Aggressive B and T cell lymphomas: Treatment paradigms in 2018

John P. Leonard M.D.

Richard T. Silver Distinguished Professor of Hematology and Medical Oncology

Associate Dean for Clinical Research

Associate Director, Meyer Cancer Center
Disclosures

Consulting advice:

Gilead, Juno, Celgene, Sutro, BMS, Genentech/Roche, Pfizer, Bayer, ADC Therapeutics, AstraZeneca, United Therapeutics, Biotest, Karyopharm, MEI Pharma, Novartis
Diffuse large B cell lymphoma

- Median age 60, usually with advanced stage disease
 - LAN, extranodal disease, symptoms
- Practical objective of treatment – cure (70%)
- Reasonably good clinical prognostic tools
- Most patients treated same (R-CHOP)
- Unmet need – more cures, reduce toxicity
- Who should we treat differently?
- If refractory to second-line therapy, prognosis is poor
Treatment algorithm for DLBCL

CHOP-R (100%)

- **Cure (60-70%)**
- **Relapsed/Refractory (30-40%)**

2nd line therapy
- R-ICE, R-DICE, R-DHAP, etc

- **Transplant eligible (20-25%)**
 - **ASCT + HDC**
 - **Cure (5%)**
 - **Relapse (15-20%)**

- **Transplant ineligible (10-15%)**
 - **Relapse (10-15%)**

3rd line or later therapy (25-35%)
Comparison of CHOP-R and EPOCH-R

R-CHOP

- Rituximab 375 mg/m² d1
- Cyclophosphamide 750 mg/m² d1
- Doxorubicin 50 mg/m² d1
- Vincristine 1.4 mg/m² (2 mg cap) d1
- Prednisone 40 mg/m² d1-5
- q3w × 6

DA*-R-EPOCH

- Rituximab 375 mg/m² d1
- Etoposide 50 mg/m²/d CI d1-4*
- Doxorubicin 10 mg/m²/d CI d1-4*
- Vincristine 0.4 mg/m²/d CI d1-4
- Cyclophosphamide 750 mg/m² d5*
- Prednisone 60 mg/m² bid d1-4
- G-CSF 5 μg/kg d6-ANC recovery
- q3w × 6
Prognostic factors (APLES)

- Age >60 years
- Performance status >1
- LDH >1× normal
- Extranodal sites >1
- Stage III or IV

Risk Category

- Low (L): 0 or 1
- Low intermediate (LI): 2
- High intermediate (HI): 3
- High (H): 4 or 5

International Prognostic Index (IPI) in aggressive NHL

<table>
<thead>
<tr>
<th>Patients (%)</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

What does the physician need or want to know when approaching a new DLBCL patient?

- Clinical features
 - International Prognostic Index
 - Primary mediastinal (R-EPOCH)
 - CNS, testicular (variations of rx)

- Pathological and molecular features
 - BM involvement (variations of rx)
 - Double hit (FISH) > Double protein (R-EPOCH)
 - Cell of origin (Germinal Center/Activated B Cell)
When do I treat patients with DLBCL today with something other than R-CHOP x 6?

Double hit subtype
 Data not robust in double protein subtype

Primary mediastinal

HIV associated

Testicular

Limited stage (?)

CNS

Elderly
Double hit vs Double protein DLBCL
10-25% of DLBCL

- **Double-hit lymphoma:** High-grade B-cell lymphoma with translocations of MYC as well as BCL2, BCL6, or both (“triple-hit”)
 - Histologically classified as DLBCL or B-cell lymphoma unclassifiable with intermediate features between DLBCL and Burkitt Lymphoma
 - Cell of origin: Virtually always germinal center subtype
 - Outcome poor with standard therapies

- **Double-expressing lymphomas:** DLBCL with dual immunohistochemical expression of MYC (≥40%) and BCL2 (≥70%) in the absence of translocations
 - Cell of origin: Usually activated B cell subtype
 - Outcome inferior to other DLBCLs, but not as poor as DHL
Caveats in understanding clinical characteristics and outcomes in “double hit and double protein” lymphoma

- Clinical features of the subtype are less favorable
- Selection biases of series
- Variability in molecular testing
- Challenges and changes in morphologic/pathologic classification
- Non-uniform therapy
- Single vs multicenter
- Retrospective
FISH DH DLBCL and treatment with R-CHOP

Green et al, JCO 2012
DA-EPOCH-R in double hit lymphoma

Petrich et al Blood 2014
Oki et al BJH 2014
Planned Intergroup Trial in DH/DE DLBCL
Phase I then Phase II-III
BCL-2 inhibitor Venetoclax

