Principal investigator role	Janssen, Geron, Celgene, Sanofi-Aventis, Gilead Sciences, Incyte		
Employee	None		
Consultant	None		
Major Stockholder	None		
Speakers' Bureau	None		
Scientific Advisory Board	None		

Presentation includes discussion of the following off-label use of a drug or medical device: Hydroxyurea, Interferon-alpha, Busulfan, Thalidomide, Lenalidomide, Pomalidomide, Ruxolitinib, Androgen preparations, Erythropoiesis stimulating agents

Myeloproliferative neoplasms other than PV, ET and PMF: CMML: chronic myelomonocytic leukemia Mastocytosis Eosinophilic disorders CNL: chronic neutrophilic leukemia

Ayalew Tefferi, MD Professor of Medicine and Hematology Mayo Clinic College of Medicine

Objectives

- Disease definitions
- Diagnosis
- Current prognostication
- Treatment

2016 WHO Classification of Myeloid Malignancies

Acquired eosinophilia

a T cell clone/abnormal pnenotype (lymphocytic variant hyper-eosinophilia)

Primary eosinophilia diagnostic algorithm

Hyper-eosinophilic syndrome/idiopathic eosinophilia

98 Mayo Clinic patients with WHO-defined HES/IH (Leukemia 2016;30:1924)

NGS revealed 11% harbored pathogenic mutation; *TET2*=3, *ASXL1* =2, *KIT*=2, and *IDH2*, *JAK2*, *SF3B1 and TP53*=1 each. 15% harbored a variant of unknown significance (VUS); *TET2*=8, *ASXL1*=2, *SETBP1*=2, and *CALR*, *CEBPA* and *CSF3*R=1 each.

NO DIFFERENCE IN MUTATED VS NON-MUTATED IN PHENOTYPE MUTATED PATIENTS HAD INFERIOR SURVIVAL IN UNIVARIATE ANALYSIS

HES treatment algorithm

Novel targeted therapies for eosinophilic disorders

When should you suspect mastocytosis?

- Urticaria pigmentosa
- Mast cell mediator
- symptoms
 - -Anaphylactoid -Diarrhea -Flushing/urticaria

- Adult **Mast Cell Disease** n 2001-144-682 Deb & Tefferi, NEJM Volume 349:e7 ugust 14, 2003
- Osteopenia/unexplained fractures

Diagnostic Evaluation in Systemic Mastocytosis

Practical classification of mast cell disease

Cutaneous mastocytosis (skin-only disease)

Both can manifest

Leukemia Research 2001;25:603

Survival for 342 systemic mastocytosis patients classified by disease type compared with the expected age and gender matched US Population's survival

Years from Dx

AJH 2016;91:888 BJH 2016;175:531

Treatment for Systemic mastocytosis

Phase-2 study of midostaurin 10-year follow-up (N=26; responders = 18 (69%; major response 50%) SM-AHN = 17 (13 responders); ASM = 3 (1 responder), MCL = 6 (4 responders)

Study status/reason for discontinuation (# of patients)⁵

S Continuing treatment (n=2)

* Adverse event: Grade 3 or 4 thrombocytopenia (n=2)

** Serious adverse event: sepsis (n=3), inflammatory mixed neuropathy/myopathy and altered mental status (n=1)

Withdrew consent (n=1)

Unsatisfactory therapeutic effect; discontinued per investigator discretion (n=5)

Disease progression (n=4)

⁴ Data through 3/1/2017; best response at any time on therapy

Solid bars are KIT D816 mutation-positive, two patterned bars are KIT D816 mutation-negative

Median d	uration of
treatment	(months)
median	19
range	2-132

Allogeneic hematopoietic stem-cell transplantation (alloHCT or HCT) outcomes in 57 patients with advanced systemic mastocytosis (SM): 38 SM-AHNMD; 12 MCL and 7 aggressive SM.

Kosmider et al. Leukemia

WHO diagnostic criteria for CNL

- 1. Leukocytosis $\geq 25 \ge 10^{9}/L$
- Neutrophils plus bands <u>>80%</u>
- Neutrophil precursors < 10%
- Myeloblasts rarely observed
- No dysgranulopoiesis
- 2. Hypercellular bone marrow
- Neutrophil granulocytes increased
- Neutrophil maturation normal
- Myeloblasts < 5%
- 3. Not meeting WHO criteria for BCR-ABL1+ CML, PMF, PV or ET
- 4. No PDGFRA/PDGFRB/FGFR1/PCM1-JAK2
- 5. CSF3RT618I or other activating CSF3R mutation

WHO diagnostic criteria for aCML

- Leukocytosis with $\geq 10\%$ precursors
- Dysgranulopoiesis
- Basophils <2%
- Monocytes <10%
- Hypercellular bone marrow with dysgranulopoiesis
- <20% blasts in the blood and bone marrow
- No PDGFRA/PDGFRB/FGFR1/PCM1-JAK2
- Not meeting WHO criteria for
- BCR-ABL1+ CML, PMF, PV or ET

or

no identifiable cause of reactive neutrophilia

Risk-stratified Kaplan–Meier survival curves for 19 *CSF3R*-mutated CNL patients.

