Acute and Chronic Leukemias and MDS

- **Acute Leukemias**
 - Acute Myeloid Leukemia (AML)
 - Acute Lymphoblastic Leukemia (ALL)

- **Chronic Leukemias**
 - Chronic Myeloid Leukemia (CML)
 - Chronic Lymphoid Leukemia (CLL)

- **Myelodysplastic Syndrome (MDS)**

Richard M. Stone, MD
Director, Adult Leukemia Program
Dana-Farber Cancer Institute
Professor of Medicine
Harvard Medical School, Boston, MA
Disclosure Information

The following relationships exist related to this presentation:

• Dr. Richard Stone has served as a consultant for Abbvie, Amgen, Agios, Arog, Celgene, Cornerstone, Jazz, Karyopharm, Novartis, Orsenix, Pfizer,

Off-Label/Investigational Discussion

In accordance with CME policy, faculty have been asked to disclose discussion of unlabeled or unapproved use(s) of drugs or devices during the course of their presentations.
Leukemia: Definition

- Overabundance of white blood cells in peripheral blood
 - If immature (like stem cells) then acute leukemia
 - If mature (like normal cells) then chronic leukemia
Acute Leukemias arise from SC and committed SCs
Myeloid Malignancies

Acute Myeloid Leukemia

≥20% blasts

<20% blasts

Myelodysplastic Syndromes

Myelodysplastic/Myeloproliferative overlap

Myeloproliferative Neoplasms

Absence of cytosis

Dyserythropoiesis
Dysgranulopoiesis

Granulocytosis
Thrombocytosis
Eosinophilia
Mastocytosis

Monocytosis

Erythrocytosis

>1000/μL

≥20% blasts

<20% blasts
Chronic Myeloid Malignancies

CML - *BCR-ABL1* 100%
PV - *JAK2* 99%
ET - *JAK2/MPL* 60%
PMF - *JAK2/MPL* 70%
CNL - *CSF3R* 90%
 - *SETBP1* 33%
SM - *KITD816V* 90%
CEL
MPN-U

Myelodysplastic Syndromes
Myelodysplastic/Myeloproliferative overlap
Myeloproliferative Neoplasms

Absence of cytosis
Dyserythropoiesis
Dysgranulopoiesis
Granulocytosis
Thrombocytosis
Eosinophilia
Mastocytosis
Monocytosis
Erythrocytosis
Acute Leukemia: Clinical Presentation

• Bone marrow failure
 – neutropenia - infection/fever
 – anemia - fatigue/SOB
 – thrombocytopenia - bleeding

• Metabolic abnormalities
 – hypokalemia - renal tubular damage from myeloblasts
 – hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia - tumor lysis syndrome
Acute Leukemia: Selected Clinical Issues

- **Infection**
 - Do not delay antileukemic therapy while infection resolves
 - Early use of antifungals
 - Raw fruit and vegetables probably probably OK

- **Thrombocytopenia**
 - Platelet transfusion threshold of 10K/ul
 - Obligate use of single donor platelets is controversial

- **Tumor Lysis Syndrome**
 - Hydration, allopurinol, and judicious use of sodium bicarbonate is effective
 - Single dose of recombinant urate oxidase can be considered if pt cannot take po
Acute Leukemia:
Blasts on Wright stain

<table>
<thead>
<tr>
<th>feature</th>
<th>myeloid</th>
<th>lymphoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>cytoplasm</td>
<td>ample</td>
<td>scant</td>
</tr>
<tr>
<td>granules</td>
<td>a few</td>
<td>absent</td>
</tr>
<tr>
<td>chromatin</td>
<td>open</td>
<td>less so</td>
</tr>
<tr>
<td>nucleoli</td>
<td>many</td>
<td>few</td>
</tr>
<tr>
<td>Auer Rods</td>
<td>in 50%</td>
<td>no</td>
</tr>
</tbody>
</table>

Cytochem: perox-AML, NSE-AMo/ML; PAS-ALL
Acute Leukemia: Immunophenotypic Diagnosis

• AML: CD33 (in 90%), CD15, CD117 (c-kit); CD14, CD11c- monocytic

• ALL:
 – pre-B cell: CD19, CD20, CD10 (CALLA) in most
 – B-cell: CD19, surface immunoglobulin
 – T-cell: CD2, CD7, CD3
AML: FAB Classification

- M0: Cytochem neg; myeloid Ag on flow
- M1: Peroxidase pos.
- M2: Perox pos.; some differentiation
- M3: Acute Promyelocytic Leukemia
- M4: Acute Myelomonocytic Leukemia (perox and NSE pos.)
- M5: Acute Monocytic Leukemia (NSE pos)
- M6: Acute Erythroleukemia
- M7: Acute Megakaryocytic Leukemia
AML: What is it and how did it get there?