Untreated DHL/DPL

DA-EPOCH-R (DH)
CHOP-R (DE)

DA-EPOCH-R (DH)
CHOP-R (DE) + Venetoclax (ABT199)

Ph I Investigator-initiated study (Alliance Foundation) WCM/NYP Coordinating Site (Rutherford)
Phase II/III NCI/Alliance/Intergroup (Abramson MGH)
Alliance/CALGB 50303: R-CHOP vs R-EPOCH in Newly Diagnosed DLBCL

- Primary endpoints: EFS, molecular predictors of outcome for each regimen
- Secondary endpoints: RR, OS, toxicity, use of molecular profiling

Bartlett et al, ASH 2016

Alliance 50303: Design

- N = 524; enrolled 2005 – 2013; Data cutoff November 2016
 - Analysis planned after 242 events, but due to low event rate DSMB released data July 2016 with 167 events

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>R-CHOP (%)</th>
<th>DA-EPOCH R (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (range)</td>
<td>58 (18-86)</td>
<td>57 (19-84)</td>
<td>0.677</td>
</tr>
<tr>
<td>ECOG 0-1 vs. 2</td>
<td>88 vs. 12</td>
<td>87 vs. 13</td>
<td>0.518</td>
</tr>
<tr>
<td>Stage 3/4</td>
<td>73</td>
<td>77</td>
<td>0.641</td>
</tr>
<tr>
<td>IPI 0-2</td>
<td>65</td>
<td>61</td>
<td>0.405</td>
</tr>
</tbody>
</table>

GRADE ≥ 3 TOXICITY

Treatment related deaths	2	2	0.975
Platelets	11	65	<0.001
Febrile neutropenia	17	35	<0.001
Infection	11	14	0.169
Neuropathy – sensory/motor	2/1	14/8	<0.001
Alliance 50303: Outcomes

<table>
<thead>
<tr>
<th></th>
<th>R-CHOP</th>
<th>DA-EPOCH-R</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>89%</td>
<td>89%</td>
<td>0.983</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>62%</td>
<td>61%</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>27%</td>
<td>27%</td>
<td></td>
</tr>
</tbody>
</table>

Event Free Survival

Median follow-up 5.0 y
HR = 1.14 (0.82-1.61)
p = 0.4386

Overall Survival

HR = 1.18 (0.79-1.77)
DA-EPOCH-R without RT for PMBCL

DA-EPOCH-R in children and adults with PMBCL: A retrospective multicenter analysis

Objectives:
- Describe outcomes in a large number of patients with PMBCL treated with DA-EPOCH-R
- Compare pediatric and adult experience

Methods:
- Collected data from 24 academic medical centers on patients treated from 2005-2015
- No age restriction
- Excluded pediatric patients enrolled on ANHL1131

Roth et al. BJH 2017
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total Cohort n=156</th>
<th>Pediatrics (age <21) n=38</th>
<th>Adult (age ≥21) n=118</th>
<th>p value peds vs. adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in yrs: median (range)</td>
<td>31y (9-70)</td>
<td>16y (9-20)</td>
<td>34y (21-70)</td>
<td><0.01</td>
</tr>
<tr>
<td>Female sex: number (%)</td>
<td>100 (64.1%)</td>
<td>21 (55.3%)</td>
<td>79 (66.9%)</td>
<td>0.243</td>
</tr>
<tr>
<td>ECOG performance status: median (range)</td>
<td>1 (0-4)</td>
<td>N/A</td>
<td>1 (0-4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Stage: number (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>26 (16.8%)</td>
<td>1 (2.6%)</td>
<td>25 (21.4%)</td>
<td>N/A*</td>
</tr>
<tr>
<td>II</td>
<td>68 (43.9%)</td>
<td>9 (23.7%)</td>
<td>59 (50.4%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>30 (19.4%)</td>
<td>23 (60.5%)</td>
<td>7 (6.0%)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>31 (20.0%)</td>
<td>5 (13.2%)</td>
<td>26 (22.2%)</td>
<td></td>
</tr>
<tr>
<td>B symptoms: number (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>61 (39.9%)</td>
<td>11 (30.6%)</td>
<td>50 (42.7%)</td>
<td>0.244</td>
</tr>
<tr>
<td>II</td>
<td>58 (37.3%)</td>
<td>15 (40.0%)</td>
<td>38 (32.2%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>31 (20.0%)</td>
<td>11 (28.9%)</td>
<td>19 (16.0%)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>30 (19.4%)</td>
<td>9 (23.7%)</td>
<td>26 (22.2%)</td>
<td></td>
</tr>
<tr>
<td>Bulky tumor >10cm: number (%)</td>
<td>95 (62.9%)</td>
<td>29 (78.4%)</td>
<td>66 (57.9%)</td>
<td>0.031</td>
</tr>
<tr>
<td>LDH > ULN: number (%)</td>
<td>125 (82.8%)</td>
<td>30 (85.7%)</td>
<td>95 (81.9%)</td>
<td>0.799</td>
</tr>
<tr>
<td>Extranodal disease: number (%)</td>
<td>51 (32.9%)</td>
<td>15 (39.5%)</td>
<td>36 (30.8%)</td>
<td>0.328</td>
</tr>
<tr>
<td>Pleural effusion: number (%)</td>
<td>73 (48.0%)</td>
<td>20 (58.8%)</td>
<td>53 (44.9%)</td>
<td>0.176</td>
</tr>
<tr>
<td>Pericardial effusion: number (%)</td>
<td>82 (53.9%)</td>
<td>19 (55.9%)</td>
<td>63 (53.4%)</td>
<td>0.847</td>
</tr>
<tr>
<td>CD20+ malignant cells: number (%)</td>
<td>146 (98.6%)</td>
<td>30 (100%)</td>
<td>116 (98.3%)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Roth et al, BJH 2017
DA-R-EPOCH in PMBCL

