.

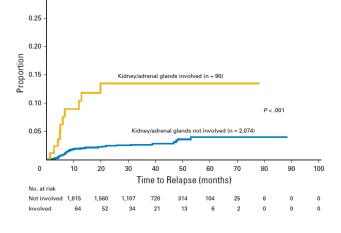
Persky et al, JCO 2008

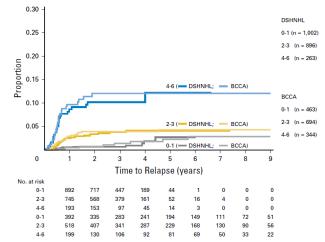

Approach to limited stage DLBCL Is RT needed?

Sehn, Cancer Journal, 2012

Long term F/U limited stage DLBCL S8736 – CHOP x 3 + IFRT vs CHOP x 8

Stephens et al, JCO 2016



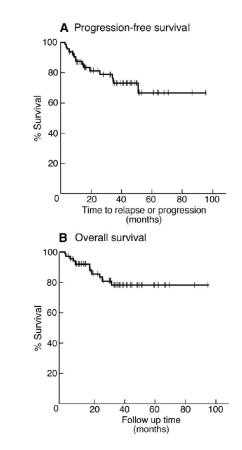

Who is at risk for CNS involvement in DLBCL?

CNS-IPI

Table 2. Factors Defining the CNS International Prognostic Index: Results of Multivariable Analysis			
Factor	Hazard Ratio	95% CI	Р
Kidney and/or adrenal glands involved	2.8	1.3 to 5.8	.006
Age $>$ 60 years	2.5	1.3 to 4.5	.001
LDH > normal	2.4	1.3 to 4.5	.005
ECOG PS > 1	2.2	1.3 to 3.9	.006
Stage III/IV disease	2.0	1.0 to 3.8	.039
Extranodal involvement > 1	1.0	0.5 to 1.8	.935

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase.

Schmitz et al, JCO 2016



What CNS prophylaxis or treatment do I use in high risk patients? R-CHOP + d14 MTX 3.5 g/m2 x 3-4 cycles

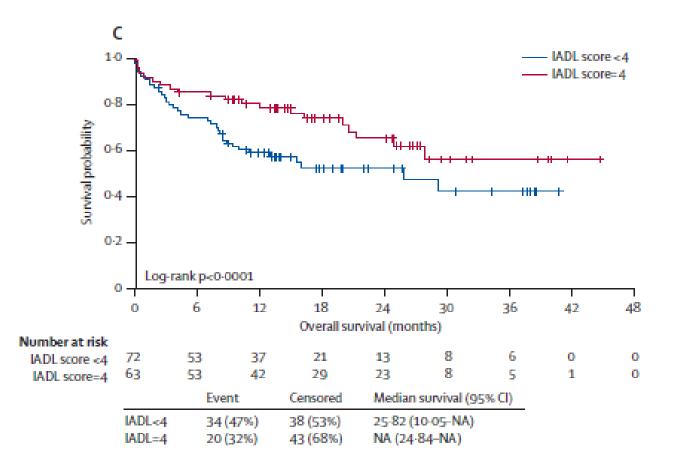
Retrospective analysis 65 "high risk" patients 2 CNS recurrences

CNS Risk Factor	No.	%
>1 extranodal site	40	62
>1 extranodal site and elevated LDH	30	46
Hollender score of 4-5	11	17
High-risk sites		
Bone marrow	14	22
Testis	5	8
Paranasal sinus	6	9
Orbit	9	14
Breast	1	2
Renal/adrenal	9	14
Liver	8	12
Epidural disease	14	22

CNS indicates central nervous system; LDH, lactate dehydrogenase.