- Unbridled proliferation of hematopoietic stem cells (myeloid lineage) resulting in marrow failure and patient death unless successfully treated
- Risk factors: AGE, prior chemo for other cancers, ionizing radiation, industrial solvents (last 3 probably <10% of incidence=15K new US cases annually)
• AML genomes have fewer mutations than most other adult cancers (n=13, 5 of which are among the 23 recurrently mutated genes)

• 9 Key categories:
 – transcription-factor fusions (18%)
 – nucleophosmin (NPM1) (27%)
 – tumor-suppressor genes (16%)
 – DNA-methylation–related genes (44%)
 – signaling genes (59%)
 – chromatin-modifying genes (30%)
 – myeloid transcription-factor genes (22%)
 – cohesin-complex genes (13%)
 – spliceosome-complex genes (14%).

The Cancer Genome Atlas Research Network
Current Risk Assessment in AML

Key Prognostic Data in AML in 2014

<table>
<thead>
<tr>
<th>Patient age</th>
<th>Cytogenetics / karyotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary versus secondary disease</td>
</tr>
<tr>
<td></td>
<td>(secondary = post-antecedent hematologic disorder, or therapy-related)</td>
</tr>
</tbody>
</table>

Molecular studies:

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLT3 ITD (internal tandem duplication) mutation</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>NPM1 mutation</td>
<td>Favorable</td>
</tr>
<tr>
<td>CEBPA biallelic mutation</td>
<td>Favorable</td>
</tr>
<tr>
<td>KIT mutation [in ~25% of t(8;21) or inv(16) AML]</td>
<td>Unfavorable</td>
</tr>
</tbody>
</table>

Of Future Importance: mutation status of *IDH1/2, DNMT3A, TET2*, etc.
Acute Leukemia: General treatment principles

• **Goal 1**: Induction rx to reduce gross leukemia to undetectable levels (2-3 log cell kill)

• **Goal 2**: Reduce $10^9 - 10^{10}$ cells, undetectable by standard means, present at CR, to a level low enough to achieve prolonged disease-free survival (‘cure’)
Older Patients With AML Continue to Have Inferior Outcomes

<table>
<thead>
<tr>
<th>Age group</th>
<th>Complete remission rate (with “3&7”-like regimens)</th>
<th>Early mortality</th>
<th>Disease-free survival</th>
<th>Long-term overall survival</th>
<th>Median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td><60 years</td>
<td>70%</td>
<td>10%</td>
<td>45%</td>
<td>30%</td>
<td>24 months</td>
</tr>
<tr>
<td>≥60 years</td>
<td>45%</td>
<td>>25%</td>
<td><20%</td>
<td>10%</td>
<td>10 months</td>
</tr>
</tbody>
</table>

Data are based on CALGB & MRC trials for which adults of all ages were eligible
AML in > 60 yo: Lack of Effect of induction chemo choice on DFS- HOVON AML-9
Selected Lower-Intensity Approaches in Older, Poor Prognosis Patients With AML

- **Clofarabine 30 mg/m²/d x 5d (n = 112) (nucleoside analogue)**
 - Median age 71 years, 36% with prior MDS
 - 38% CR, 8% CRp (seen even with several risk factors)
 - Early death rate = 10%

- **Decitabine 20 mg/m²/d x 5d (n = 55) (DNAMTi)**
 - Median age 74 years, 42% had secondary AML
 - 24% CR, 2% CRp
 - Early death rate = 4%
 - Ph III v lowdac: 18% v 8% CR, 7.7v 5.0 mo med OS (missed primary EP; n=485; Kantarjian et al, JCO, 2012)

- **Decitabine 20 mg/m²/d x 10d (n = 53)**
 - Median age 74 years, 36% had secondary AML
 - 47% CR, 64% CR + CRi
 - Early death rate (8 weeks) = 15%
 - Higher levels of miR-29b associated with increased likelihood of response

AML: Treatment of those under age 60 (non-APL)

- Induction
 - anthracycline (3d) plus cytarabine (7d, IVCI)

- Post-remission Therapy
 - intensive chemo
 - auto BMT
 - alloBMT
Consolidation: DFS Benefit Only in Patients < 60 Years Receiving High-Dose Ara-C

Patients in Remission (%)

Age < 60

Age > 60

Patients with CBF cytogenetics or RAS mutations benefitted most from HiDAC

Treatment of Acute Promyelocytic Leukemia

Key Principles of APL Management

Suspect the disease!