Event Free Survival

- **Adult**: 3 yr EFS: 87.4%
- **Pediatrics**: 3 yr EFS: 81.0%

Overall Survival

- **Adult**: 3 yr OS: 97.1%
- **Pediatrics**: 3 yr OS: 90.7%

Total Cohort (n=156)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Pediatric (age<21) n=38</th>
<th>Adult (age ≥ 21) n=118</th>
<th>P value for peds vs. adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 yr EFS (95% CI)</td>
<td>81.0 (68.3-93.7)</td>
<td>87.4 (81.2-93.6)</td>
<td>0.338</td>
</tr>
<tr>
<td>3 yr OS (95% CI)</td>
<td>90.7 (80.6-100.0)</td>
<td>97.1 (94.0-100.0)</td>
<td>0.170</td>
</tr>
<tr>
<td>Follow up in mo: Median (range)</td>
<td>24.0 (6.0-83.3)</td>
<td>22.6 (2.7-101.0)</td>
<td>0.780</td>
</tr>
</tbody>
</table>

Roth et al, BJH 2017
Outcome by end of therapy FDG-PET

Patients evaluated by PET or PET/CT at end of therapy:

<table>
<thead>
<tr>
<th>Deauville score : number (%)</th>
<th>Total Cohort n=156</th>
<th>EFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤3</td>
<td>149 (96.1%)</td>
<td>94 (75.2%)</td>
<td>95.4%</td>
</tr>
<tr>
<td>4</td>
<td>17 (13.6%)</td>
<td>75.4%</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>14 (11.2%)</td>
<td>28.6%</td>
<td>74.1%</td>
</tr>
</tbody>
</table>

Roth et al, BJH 2017
Approach to testicular DLBCL
IELSG10 – 53 patients

Stage I
- RCHOP × 3*

Stage II
- RCHOP × 3*

+ 4 doses IT MTX

CR/PR
- RCHOP × 3
- Testicular RT†

CR
- RCHOP × 3
- Testicular RT + IF-RT†

PR
- RCHOP × 5
- Testicular RT + IF-RT†

Vitolo et al, JCO 2011
Approach to testicular DLBCL
IELSG10 – 53 patients

Vitolo et al, JCO 2011
Approach to limited stage DLBCL

S0014 – R-CHOP x 3 + IFRT

Persky et al, JCO 2008
Approach to limited stage DLBCL

Is RT needed?

Sehn, Cancer Journal, 2012
Long term F/U limited stage DLBCL

S8736 – CHOP x 3 + IFRT vs CHOP x 8

Stephens et al, JCO 2016
Who is at risk for CNS involvement in DLBCL?