Abramson et al, Cancer 2010

Weill Cornell Medicine


R-mini CHOP for age 80 and over

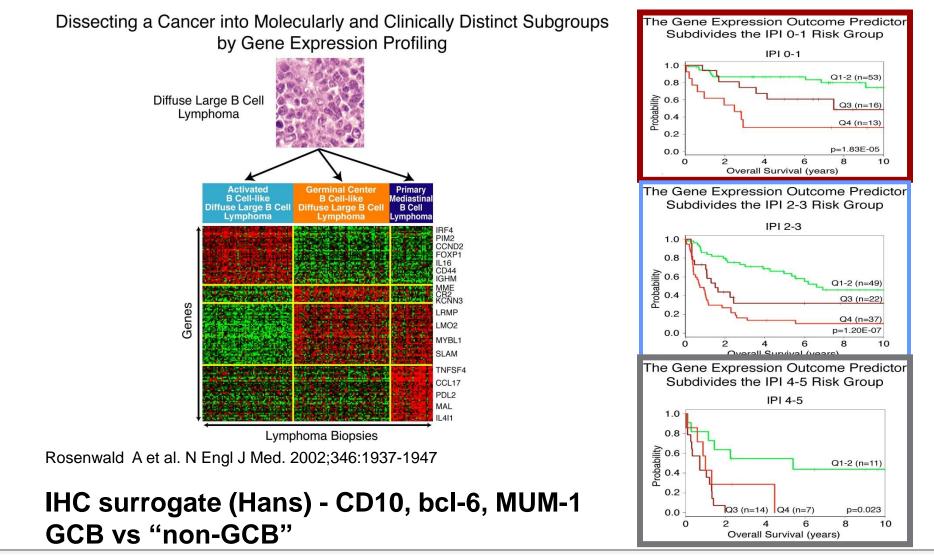
- Rituximab 375 mg/m2 day 1
- Cyclophosphamide 400 mg/m2 day 1
- Doxorubicin 25 mg/m2 day 1
- Vincristine 1 mg day 1
- Prednisone 40 mg/m2 days 1-5

Peyrade et al: Lancet Oncol 12: 460-68, 2011

R-mini CHOP for age 80 and over

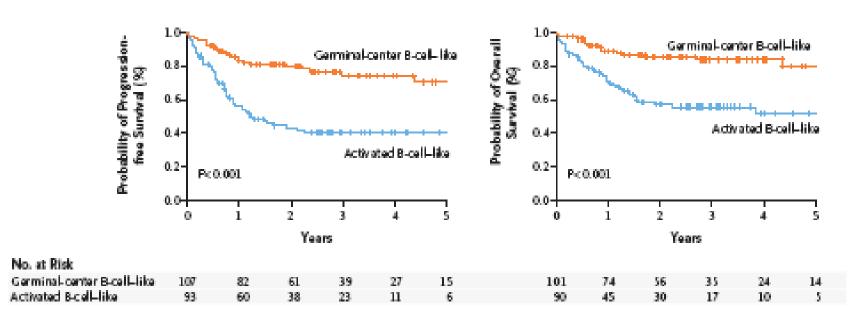
Peyrade et al: Lancet Oncol 12: 460-68, 2011

Weill Cornell Medicine


What about new approaches in DLBCL?