Risk points: platelet count <160 × 10⁹/L (2 points); leukocyte count >60 × 10⁹/L (1 point); ASXL1 mutation (1 point)

CMML 2016 WHO Diagnostic Criteria

- AMC >1 x 10(9) /L and monocytes >10%
- Dysplasia in one or more myeloid lineages
- Not meeting WHO criteria for CML, PV, ET or MF
- No PDGFRA/PDGFRB/FGFR1/PCM1-JAK2
- <20% blasts in the blood and BM

In the <u>absence of dysplasia</u>, a diagnosis of CMML can still be made if: -An acquired clonal cytogenetic or molecular genetic abnormality can be documented. these include <u>ASXL1, TET2, SRSF2 and SETBP1</u> mutations -Monocytosis has persisted for >3 months -Other causes of reactive monocytosis have been ruled out

Differential diagnosis of Monocytosis

Reactive

- 1. Viral infections.
- 2. Recovering bone marrow.
- 3. Connective tissue disorders.
- 4. Sarcoidosis
- 5. Tuberculosis, Brucellosis, Leishmaniasis.
- 6. SABE.

Clonal

- 1. CMML
- 2. JMML
- 3. AML with monocytic differentiation.
- 4. MDS/MPN overlap syndromesunclassifiable.

CMML- Peripheral Blood and Bone Marrow Findings

Peripheral Blood Smear

Bone Marrow Aspirate

Dual Esterase Stain

WHO CMML Subcategories

<u>CMML-0</u>

- Blasts + promonocytes
 <2% in PB.
- Blasts + promonocytes
 <5% in BM.

CMML-1

- Blasts + promonocytes
 2-4% in PB.
- Blasts + promonocytes
 5-9% in BM

<u>CMML-2</u>

- Blasts + promonocytes
 5-19% in PB.
- Blasts + promonocytes 10-19% in BM.
- Presence of Auer rods, irrespective of blast count.

Proliferative vs Dysplastic CMML

Survival data for 435 patients with WHO defined chronic myelomonocytic leukemia stratified by "Proliferative" versus "Dysplastic" sub-types.

proliferative (cluster 2) CMML subtypes.

CMML – Genomics

- Epigenetic regulators <u>TET2</u> (~60%), IDH1, IDH2, DNMT3A
- Chromatin modeling <u>ASXL1</u> (~40%), EZH2
- Spliceosome components <u>SRSF2</u> (~45%), SF3B1, U2AF1, ZRSR2
- Transcription factors *RUNX1* (~15%)
- Signal pathways JAK2, KRAS, NRAS, CBL, PTPN11 (RAS pathway ~30%)
- Others SETBP1 (~15%), PHF6, BCOR, Tp53

> 90% CMML patients have ≥ 1 somatic mutations

Cytogenetic abnormalities in CMML

- Cytogenetic abnormalities seen in 20-40% of cases
- Most common are +8, chromosome 7 abnormalities and 12p deletions

Spanish Cytogenetic Risk Stratification.

- Low: Normal, -Y
- Intermediate: all others
- High: +8, chromosome 7 abnormalities and complex changes

5 year OS- 35%, 26% and 4%.

CMML Prognostic Models

Variables	<u>Mayo Model</u>	<u>Molecular</u> <u>Mayo Model</u>	<u>GFM Model</u>	<u>CPSS-</u> <u>Molecular</u>
HB < 10 gm/dl	+	+	+	Red blood cell transfusion dependance
High WBC			+ (>15)	+ (>13)
AMC >10	+	+		
Platelets < 100	+	+	+	
Circulating IMC	+	+		
BM blasts				+ (>5%)
Age >65			+	
Cytogenetic risk groups				+
Molecular genetics		ASXL1	ASXL1	ASXL1/ NRAS/ RUNX1 and SETBP1

Blood 2002; Blood 2012; JCO 2013; Leukemia 2013; Leukemia 2014; Blood 2016

Survival data for 420 patients with CMML stratified by the Molecular Mayo Model.

Survival data for 420 patients with CMML stratified by the GFM Model.

Months

CMML Therapeutics

Supportive care

- Transfusions
- Hydroxyurea
- ESA
- Iron chelation therapy

Directed Therapies

- Hypomethylating agents
- Allogeneic SCT
- Clinical trials

Hypomethylating (HMA) Agents in CMML

Study	N	Median Age (years)	Phase	Drug used	Response rates (%).	Median survival (months)
Wijermans 2008	31	71	II	Decitabine	CR-10 PR-16 HI-19	15
Costa 2011	38	70	II	Azacitidine	CR-11 PR- 3 HI- 25	12
Braun 2011	39	71	II	Decitabine	CR-10 PR-20 HI-8	18
Thorpe 2012	10	66	II	Azacitidine	CR-20 HI-40	NR
Ades 2013	76	70	II	Azacitidine	CR-17 PR-1 HI-17	29
Wong 2013	11	65	II	Azacitidine	CR-9 PR-9 HI-9	17
Fianchi 2013	31	69	II	Azacitidine	CR-45 PR-3 HI-6	37

Role for Allogeneic SCT in CMML

Study	N	Age median (range)	Donor Source	Conditioning regimen	Relapse rate and TRM	Outcome OS & DFS
Kroger 2002	50	44 (19-61)	MRD-43 MUD-7	MAC- 50	RR-28% TRM-52%	5 yr DFS-18% 5 yr OS-21%
Symeonidis 2010	283	50	MRD-160 MUD-85	MAC-152 RIC-87	RR-25% TRM-37%	5 yr DFS-38% 5 yr OS-42%
Eissa 2011	85	51 (21-66)	MRD-38 MUD-47	MAC- 58 RIC- 27	RR-27% TRM-35%	10 yr DFS-40% 10 yr OS-40%
Park 2013	73	53 (27-66)	MRD-41 MUD-32	MAC- 30 RIC- 43	RR-35%	3 yr DFS-29% 3 yr OS-32%

Novel Agents- Clinical Trials.

- MEK inhibitors.
- Hedgehog pathway inhibitors.
- GM-CSF monoclonal antibody (KB003).
- Neddylation inhibitors.
- MAP kinase inhibitor.
- P38/Tie-2 inhibitor.
- Aminopeptidase inhibitors.