- Risk of death is greatest in the first two weeks after diagnosis, especially if ATRA initiation is delayed…

- So, if the clinical setting suggests the possibility of APL (e.g., clefted blasts, strong CD33+, DIC) **do not wait** for molecular confirmation to start ATRA

Document disease

- Use cytogenetics or FISH for t(15;17), or RT-PCR for *PML-RARA* fusion

- Variant translocations are rare, but important to know about, since several do not respond to ATRA

Assess risk

- If WBC >10 x 10^9/L: **high risk**

- If WBC ≤10 x 10^9/L: **standard risk** (lowest risk if platelets also >40 x 10^9/L)

Is the patient an anthracycline candidate?
Acute Promyelocytic Leukemia
Low/intermediate risk patients
(WBC ≤10 x 10⁹/L, AGE 16-70)

ATO

ATRA

Chemotherapy

LoCoco et al (NEJM 2013)
Overall survival probability

98.7% 91.1%
p = 0.02

ATRA+ATO ATRA+Chemo

Overall Survival

LoCoco et al (Abs #6), ASH 2012
ALL: Therapy

• Childood ALL-85% cured: The great success story based on anthracycline, vincristine, steroid, L-asp induction; CNS prophylaxis; intensification; and POMP maintenance

• Adult ALL-35% cured: More difficult biology (increased inc PH+), but perhaps therapy could be improved even with available agents
 – Ongoing trial lead by DFCI adult leukemia team: almost exact pediatric rx to adults
ALL: Therapy in Children

- Successive steady improvements in recent past such that even high risk children are doing well; DFCI studies

<table>
<thead>
<tr>
<th>Year</th>
<th>Treatment Details</th>
<th>EFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981-5</td>
<td>hd MTX, no L-asp ind’n</td>
<td>74%</td>
</tr>
<tr>
<td>1985-7</td>
<td>ld MTX, L-asp ind’n</td>
<td>78%</td>
</tr>
<tr>
<td>1987-91</td>
<td>no CNS XRT, SR</td>
<td>78%</td>
</tr>
<tr>
<td>1991-5</td>
<td>hd MTX, L-asp ind’n, 30 wk intens dexamethsone</td>
<td>83%</td>
</tr>
</tbody>
</table>
Childhood ALL: Late Complications of Therapy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain Tumor</td>
<td>Cranial XRT</td>
</tr>
<tr>
<td>AML</td>
<td>topo II drugs (teniposide, anthracylines)</td>
</tr>
<tr>
<td>cardiomyopathy</td>
<td>anthracyclines</td>
</tr>
<tr>
<td>encephalopathy</td>
<td>Cr XRT, steroids, MTX</td>
</tr>
<tr>
<td>AVN of bone</td>
<td>steroids</td>
</tr>
<tr>
<td>osteoporosis</td>
<td>steroids, Cr XRT, ametab</td>
</tr>
<tr>
<td>short stature</td>
<td>Cr XRT, steroids, h.d chemo</td>
</tr>
<tr>
<td>obesity</td>
<td>Cr XRT</td>
</tr>
<tr>
<td>hypothyroidism</td>
<td>Cr XRT, h.d. chemo</td>
</tr>
</tbody>
</table>
Outcome Comparison of Adolescent/Young Adults with ALL on Pediatric vs. Adult Clinical Trials

<table>
<thead>
<tr>
<th>Cooperative Group</th>
<th>Study Period/ No. Pts.</th>
<th>Age (yrs)</th>
<th>CR (%)</th>
<th>EFS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America (Stock)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCG (peds)</td>
<td>1988-1998 196 pts</td>
<td>16-21</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>CALGB (adults)</td>
<td>1988-1998 103 pts</td>
<td>16-21</td>
<td>93%</td>
<td>38%</td>
</tr>
<tr>
<td>French (Boissel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRALLE (peds)</td>
<td>1993-1994 77 pts</td>
<td>15-20</td>
<td>94%</td>
<td>67%</td>
</tr>
<tr>
<td>LALA (adults)</td>
<td>1993-1994 100 pts</td>
<td>15-20</td>
<td>83%</td>
<td>41%</td>
</tr>
<tr>
<td>Dutch (deBois)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKION (peds)</td>
<td>1985-1999 47 pts</td>
<td>15-21</td>
<td>98%</td>
<td>69%</td>
</tr>
<tr>
<td>HOVON (adults)</td>
<td>1985-1999 73 pts</td>
<td>15-21</td>
<td>91%</td>
<td>31% / 46%</td>
</tr>
<tr>
<td>Italian (Testi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIEOP (peds)</td>
<td>1996-2000 153</td>
<td>14-18</td>
<td>94%</td>
<td>83%</td>
</tr>
<tr>
<td>GIMEMA (adults)</td>
<td>1996-2000 95</td>
<td>14-18</td>
<td>95%</td>
<td>55%</td>
</tr>
</tbody>
</table>
DFCI Pediatric-Inspired ALL for adults age 18-40