Strategies under investigation independent of cell of origin

Strategies targeting specific cell of origin subtype


Germinal Center vs Activated B Cell DLBCL

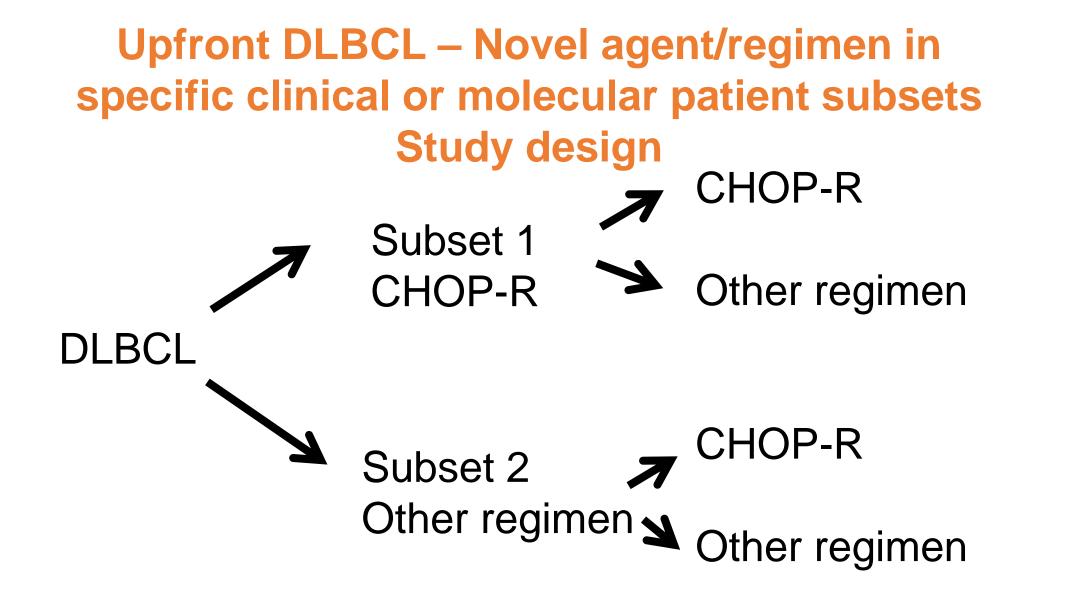
Weill Cornell Medicine

Outcome by GCB vs ABC gene signatures in DLBCL N=233 patients treated with R-CHOP

PFS

Lenz G, et al, NEJM 2008

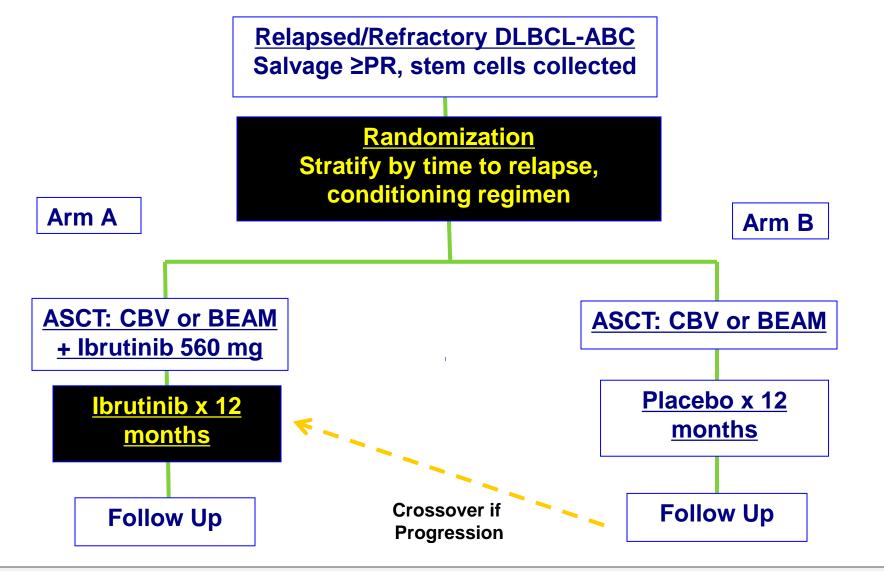
OS


Weill Cornell Medicine

Oncogenic mechanisms and potential therapeutic targets in GCB and ABC DLBCLs

DLBCL subtype	Cell of origin	Oncogenic mechanisms	Potential targets
GCB	Germinal centre B-cell	BCL2 translocation* EZH2 mutations [‡] PTEN deletions [§] Loss of PTEN expression	BCL6 EZH2 PI3K/Akt
ABC	Post-germinal centre B-cell	NF-κB activation CARD11 mutations MYD88 mutations CD79B mutations A20 deletions	BCR CBM complex IRAK-4 JAK–STAT

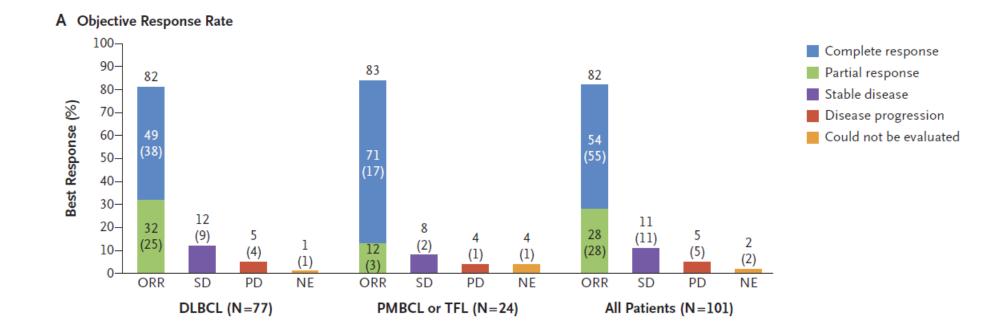
Roschewski M. et al. Nat. Rev. Clin. 2013;11:12-23.