CNS-IPI

Table 2. Factors Defining the CNS International Prognostic Index: Results of Multivariable Analysis

<table>
<thead>
<tr>
<th>Factor</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney and/or adrenal glands involved</td>
<td>2.8</td>
<td>1.3 to 5.8</td>
<td>.006</td>
</tr>
<tr>
<td>Age > 60 years</td>
<td>2.5</td>
<td>1.3 to 4.5</td>
<td>.001</td>
</tr>
<tr>
<td>LDH > normal</td>
<td>2.4</td>
<td>1.3 to 4.5</td>
<td>.005</td>
</tr>
<tr>
<td>ECOG PS > 1</td>
<td>2.2</td>
<td>1.3 to 3.9</td>
<td>.006</td>
</tr>
<tr>
<td>Stage III/IV disease</td>
<td>2.0</td>
<td>1.0 to 3.8</td>
<td>.039</td>
</tr>
<tr>
<td>Extramedullary involvement > 1</td>
<td>1.0</td>
<td>0.5 to 1.8</td>
<td>.935</td>
</tr>
</tbody>
</table>

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase.

Schmitz et al, JCO 2016
What CNS prophylaxis or treatment do I use in high risk patients?

R-CHOP + d14 MTX 3.5 g/m2 x 3-4 cycles

Retrospective analysis
65 “high risk” patients
2 CNS recurrences

CNS Risk Factor	No.	%
> 1 extranodal site | 40 | 62
> 1 extranodal site and elevated LDH | 30 | 46
Hollender score of 4-5 | 11 | 17

High-risk sites
- Bone marrow
- Testis
- Paranasal sinus
- Orbit
- Breast
- Renal/adrenal
- Liver
- Epidural disease

CNS indicates central nervous system; LDH, lactate dehydrogenase.

Abramson et al, Cancer 2010
R-mini CHOP for age 80 and over

- Rituximab 375 mg/m\(^2\) day 1
- Cyclophosphamide 400 mg/m\(^2\) day 1
- Doxorubicin 25 mg/m\(^2\) day 1
- Vincristine 1 mg day 1
- Prednisone 40 mg/m\(^2\) days 1-5

R-mini CHOP for age 80 and over

What about new approaches in DLBCL?

- Strategies under investigation independent of cell of origin
- Strategies targeting specific cell of origin subtype
Germinal Center vs Activated B Cell DLBCL

Dissecting a Cancer into Molecularly and Clinically Distinct Subgroups by Gene Expression Profiling

Diffuse Large B Cell Lymphoma

Activated B Cell-like, Germinal Center B Cell-like, Primary Mediastinal B Cell Lymphoma

Germinal Center vs Activated B Cell DLBCL

IHC surrogate (Hans) - CD10, bcl-6, MUM-1
GCB vs “non-GCB”

Outcome by GCB vs ABC gene signatures in DLBCL
N=233 patients treated with R-CHOP

Oncogenic mechanisms and potential therapeutic targets in GCB and ABC DLBCLs

<table>
<thead>
<tr>
<th>DLBCL subtype</th>
<th>Cell of origin</th>
<th>Oncogenic mechanisms</th>
<th>Potential targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCB</td>
<td>Germinal centre B-cell</td>
<td>BCL2 translocation*</td>
<td>BCL6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EZH2 mutations\‡</td>
<td>EZH2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTEN deletions\§</td>
<td>PI3K/Akt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loss of PTEN expression</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>Post-germinal centre B-cell</td>
<td>NF-κB activation\‖</td>
<td>BCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARD11 mutations</td>
<td>CBM complex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MYD88 mutations</td>
<td>IRAK-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD79B mutations</td>
<td>JAK–STAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A20 deletions</td>
<td></td>
</tr>
</tbody>
</table>

Upfront DLBCL – Novel agent/regimen in specific clinical or molecular patient subsets

Study design

- Subset 1
 - CHOP-R

- Subset 2
 - Other regimen
Agents under evaluation based on cell of origin

- Bortezomib
- Ibrutinib
- Lenalidomide
Alliance 51301 Study Schema

Relapsed/Refractory DLBCL-ABC
Salvage ≥PR, stem cells collected

Randomization
Stratify by time to relapse, conditioning regimen

Arm A
ASCT: CBV or BEAM
+ Ibrutinib 560 mg
Ibrutinib x 12 months
Follow Up

Arm B
ASCT: CBV or BEAM
Placebo x 12 months
Follow Up

Crossover if Progression
Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

111 enrolled, 101 received drug

Neelapu et al; NEJM 377;26:2531-44, 2017
Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

111 enrolled, 101 received drug

Neelapu et al; NEJM 377;26:2531-44, 2017
Axicabtagene Ciloleucel CAR T-Cell in refractory DLBCL