Deange lo et al Leukemia 2014
CML Stable Phase
Presentation and Clinical Course
Chronic Phase

• 85-90% present in chronic phase
• 50% asymptomatic at presentation
• symptoms are often non-specific
 – fatigue 80%
 – weight loss 60%
 – abdominal discomfort 40%
 – easy bruising 35%
 – leukostasis, priapism, thrombosis are unusual
CML Prevalence

- US Prevalence is currently 40-50,000 patients with ~4600 new cases per year.

- Anticipated increase of >10% per year.
Survival in Early Chronic Phase CML

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965-1974</td>
<td>123</td>
<td>122</td>
</tr>
<tr>
<td>1975-1981</td>
<td>132</td>
<td>127</td>
</tr>
<tr>
<td>1982-1989</td>
<td>365</td>
<td>265</td>
</tr>
<tr>
<td>1990-2000</td>
<td>960</td>
<td>334</td>
</tr>
<tr>
<td>Imatinib</td>
<td>230</td>
<td>7</td>
</tr>
</tbody>
</table>

Proportion surviving

Years from referral

95%
CML: Current Status in 2015

Imatinib
Nilotinib
Dasatinib

Nilotinib
Dasatinib
Bosutinib
Ponatinib
Omacetaxine*

Re refractory response
Suboptimal response
Relapse
Intolerance

*SCT

* 2 or more TKIs
Goals of Therapy and Assessing Response

- Landmarks of response in CML:

 - **CHR**
 - **CCR**
 - **MMR**
 - **CMR**

Putative Leukemic cell burden:

- 10^{13}
- 10^{12}
- 10^{11}
- 10^{10}
- 10^{9}

“Complete Molecular Response”; qPCR (-); Undetectable BCR-ABL transcripts

Established Landmarks; Unambiguously Defined

Dependent on Assay Sensitivity; Ambiguous
Myelodysplastic Syndromes: Definition

• Heterogeneous Marrow Stem Cell Disorder
 Characterized by
 Hypercellular Marrow and
 Peripheral Cytopenias
Current “Standard” Therapy for MDS

Supportive care for all (transfusions and antimicrobials PRN, ?iron chelation)

<table>
<thead>
<tr>
<th>Cytopenia(s)</th>
<th>Disease feature</th>
<th>First-line therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia only</td>
<td>Del (5q)</td>
<td>Lenalidomide</td>
</tr>
<tr>
<td>No del(5q), sEPO <500</td>
<td></td>
<td>ESA ± G-CSF</td>
</tr>
<tr>
<td>No del(5q), sEPO >500</td>
<td></td>
<td>?Immunotherapy</td>
</tr>
<tr>
<td>Neutropenia or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thrombocytopenia or both</td>
<td></td>
<td>None established;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>observation, growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>factors, aza/decit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reasonable</td>
</tr>
</tbody>
</table>

Lower-risk MDS (assessed using IPSS, etc.)

Higher-risk MDS

<table>
<thead>
<tr>
<th>Allogeneic SCT candidate?</th>
<th>Therapeutic approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Proceed to transplant ASAP; a hypomethylating agent (HMA) or cytotoxic chemotherapy</td>
</tr>
<tr>
<td></td>
<td>may be used as a “bridge”</td>
</tr>
<tr>
<td>No</td>
<td>Azacitidine; decitabine as alternate</td>
</tr>
</tbody>
</table>

Partly based on 2014 NCCN guidelines; see www.nccn.org
Allogeneic Stem Cell Transplant: The only known curative modality, but practical only in a small subset (<10%) of patients.

Non-Curative Goals: Decreased transfusion needs, decreased infection, delay of disease progression, prolonged survival, increased quality of life
Azacitidine Survival Study

AZA-001 Survival Study Design

Higher-risk MDS (FAB)
1:1 Randomization

Azacitidine SC 75 mg/m² × 7 days,
Repeated every 28 days

N=358

Standard of Care Options:
1. Best supportive care
2. Low-dose cytarabine
3. 3&7 chemotherapy

Overall Survival: Azacitidine vs CCR
ITT Population

Log-Rank p=0.0001
HR = 0.58 [95% CI: 0.43, 0.77]
Deaths: AZA = 82, CCR = 113

Difference: 9.4 months

Survival benefit seen even in non-CR pts.