Agents under evaluation based on cell of origin

- Bortezomib
- Ibrutinib
- Lenalidomide

Alliance 51301 Study Schema

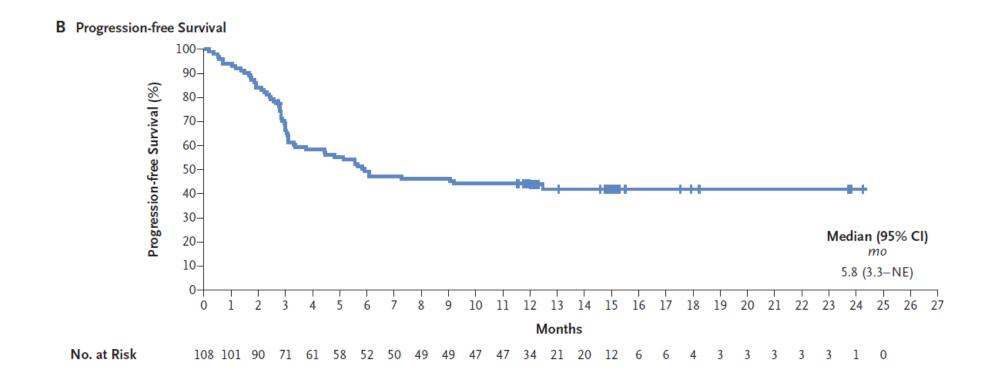


- NewYork-Presbyterian

Weill Cornell Medicine

Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

111 enrolled, 101 received drug



Neelapu et al; NEJM 377;26:2531-44, 2017

Weill Cornell Medicine

Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

111 enrolled, 101 received drug

Neelapu et al; NEJM 377;26:2531-44, 2017

Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

Event	Any Grade	Grade 1 or 2	Grade ≥3
		number of patients (percent)	
Neurologic event			
Any	65 (64)	37 (37)	28 (28)
Encephalopathy	34 (34)	13 (13)	21 (21)
Confusional state	29 (29)	20 (20)	9 (9)
Tremor	29 (29)	28 (28)	1 (1)
Aphasia	18 (18)	11 (11)	7 (7)
Somnolence	15 (15)	8 (8)	7 (7)
Agitation	9 (9)	5 (5)	4 (4)
Memory impairment	7 (7)	6 (6)	1 (1)
Mental-status change	6 (6)	4 (4)	2 (2)
Cytokine release syndrome			
Any	94 (93)	81 (80)	13 (13)
Pyrexia	77 (76)	66 (65)	11 (11)
Hypotension	41 (41)	32 (32)	9 (9)
Нурохіа	22 (22)	13 (13)	9 (9)
Tachycardia	21 (21)	20 (20)	1 (1)

Neelapu et al; NEJM 377;26:2531-44, 2017

CTCL: Background

- Chronic T-cell lymphoma primarily involving skin
- Mycosis fungoides (MF) and primary cutaneous anaplastic large cell lymphoma (pcALCL) are the most common CD30 expressing CTCL
- Brentuximab vedotin, a CD30 targeting antibody-drugconjugate, has clinical activity in CTCL
 - Duvic et al. ORR, MF 54%, pcALCL 100%;
 - Kim et al. ORR, MF/Sézary syndrome 70%

Swerdlow SH, et al. Blood 2016;127:2375–90 Willemze R, et al. Ann Oncol 2013;24 Suppl 6:vi149–54