<table>
<thead>
<tr>
<th>Event</th>
<th>Any Grade</th>
<th>Grade 1 or 2</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>65 (64)</td>
<td>37 (37)</td>
<td>28 (28)</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>34 (34)</td>
<td>13 (13)</td>
<td>21 (21)</td>
</tr>
<tr>
<td>Confusional state</td>
<td>29 (29)</td>
<td>20 (20)</td>
<td>9 (9)</td>
</tr>
<tr>
<td>Tremor</td>
<td>29 (29)</td>
<td>28 (28)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Aphasia</td>
<td>18 (18)</td>
<td>11 (11)</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Somnolence</td>
<td>15 (15)</td>
<td>8 (8)</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Agitation</td>
<td>9 (9)</td>
<td>5 (5)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Memory impairment</td>
<td>7 (7)</td>
<td>6 (6)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Mental-status change</td>
<td>6 (6)</td>
<td>4 (4)</td>
<td>2 (2)</td>
</tr>
</tbody>
</table>

Cytokine release syndrome

<table>
<thead>
<tr>
<th>Event</th>
<th>Any Grade</th>
<th>Grade 1 or 2</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>94 (93)</td>
<td>81 (80)</td>
<td>13 (13)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>77 (76)</td>
<td>66 (65)</td>
<td>11 (11)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>41 (41)</td>
<td>32 (32)</td>
<td>9 (9)</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>22 (22)</td>
<td>13 (13)</td>
<td>9 (9)</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>21 (21)</td>
<td>20 (20)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Neelapu et al; NEJM 377;26:2531-44, 2017
CTCL: Background

- Chronic T-cell lymphoma primarily involving skin
- Mycosis fungoides (MF) and primary cutaneous anaplastic large cell lymphoma (pcALCL) are the most common CD30 expressing CTCL
- Brentuximab vedotin, a CD30 targeting antibody-drug-conjugate, has clinical activity in CTCL
 - Duvic et al. ORR, MF 54%, pcALCL 100%;
 - Kim et al. ORR, MF/Sézary syndrome 70%

Brentuximab Vedotin vs Investigator Choice in CD30+ CTCL (Alcanza study)

<table>
<thead>
<tr>
<th></th>
<th>Brentuximab Vedotin (n=64)</th>
<th>Physician’s choice of methotrexate or bexarotene (n=64)</th>
<th>Overall (N=128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62 (51-70)</td>
<td>59 (48-67)</td>
<td>60 (48-69)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>33 (52%)</td>
<td>37 (58%)</td>
<td>70 (55%)</td>
</tr>
<tr>
<td>Female</td>
<td>31 (48%)</td>
<td>27 (42%)</td>
<td>58 (45%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>56 (88%)</td>
<td>53 (83%)</td>
<td>109 (85%)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (8%)</td>
<td>10 (16%)</td>
<td>15 (12%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>3 (5%)</td>
<td>1 (2%)</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>43 (67%)</td>
<td>46 (72%)</td>
<td>89 (70%)</td>
</tr>
<tr>
<td>1</td>
<td>18 (28%)</td>
<td>16 (25%)</td>
<td>34 (27%)</td>
</tr>
<tr>
<td>2</td>
<td>3 (5%)</td>
<td>2 (3%)</td>
<td>5 (4%)</td>
</tr>
<tr>
<td>Median CD30 expression*</td>
<td>37.5% (12.5-67.5)</td>
<td>31.3% (12.0-47.5)</td>
<td>31.3% (13.5-50.0)</td>
</tr>
<tr>
<td>Time since initial diagnosis (months)</td>
<td>42.2 (12.6-87.4)</td>
<td>37.0 (12.3-102.7)</td>
<td>40.9 (127-368)</td>
</tr>
<tr>
<td>Time since progression on last therapy (months)</td>
<td>2.4 (1.4-7.9)</td>
<td>1.3 (0.9-37)</td>
<td>1.9 (1.1-38)</td>
</tr>
<tr>
<td>Lines of previous therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.0 (2.0-7.0)</td>
<td>3.5 (2.0-5.5)</td>
<td>4.9 (2.0-6.0)</td>
</tr>
<tr>
<td>Skin-directed</td>
<td>1.0 (1.0-2.0)</td>
<td>1.0 (1.0-2.0)</td>
<td>1.0 (1.0-2.0)</td>
</tr>
<tr>
<td>Systemic</td>
<td>2.0 (1.0-4.0)</td>
<td>2.0 (1.0-4.0)</td>
<td>2.0 (1.0-4.0)</td>
</tr>
<tr>
<td>Mycosis fungoides</td>
<td>48 (75%)</td>
<td>49 (77%)</td>
<td>97 (76%)</td>
</tr>
</tbody>
</table>