List et al, JCO 2010.
Transfusion therapy results in iron overload

<table>
<thead>
<tr>
<th>Moderate transfusion requirement:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2 units / month</td>
<td></td>
</tr>
<tr>
<td>• 24 units / year</td>
<td></td>
</tr>
<tr>
<td>• ~ 100 units / 4 years</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High transfusion requirement:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 4 units / month</td>
<td></td>
</tr>
<tr>
<td>• 48 units / year</td>
<td></td>
</tr>
<tr>
<td>• ~ 100 units / 2 years</td>
<td></td>
</tr>
</tbody>
</table>

100 units: ≥ 20 g iron
Normal body iron: 3-4 g
Chronic Lymphocytic Leukemia

- A lymphoproliferative disease of CD5 + mature B-cells.
- More a lymphoma (LN counterpart: small lymphocytic lymphoma) than a leukemia.
Chronic Lymphocytic Leukemia: Clinical Features

• May Present asymptomatically (typically high absolute lymphocyte count in older adults)
• Other features in some pts: lymphadenopathy, splenomegally, anemia, thrombocytopenia, systemic symptoms (fevers, et loss)
• Anemia or thrombocytopenia may be on the basis of auto-antibodies. Such pts respond to steroids.
• Hypogammaglobulinemia with associated infections with encapsulated bacteria (S. Pneumo, H. flu)
Chronic Lymphocytic Leukemia: Diagnosis

- Classically - send PB for flow cytometry, find CD5+, CC20+, CD23 + (MCL usually CD23-)
- Prognosis based on clinical staging
- Add in cytogenetics/FISH
 - 13q- is good
 - 11q- or 17p- bad
- Molecular studies: IgH rearranged- good, ZAP 70 bad
<table>
<thead>
<tr>
<th>System</th>
<th>Stage</th>
<th>Definition</th>
<th>Median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rai staging system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Lymphocytosis only</td>
<td>11.5 years</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Lymphocytosis and lymphadenopathy</td>
<td>11.0 years</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Lymphocytosis in blood and marrow with splenomegaly and/or hepatomegaly (with or without lymphadenopathy)</td>
<td>7.8 years</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Lymphocytosis and anemia (hemoglobin <11 g/dL or hematocrit <33%)</td>
<td>5.3 years</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Lymphocytosis and thrombocytopenia (platelet count <100,000/mm³)</td>
<td>7.0 years</td>
</tr>
<tr>
<td>Binet staging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Enlargement of <3 lymphoid areas (cervical, axillary, inguinal, spleen, liver); no anemia or thrombocytopenia</td>
<td>11.5 years</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Enlargement of ≥3 lymphoid areas</td>
<td>8.6 years</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Anemia (hemoglobin <10 g/dL or thrombocytopenia (platelet count <100,000/mm³), or both</td>
<td>7.0 years</td>
</tr>
</tbody>
</table>
Chronic Lymphocytic Leukemia: Therapy

- Disease is incurable, but many pts live for >8 ys
- Therapy indicated for a) clinical symptoms a) diffuse LAN, wt loss, profound fatigue b) cytopenias not due to autoimmunity c) rapid doubling of lymphocyte count
- Special situations
 - Steroids for auto-immune mediated cytopenias
 - IVIG for recurrent pyogenic infections
Chronic Lymphocytic Leukemia: Therapy

- Acceptable initial regimens
 - FCR (fludarabine, cyclophosphamide, rituximab (anti CD20))
 - FR (fludarabine, rituximab)
 - BR (bendamustine, rituximab)
Chronic Lymphocytic Leukemia: Therapy

- Incredible new drugs for relapse (moving upfront)
 - Ibrutinib (sm mol inhibitor of Bruton’s tyrosine kinase)
 - Idelalisib (sm mol inhibitor of PI 3 kinase)
 - Obinotuzumab (novel anti CD20 antibody)
 - Ofatumumab (novel anti CD20 antibody)
 - Obatoclax (ABT-199, sm mol inhib of bcl-2) (not yet approved)
Ibrutinib is very active in previously treated CLL

Special Thanks

DFCI Leukemia Team
Daniel DeAngelo
David Steensma
Martha Wadleigh
Jackie Garcia
Marlise Luskin
Goyo Abel
Eric Winer
R. Coleman Lindsley, Andy Lane, Tony Letai

Ilene Galinsky, NP
Susan Buchanan, PA
Kat Edmonds, NP
Adriana Penicaud, PA
Mary Gerard, PA
Ellen Toomey-Mathews. RN

Patients and their families!!!!