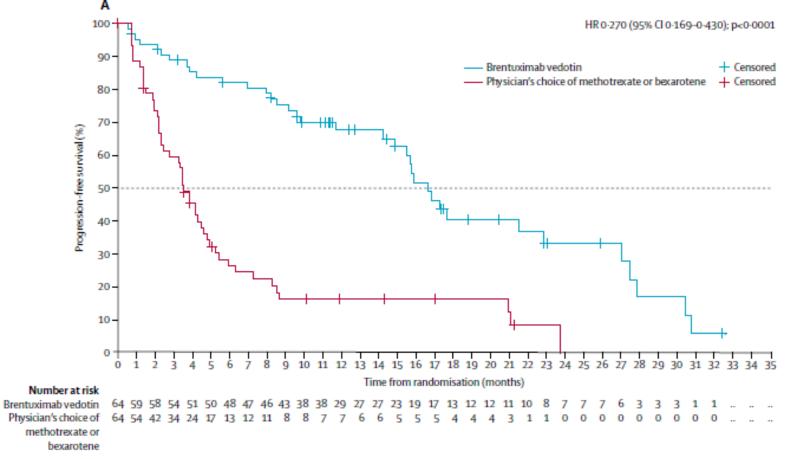
Jawed SI, et al. J Am Acad Dermatol 2014;70:223e1-17 Duvic M, et al. J Clin Oncol 2015;33:3759-65

Kim YH, et al. J Clin Oncol 2015;33:3750-8

Brentuximab Vedotin vs Investigator Choice in CD30+ CTCL (Alcanza study)

	Brentuximab vedotin (n=64)	Physician's choice of methotrexate or bexarotene (n=64)	Overall (N=128)
Age (years)	62 (51-70)	59 (48-67)	60 (48–69)
Sex			
Male	33 (52%)	37 (58%)	70 (55%)
Female	31 (48%)	27 (42%)	58 (45%)
Race			
White	56 (88%)	53 (83%)	109 (85%)
Other	5 (8%)	10 (16%)	15 (12%)
Not reported	3 (5%)	1 (2%)	4 (3%)
ECOG PS			
0	43 (67%)	46 (72%)	89 (70%)
1	18 (28%)	16 (25%)	34 (27%)
2	3 (5%)	2 (3%)	5 (4%)
Median CD30 expression*	32.5% (12.5-67.5)	31.3% (12.0-47.5)	31-3% (12-5-60-0
Time since initial diagnosis (months)	42.2 (12.8-87.4)	37-0 (12-3-102-7)	40.9 (12.7-96.8)
Time since progression on last therapy† (months)	2.4 (1.4-7.9)	1-3 (0-9-3-7)	1-9 (1-1-3-8)
Lines of previous therapy			
Total	4.0 (2.0-7.0)	3.5 (2.0-5.5)	4-0 (2-0-6-0)
Skin-directed	1.0 (1.0-2.0)	1.0 (1.0-2.0)	1-0 (1-0-2-0)
Systemic	2.0 (1.0-4.0)	2.0 (1.0-3.0)	2-0 (1-0-4-0)
Mycosis fungoides	48 (75%)	49 (77%)	97 (76%)

Prince et al; Lancet 390: 555-66, 2017


Brentuximab Vedotin vs Investigator Choice in CD30+ CTCL (Alcanza study)

	Brentuximab vedotin			Physician's choice of methotrexate or bexarotene				
	Total (n=64)	ORR4	ORR	CR	Total (n=64)	ORR4	ORR	CR
ITT population	64 (100%)	36 (56%)*	43 (67%)	10 (16%)	64 (100%)	8 (13%)†	13 (20%)	1 (2%)
Mycosis fungoides	48 (75%)	24 (50%)	31 (65%)	5 (10%)	49 (77%)	5 (10%)	8 (16%)	0
Stage‡§								
IA-IIA	15 (31%)	6 (40%)	8 (53%)	1 (7%)	18 (37%)	4 (22%)	5 (28%)	0
IIB	19 (40%)	12 (63%)	13 (68%)	3 (16%)	19 (39%)	1 (5%)	3 (16%)	0
IIIA-IIIB	4 (8%)	2 (50%)	3 (75%)	0	2 (4%)	0	0	0
IVA	2 (4%)	2 (100%)	2 (100%)	1 (50%)	9 (18%)	0	0	0
IVB	7 (15%)	2 (29%)	4 (57%)	0	0	NA	NA	NA
pcALCL	16 (25%)	12 (75%)	12 (75%)	5 (31%)	15 (23%)	3 (20%)	5 (33%)	1(7%)