Prince et al; Lancet 390: 555-66, 2017
Brentuximab Vedotin vs Investigator Choice in CD30+ CTCL (Alcanza study)

<table>
<thead>
<tr>
<th>ITT Population</th>
<th>Brentuximab Vedotin</th>
<th>Physician's Choice of Methotrexate or Bexarotene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=64)</td>
<td>ORR4</td>
</tr>
<tr>
<td>Mycosis fungoides</td>
<td>48 (75%)</td>
<td>24 (50%)</td>
</tr>
<tr>
<td>Stage I/II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA–IIB</td>
<td>15 (31%)</td>
<td>6 (40%)</td>
</tr>
<tr>
<td>IIB</td>
<td>19 (40%)</td>
<td>12 (63%)</td>
</tr>
<tr>
<td>IIIA–IIIB</td>
<td>4 (8%)</td>
<td>2 (50%)</td>
</tr>
<tr>
<td>IVA</td>
<td>2 (4%)</td>
<td>2 (100%)</td>
</tr>
<tr>
<td>IVB</td>
<td>7 (15%)</td>
<td>2 (29%)</td>
</tr>
<tr>
<td>pALCL</td>
<td>16 (25%)</td>
<td>12 (75%)</td>
</tr>
</tbody>
</table>

Prince et al; Lancet 390: 555-66, 2017
Brentuximab Vedotin vs Investigator Choice in CD30+ CTCL (Alcanza study)

Prince et al; Lancet 390: 555-66, 2017
Mantle cell lymphoma (10%)

Incurable, median survival 5-10 years

Key focus:

- More vs less intensive initial therapies
 - Bendamustine based rx in older pts standard
 - Does SCT improve survival in younger patients?
 - Role of MRD?

- Development of novel agents and translational studies to understand resistance and advance rational combinations
MCL “standard” initial treatment options

- Observation
- R-CHOP
- Modified R-HyperCVAD
- Bortezomib-R-CAP
- R-Bendamustine
- vs
- R-CHOP/DHAP/ASCT
- R-HyperCVAD/MTX/Ara-C
- R-HyperCVAD/MTX/Ara-C/ASCT
- Nordic

Less intensive

More intensive
Bendamustine + Rituximab (+/- maint R) upfront MCL
Median age 71, 84% MIPI int/high risk

PFS (all registered pts)
N = 168
Median: 64.2 months

Pts at risk 168 133 110 94 70 38 11

Rummel et al, ASCO 2016
E1411: Randomized Phase 2 Intergroup Trial: Initial Therapy of Mantle Cell Lymphoma

REGISTRATION

- **BR x 6** → **Rituximab**
- **BVR x 6** → **Rituximab**
- **BR x 6** → **Lenalidomide + Rituximab**
- **BVR x 6** → **Lenalidomide + Rituximab**
Maintenance Rituximab after AuSCT in Mantle Cell Lymphoma

Le Gouill et al; NEJM 377;13:1250-60, 2017
Maintenance Rituximab after AuSCT in Mantle Cell Lymphoma

Le Gouill et al; NEJM 377;13:1250-60, 2017
E4151: Randomized trial of SCT/R vs R in MRD neg CR MCL patients

Pre-Registration

Submit tumor tissue to Adaptive Biotechnologies for clonal marker testing

Post-induction Restaging (CR, PR, SD/ PD)
- Submit blood to Adaptive for MRD assessment (MRD pos or MRD neg)

MRD neg CR*

MRD neg PR
MRD indeterminate
MRD pos CR or PR

ARM A
Auto-HCT + Rituximab

ARM B
Rituximab

ARM C
Auto-HCT + Rituximab
Acalabrutinib in Relapsed/Refractory Mantle Cell Lymphoma

124 pts, median 2 prior rx
81% ORR, 40% CR

Wang et al; Lancet 2017
Acalabrutinib in Relapsed/Refractory Mantle Cell Lymphoma

Wang et al; Lancet 2017
Key take home points for aggressive lymphoma

- **DLBCL**
 - Modifications to R-CHOP currently based on clinical features, COO/molecular directed rx under evaluation
 - CAR-T cell rx available, undergoing further optimization
- **T cell**
 - CD30-directed therapy of value
- **MCL**
 - Maintenance rituximab, role of MRD-directed therapy
 - Novel BTK inhibitors