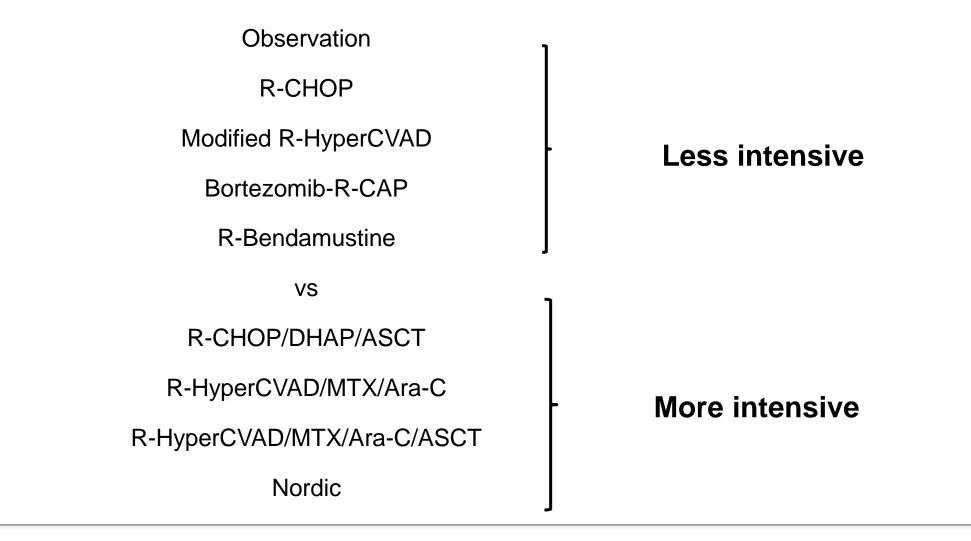
Prince et al; Lancet 390: 555-66, 2017

Brentuximab Vedotin vs Investigator Choice in CD30+ CTCL (Alcanza study)

Prince et al; Lancet 390: 555-66, 2017

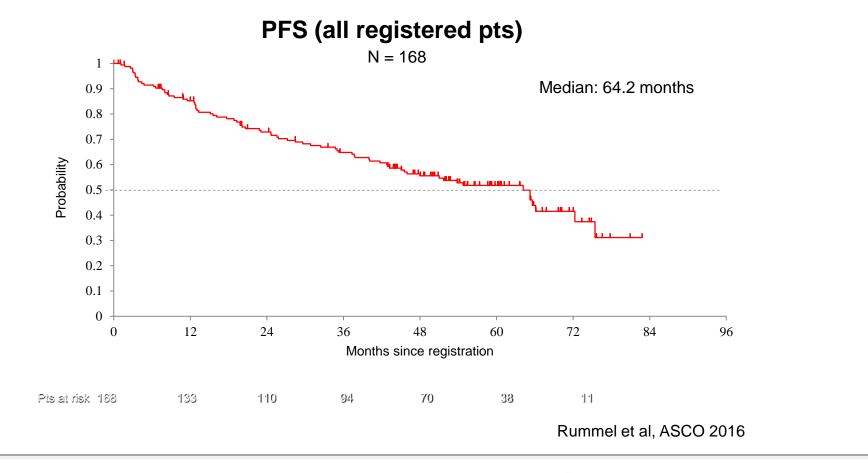
Weill Cornell Medicine

Mantle cell lymphoma (10%)

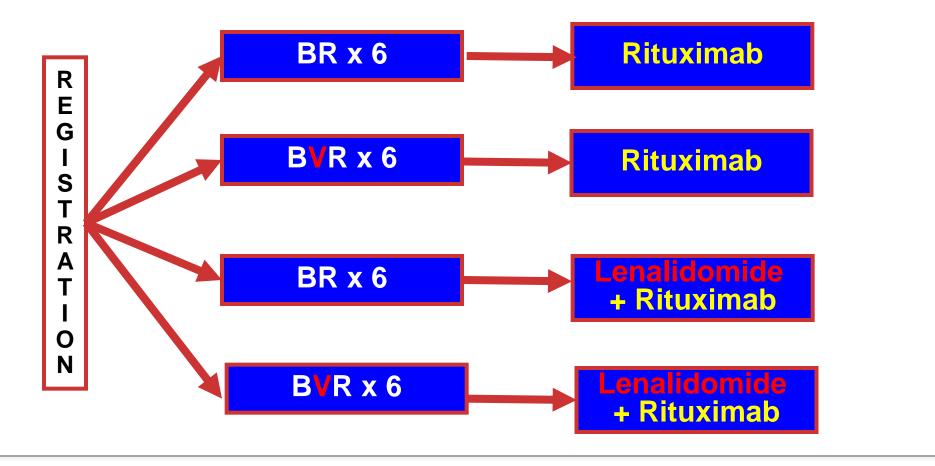

Incurable, median survival 5-10 years

Key focus:

- More vs less intensive initial therapies
 - Bendamustine based rx in older pts standard
 - Does SCT improve survival in younger patients?
 - Role of MRD?
- Development of novel agents and translational studies to understand resistance and advance rational combinations

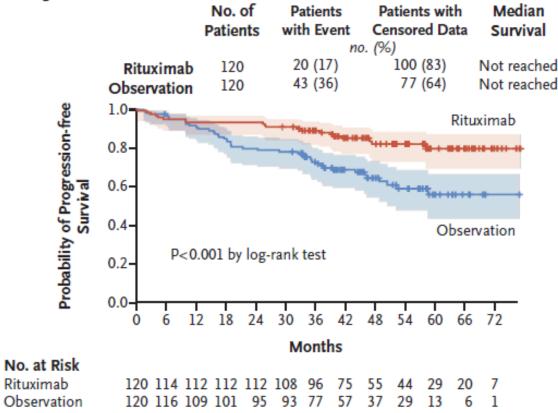


MCL "standard" initial treatment options



Bendamustine + Rituximab (+/- maint R) upfront MCL Median age 71, 84% MIPI int/high risk

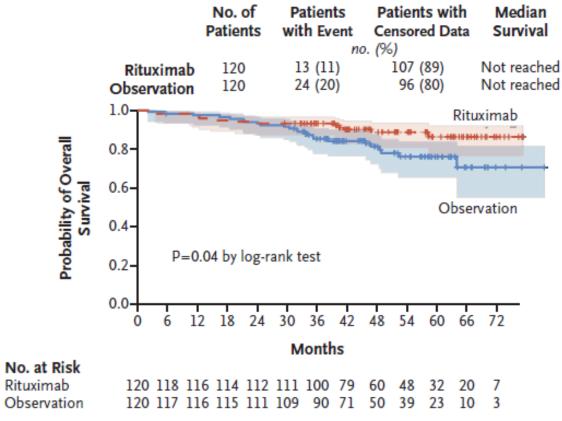
Weill Cornell Medicine


E1411: Randomized Phase 2 Intergroup Trial: Initial Therapy of Mantle Cell Lymphoma

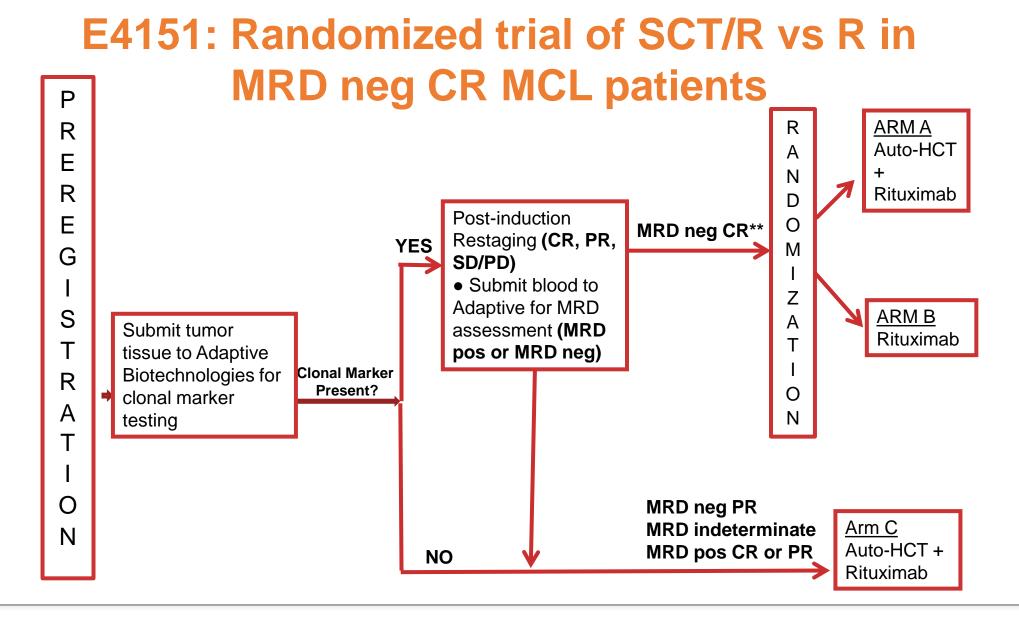
Weill Cornell Medicine NewYork-Presbyterian

Maintenance Rituximab after AuSCT in Mantle Cell Lymphoma

B Progression-free Survival



Le Gouill et al; NEJM 377;13:1250-60, 2017

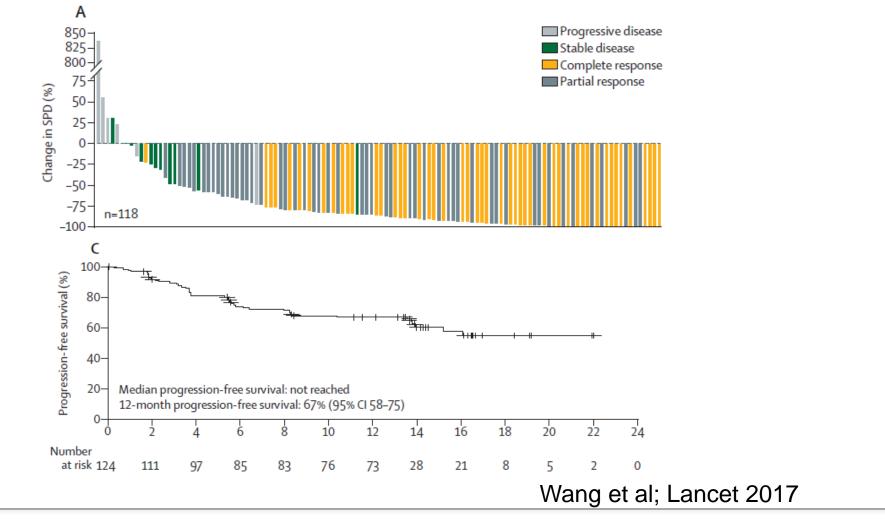

Maintenance Rituximab after AuSCT in Mantle Cell Lymphoma

C Overall Survival

Le Gouill et al; NEJM 377;13:1250-60, 2017

Weill Cornell Medicine

Acalabrutinib in Relapsed/Refractory Mantle Cell Lymphoma 124 pts, median 2 prior rx 81% ORR, 40% CR


	All grades	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5*		
Most common events†								
Headache	47 (38%)	30 (24%)	15 (12%)	2 (2%)	0	0		
Diarrhoea	38 (31%)	21 (17%)	13 (10%)	4 (3%)	0	0		
Fatigue	34 (27%)‡	24 (19%)	8 (6%)	1(1%)	0	0		
Myalgia	26 (21%)	19 (15%)	6 (5%)	1(1%)	0	0		
Cough	24 (19%)	21 (17%)	3 (2%)	0	0	0		
Nausea	22 (18%)	12 (10%)	9 (7%)	1(1%)	0	0		
Pyrexia	19 (15%)	14 (11%)	5 (4%)	0	0	0		
Most common grade 3 or worse events§								
Anaemia	15 (12%)	1 (1%)	3 (2%)	10 (8%)	1 (1%)	0		
Neutropenia	13 (10%)	0	0	6 (5%)	7 (6%)	0		
Pneumonia	7 (6%)	0	1 (1%)	6 (5%)	0	0		

Data are n (%). *Only one grade 5 event (aortic stenosis) was reported. \dagger Reported in \geq 15% of all treated patients. \ddagger Includes one case of fatigue without grading. \$Reported in \geq 5% of all treated patients.

Wang et al; Lancet 2017

Acalabrutinib in Relapsed/Refractory Mantle Cell Lymphoma

Weill Cornell Medicine

Key take home points for aggressive lymphoma

- Modifications to R-CHOP currently based on clinical features, COO/molecular directed rx under evaluation
- CAR-T cell rx available, undergoing further optimization
- T cell
 - CD30-directed therapy of value
- MCL
 - Maintenance rituximab, role of MRD-directed therapy
 - Novel BTK inhibitors

